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Abstract
Purpose of Review Sclerostin (SOST), a protein secreted from
mature osteocytes in response to mechanical unloading and
other stimuli, inhibits the osteogenic Wnt/β-catenin pathway
in mesenchymal stem cells (MSCs) impeding their ability to
differentiate into mineralizing osteoblasts. This review sum-
marizes the crosstalk between adipose tissue and the bone. It
also reviews the origin, regulation, and role of SOST in oste-
ogenesis and brings attention to an emerging role of this pro-
tein in the regulation of adipogenesis.
Recent Findings Bone-derived molecules that drive MSC ad-
ipogenesis have not previously been identified, but recent
findings suggest that SOST signaling may induce adipogene-
sis. In vivo SOST acts locally to induce changes in the bone
and, in vitro, increases adipogenesis in 3T3-L1 preadipocytes.
Summary SOST is able to induce adipogenesis in certain
preadipocytes, however, bone-specific studies are needed to
determine the effect of local SOST concentrations in healthy
and disease models on bone marrow adipose tissue.

Keywords Sclerostin . Adipogenesis . Bonemarrow adipose
tissue . Fat . LRP .Wnt

Introduction

The skeleton, classically viewed as a structural element in
vertebrates, is emerging as a key regulator of complex
biological processes. The bone is now known to be a
master regulator of multiple endocrine processes and
plays a role in overall glucose metabolism, fertility, and
the maintenance of the hematopoietic niche [1–5]. Cells in
the bone marrow microenvironment and beyond are reg-
ulated by signals produced by osteocytes and osteoblasts
(OBs) although the mechanisms are currently being iden-
tified. The bone marrow contains stem, progenitor, and
multifunctional differentiated cell types of several differ-
ent lineages which all work together to maintain a com-
plex microenvironment influenced by endocrine, para-
crine, and autocrine factors. In response to biochemical
stimuli, mesenchymal stem cells (MSCs) differentiate into
mature, functioning cells. In healthy bone marrow (BM),
these MSCs can differentiate into chondrocytes, adipo-
cytes (BMAs), or OBs (Fig.1) [6]. Bone marrow adipose
tissue (MAT) is composed primarily of BMAs but also
contains other BM cells (e.g., immune cells, endothelial
cells, fibroblasts, or OBs). MAT has recently been recog-
nized as a distinct adipose depot important for and re-
sponsive to metabolic status [7, 8]. Although much is
known about regulation of white adipose tissue (WAT),
researchers are only now starting to understand signaling
pathways that regulate MAT. In addition to MAT, other
adipose depots including WAT are likely regulated by
skeletal factors; in fact, both intrinsic (genetic) and extrin-
sic factors resulting in changes in the bone are often ac-
companied by metabolic and adipose tissue phenotypes.
Specific signals emanating from the bone and extending
to local cells and to the periphery are slowly being uncov-
ered (including osteocalcin) and new factors such as
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sclerostin (SOST) may add complexity to the organ- and
tissue-specific regulation of adipogenesis both in local
and distant tissues (MAT and WAT, respectively).

Adipogenesis: Origins, Depots, and Induction

Energy storage and energy expenditure are tightly regulated
and involve complex signaling networks between the brain
and the periphery. In mammals, energy is stored as adipose
tissue of which four main types have been characterized:
WAT, brown adipose tissue (BAT), and bone MAT [7, 9].
WATand BATarise from different progenitor cell populations;
however, WAT can be induced toward browning and become
Bbeige^ adipose tissue, functionally similar to BAT in both

phenotype and to a partial degree in thermogenic capabilities
[10, 11]. The main cell type in all adipose tissues is the adi-
pocyte, a cell primarily responsible for energy storage by way
of lipid droplet formation in white tissue and lipid droplet
utilization for heat production in BAT. Adipocyte lipid drop-
lets can quickly undergo lipolysis, releasing fatty acids from
triglycerides for mobilization tomeet systemic energy require-
ments [12]. In addition to the well-characterized role in energy
storage capacity, adipocytes also have endocrine functions,
secreting hormones and signaling molecules involved in glob-
al energy metabolism known as adipokines. Leptin, a hor-
mone synthesized and secreted from adipocytes, traditionally
signals via its receptor (LEPR) to indicate satiety in the brain
and full energy storage to various systems in the periphery.
While circulating leptin levels are directly correlated with
body fat percentage, a second adipose-derived hormone,
adiponectin, displays an inverse relationship with this depot.
Adiponectin is produced by WAT and MAT and is elevated in
lean individuals and with calorie restriction [13], while ex-
treme low levels of adiponectin are associated with risk of
cardio-metabolic disease [14].

Adipose tissue resides in distinct depots in the mammalian
body and the relative distribution of fat into these depots may
affect overall health. Subcutaneous and visceral depots con-
tain primarily WAT, while BAT is present during early, post-
natal development. Small amounts of BAT persist into adult-
hood primarily above the clavicle and in the small of the back
(subscapular region) [9]. MAT has been long characterized as
a relatively inert part of the bonemarrow but recently has been
recognized to have potentially diverse and important func-
tions. Significantly, this depot begins to rapidly form at birth
and makes up approximately 50–70% of the marrow space by
adulthood [15, 16]. These cells appear to be different from
WATand BAT in terms of both gene expression and functional
phenotype. While the true progenitor cell for bone marrow
adipocytes (BMAs) remains in dispute, it is widely accepted
that the progenitor arises within the marrow cavity and is
likely common to both BMAs and OBs [17•]. Recent work
has shown that MAT is similar to WAT in that it contributes to
adiponectin levels under various metabolic conditions, but
distinct from WAT in that it responds differently to both calo-
rie restriction (starvation/anorexia) [13] and treatment with
insulin-sensitizing, peroxisome proliferator-activated receptor
gamma (PPARγ) agonists [18•].

In general, adipocytes are formed from different types of
stem cells which first differentiate into preadipocytes resulting
in the commitment of the cell down this specific lineage.
Preadipocytes then proliferate to create a pool of
preadipocytes fromwhich mature adipocytes arise in response
to biochemical stimuli. Many factors have been characterized
as pro-adipogenic factors including transforming growth
factor-β (TGF-β) family members (which activate SMAD
transcription factors) and insulin signaling via its receptor.

Fig. 1 Signals between the brain, the body, and the bone. The skeleton is
emerging as a key regulator of complex biological processes, including
the sending and receiving of endocrine signals. In response to
biochemical stimuli, mesenchymal stem cells (MSCs) differentiate into
mature, functioning cells. In healthy bone marrow (BM), MSCs
differentiate into BM-adipocytes (BMAs) or osteoblasts (OBs) in
response to the addition or removal of Wnt signaling, respectively. Wnt
signaling induces RUNX2 expression driving OB differentiation, but
inhibition of Wnt signaling is required for the differentiation into
adipocytes. Sclerostin (SOST), a Wnt inhibitor, is emerging as a
potential player in the differentiation of BM-MSCs, adding complexity
to the regulation of bone marrow adipose tissue (MAT) in response to both
adipose (energetic) and bone-derived signals
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Both stimulate a cascade of transcriptional events involving
early adipogenic factors such as PPARγ and CCAAT/
enhancer-binding protein β and α (C/EBPβ and C/EBPα)
to induce adipogenesis. Adipogenesis can be inhibited via T-
cell factor (TCF)/lymphoid-enhancer factor (LEF), which
blocks increased transcription of C/EBPα and PPARγ [19].

Significantly, MSCs in the skeleton express leptin receptor
(Ob-R or Lepr) [20], indicating they likely receive nutritional
signals from various adipose depots. Conditional ablation of
the long form of the Ob-R in vivo (Col3.6-Cre;Ob-Rbfl/fl)
resulted in a significant increase in the trabecular bone, sug-
gesting that leptin signaling in early progenitors inhibits bone
formation and that MSCs themselves may directly respond to
systemic energy status, independent from neural/brain signal-
ing [21]. Importantly, Col2.3-Cre;Ob-Rbfl/fl mice, which re-
sult in conditional deletion of Lepr from osteoblasts, had no
significant defects in osteogenesis. The same study investigat-
ed in vitro deletion of the leptin receptor in Ob-Rbfl/fl bone
marrowMSCs (BM-MSCs) via adenovirus Cre, revealing de-
creased mineralization capacity and increased adipogenesis in
knockout (KO) BM-MSCs, while BM-MSCs from leptin- and
leptin receptor-deficient mice showed increased mineraliza-
tion. Knockout of the leptin receptor in early mesenchymal
progenitor cells in vivo (Col3.6-Cre;Ob-Rbfl/fl) yielded in-
creased in vitro mineralization and adipogenesis [21]. These
combined results suggest that leptin signaling is a key com-
ponent during early lineage commitment and that sustained
leptin signaling may help maintain Bstemness^ or early pro-
genitor state.

Long bone-specific conditional deletion of Lepr (Prx1-Cre;
Leprfl/fl) increased osteogenesis and decreased adipogenesis in
these regions, while overall body mass and hematopoiesis
remained unchanged [22•]. This study also characterized
Col2.3-Cre;Leprfl/fl mice and also reported no significant dif-
ferences in bone parameters or adipogenesis [22•], consistent
with previously published results [21]. As expected, MSCs
obtained from Prx1-Cre; Leprfl/fl femurs did not respond to
leptin in vitro, while in comparison, wild-type MSCs yielded
increased adipocytes and reduced OBs in response to leptin
treatment. Significantly, this study also demonstrated that lo-
cal action of leptin signaling is responsible for changes in the
bone due to high-fat diet (HFD) administration, as Prx1-
Cre;Leprfl/fl mice had increased bone parameters and de-
creased adipocytes in femur when compared to wild-type
mice on HFD. They also showed increased fracture healing
and increased osteogenesis after irradiation inPrx1-Cre;Leprfl/
fl mice, suggesting that the LEPR acts locally to negatively
regulate osteogenesis in states of bone and bone marrow dam-
age [22•]. These results indicate that LEPR is involved in the
reciprocal regulation of BM-MSCs and their ability to differ-
entiate into either OBs or adipocytes. The direct comparison
with Col2.3-Cre;Leprfl/fl suggests that LEPR is not acting in
OBs to regulate osteogenesis or adipogenesis. These data also

suggest that the adipogenic differentiation of skeletal stem
cells may require leptin signaling, linking the multipotent abil-
ity of BM-MSCs to energy availability and needs as indicated
by adipose tissue. Adipose tissue also conveys information to
the bone indirectly via leptin signaling in the sympathetic
nervous system. These signals appear to be largely anti-
osteogenic and are likely β-adrenergic receptor dependent
[23].

Deletion of the parathyroid hormone receptor (PTH1R) in
the long bones of mice via Prx1-Cre yielded opposite results
compared to Prx1-Cre;Leprfl/fl. These mice exhibited reduced
bone formation, increased bone resorption, and increased
bone marrow adiposity [24]. Administration of PTH to wild-
type mice significantly reduced MAT, a finding which has
been confirmed in human male osteoporosis patients [24].
Although bone marrow progenitors are still under investiga-
tion, this recently published paper suggests that they are
Pref1+/RANKL+ [24] and identifies PTH as an additional
factor which likely affects MSC differentiation and cell fate.

Bone as an Endocrine Organ

The link between metabolism, which includes nutritional
stimuli and organismal energy availability, and the structural
integrity of the skeleton has been a subject of interest for
decades. The maintenance of skeletal function is energetically
expensive, as both bone building by OBs and bone resorption
by osteoclasts require energy. In healthy humans, bone min-
eral density (BMD) is inversely correlated with bothMATand
visceral fat levels but positively associated with subcutaneous
fat. Interestingly, the relationship between the bone and MAT
is dynamic throughout development and during different met-
abolic disorders. During puberty, both BMD and MAT in-
crease, but during aging, MAT continues to increase while
BMD decreases. In anorexic patients, both WAT and BMD
severely decrease, but the MAT depot expands rapidly sug-
gesting that MAT is regulated separately from other depots
and that this energy store is preferentially salvaged during
times of serious energy depletion [7]. The signals that stimu-
late this expansion are as yet uncharacterized, and whether
they are derived from the brain, the bone, or both is unclear.

In vitro culture assays utilizing OBs suggest that OBs con-
sume high levels of glucose and express glucose transporters
Glut1, Glut3, and Glut4. Osteocyte- and osteoblast-specific
deletion of Glut4 resulted in normal bone architecture but
increased peripheral fat and reduced insulin sensitivity [25].
This suggests that glucose utilization by the bone is a crucial
component to healthy vertebrates and that its use impacts
global energy usage and disposal.

Importantly, leptin deficiency results in high bone mass (in
mice, humans, and sheep) as a result of increased bone forma-
tion, an effect which is recapitulated in neuron-specific
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deletion of the leptin receptor, but not an osteoblast-specific
deletion [26]. This suggests hormonal signaling from the pe-
riphery to the brain to the bone and is consistent with the idea
that bone acquisition is tied to energy intake, signaling indi-
rectly through central neural mechanisms [27]. The bone con-
versely signals to the brain and body to convey its energetic
requirements, and consistent with this hypothesis,
osteolineage cells have been shown to influence global energy
metabolism in a number of studies. Importantly, the
osteoblast- and osteocyte-derived osteocalcin, which func-
tions locally and systemically [28], is a regulator of insulin
sensitivity and secretion [2]. Indeed, in osteocalcin-deficient
mice, expression of Acyl CoA, Ucp2, Pparγ , and
adiponectin was all decreased, while adding exogenous
osteocalcin to either islets or adipocytes in vitro increased
the expression of both insulin and adiponectin, respectively
[28]. Importantly, some metabolic phenotypes generated
in vivo via conditional removal of OBs could not be rescued
with osteocalcin treatment, suggesting that additional bone-
derived proteins may regulate adipose depot weight and ener-
gy expenditure/intake [29].

Wnt Signaling in the Bone Marrow
Microenvironment

Multipotent cells such as BM-MSCs respond to biochemical
stimuli as they progress down different lineages and this pro-
cess is largely controlled by canonical Wnt signaling. Wnt
ligand molecules, a family of conserved, secreted glycopro-
teins, are critical in developmental patterning, tissue remodel-
ing, and the regulation of cellular proliferation and apoptosis.
Canonical Wnt signaling includes the binding of Wnt ligands
to frizzled receptors and/or co-receptors (LRP-4/5/6). This
binding stimulates a cascade of events resulting in the accu-
mulation of β-catenin in the cytoplasm and subsequent trans-
location to the nucleus where it activates genes important for
cellular determination. In the OB, Wnt signaling leads to the
expression of TCF/LEF family of transcription factors, which
enhance expression of RUNX-2 and other osteogenic tran-
scription factors and genes that induce OB differentiation
and proliferation (C-MYC). Sustained Wnt signaling is also
important in the maintenance of the preadipocyte state in
MSCs and other adipocyte precursor cells. These combined
results demonstrate thatWnt signaling is vital to the regulation
of stem cell differentiation and may be abnormal in various
pathogenic states (Fig. 1). Consistent with this hypothesis,
transgenic mice overexpressing WNT10B by bone cells (Ocn-
Wnt10b) exhibit elevated numbers of OBs and increased bone
formation and density [30], decreased bone marrow volume,
and significantly lessened MAT [18•]. Wnt signaling is also
inhibited endogenously via the Dickkopf (DKK) family, and
in bone DKK family members, Dikkopf-1 (DKK1) and SOST

have been specifically implicated in both BM maintenance
and pathogenesis.

Sclerostin: Origins and Association with Human
Disease

Osteocytes are the primary cell type found in the bone and
make up approximately 90% of the skeleton’s cellular com-
partment. These terminally differentiated cells are derived
from the formation of mineralized bone matrix over senescent
OBs, and as the OBs become embedded, they begin to express
osteocyte-specific genes. Significantly, genetic activation of
β-catenin in osteocytes alone increases both cortical and tra-
becular bone, bone formation, and OB number [31]
confirming that signals derived from the osteocyte can affect
the bone marrow microenvironment. Osteocytes exclusively
produce SOST, a potent Wnt antagonist. The bone formation
process is modulated via SOST, which inhibits OB prolifera-
tion and differentiation. This protein is synthesized in the
postnatal period and inhibits bone formation while also stim-
ulating osteoclast formation and survival. Sost knock-out
(SOST-KO) mice exhibit increased OB number and high
levels of the cortical and trabecular bone [32].

The regulatory role of SOST in the equilibrium of osteo-
genesis makes it a therapeutic target for individuals with os-
teoporosis. Importantly, in the last 5–10 years, studies have
implicated polymorphisms in SOST as risk factors for osteo-
porosis [33, 34]. Significantly, a single T to C change in the
regulatory region upstream of the SOST gene increases the
risk of osteoporosis and is significantly associated with
BMD in both Chinese and Caucasian populations [34, 35].
This single nucleotide variant abolishes binding of transcrip-
tion factors C/EBPα and FOXA1 (modulators of ERα signal-
ing) to the Sost/SOST gene. This long-range enhancer and
the variant therein provide a mechanistic link between SOST
expression and osteoporosis, as well as the importance of es-
trogen signaling in the regulation of SOST expression and
subsequent protein levels [34]. An anti-SOST molecule
(romosozumab) has completed phase III clinical trials and
has shown significant short-term efficacy [36]. Treatment with
the anti-SOST molecule in rodent models leads to increased
bone volume as measured by a number of metrics (cortical
thickness, trabecular volume, and trabecular thickness) [37,
38]. Our lab has also reproduced this finding with SOST neu-
tralizing antibodies in mice in the tibia and vertebrae (unpub-
lished data). In phases I, II, and III clinical trials, bone forma-
tion markers were increased upon treatment with anti-SOST
antibodies, while lumbar spine and total hip BMD increased in
a dose- and time-dependent manner [36, 38]. These studies
demonstrate that anti-SOST therapy can be used to reduce the
action of SOST during osteoporosis, leading to increased Wnt
signaling and subsequent osteoblastogenesis.

Curr Mol Bio Rep (2017) 3:114–121 117



Evidence of a Role for SOST in Adipogenesis

In humans, SOST increases with age [39] and older men have
higher levels of circulating SOST than age-matched women
[39, 40]. Interestingly, aging is associated with a decrease in
bone formation and an increase in bone marrow adiposity
[41–43], so it may be that the age-related increase in SOST
regulates these phenotypes. Studies linking circulating SOST
to adipose levels have consistently shown positive correla-
tions with fat mass in men, but results are contradictory in
women [40, 44, 45]. While specific adipose depots seem to
have different relationships with the bone, higher vertebral
MAT has been reported in both male and female osteoporosis
patients [42, 43]. This imbalance is hypothesized to be due to
a shift in allocation of MSCs toward adipocyte formation and
away from osteoblastogenesis.

Inhibition of canonical Wnt signaling has been implicated
in the induction of adipogenesis, leading to an increase in the
transcription of adipocyte-specific genes including PPARγ.
DKK1 has been shown to increase adipogenic differentiation
ofWATstem cells [46]. In vitro studies have demonstrated the
potential regulation of adipogenesis via DKK1 and SOST, but
the specific relationship between the osteocyte-produced
SOST and BM-MSCs remains uncharacterized.

Initiation of preadipocyte differentiation in vivo is influ-
enced by a tightly regulated balance of factors that control
growth of existing adipocytes and differentiation of new adi-
pocytes [19]. The fate of new adipocytes is heavily regulated
by Wnt ligands and the expression of their receptors and co-
receptors. Canonical Wnt signaling can be regulated by extra-
cellular factors such as secreted frizzled-related proteins, Wnt
inhibitory factors, and DKK proteins. DKK proteins such as
DKK1 inhibit Wnt signaling by binding to frizzled co-
receptors LRP 5/6. Importantly, sustained Wnt signaling pre-
vents differentiation of preadipocytes [47, 48], and transgenic
expression of Wnt10b under Fabp4 promoter regulation re-
sults in reduced body fat content [49], suggesting that
WNT10B signaling in preadipocytes and adipocytes is a key
regulator of the cellular transition from preadipocyte into ma-
ture adipocyte.

While sustained Wnt signaling in mouse preadipocytes has
been linked to the maintenance of stemness and the
preadipocyte state [48, 50], inhibition of this process is likely
involved in terminal differentiation. DKK1 was identified as a
potential inducer of adipogenesis in human microarray data
and this result was confirmed in human subcutaneous
preadipocytes via RT-PCR, which demonstrated increasing
expression of the DKK1 gene and corresponding protein
levels during adipocyte differentiation [51]. DKK receptors
are also expressed in adipocytes and become downregulated
during differentiation, which could indicate autocrine signal-
ing through Wnt pathways. Importantly, this study showed
that DKK1 gene expression and secreted protein were

restricted to the stromal vascular fraction of human adipose
tissue, and both were essentially undetected in mature subcu-
taneous and omental adipocytes, as well as mouse 3T3-L1
preadipocytes [51]. Ectopic expression of hDKK1 in 3T3-L1
cells inhibited Wnt signaling and promoted adipogenesis in
these cells as indicated by increased lipid accumulation and
upregulation of the adipogenic markers Pparγ and fatty acid
binding protein 4 (Fabp4/Ap2) [51]. These results demon-
strate that DKK1 promotes adipogenesis and suggests similar
effects might be observed with other Wnt antagonists.

Importantly, SOST-KO mice have recently been character-
ized as having significantly less whole body fat and smaller
adipocytes. These changes were accompanied by improved
glucose tolerance and enhanced insulin sensitivity. Inversely,
mice with overexpression of SOST presented with excess ad-
ipose tissue and impaired glucose handling [52]. SOST has
been shown to directly increase adipogenesis in mouse
preadipocytes. Recombinant SOST enhanced the differentia-
tion of 3T3-L1 mouse preadipocytes in a dose-responsive (2–
20 ng/mL) manner [53•]. The addition of SOST to adipocyte
differentiation medium leads to an increase in intracellular
lipid deposits after 5 days of treatment when compared to
untreated differentiating cells. SOST treatment also increased
adipocyte-specific gene expression of both Pparγ and
Cebpβ while cell proliferation and cell death remained un-
changed. Importantly, SOST treatment inhibited canonical
WNT3A activity in combined treatments and also reduced tran-
scriptional coactivator with PDZ motif (TAZ)-responsive tran-
scriptional activity and gene expression. TAZ regulates the
transcriptional activity of both RUNX2 and PPARγ via
coactivation and corepression, respectively, and thus may reg-
ulate MSC fate in conjunction with or separately from Wnt/β-
catenin signaling [54, 55]. Subsequent experiments with the
addition of TAZ siRNA demonstrated an increase in lipid
droplet formation and adipogenic gene expression levels sim-
ilar to that of SOST treatment [53•]. The authors suggest that
these combined results connect SOST inhibition of Wnt/TAZ
to the increase in adipogenesis in 3T3-L1 cells.

Conclusions

Signals from both bone and adipose tissue are rapidly being
uncovered as essential regulators of homeostasis and energy
balance (Fig. 1). SOST, while traditionally characterized as a
potent inhibitor of new bone formation, is being investigated
for new roles in adipose development and maintenance of the
bone marrow microenvironment (BMM). Recently, MSC en-
graftment experiments with young and aged mice demonstrat-
ed the importance of the BMM in regulating differentiation,
with decreased osteoblastogenesis and increased adipogenesis
in MSCs from young mice transplanted into old mice [56].
This indicates that bone health is likely tied to the makeup of
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the bone marrow milieu and that changes observed in human
patients during aging may be due to bone-derived signals such
as SOST.

The BMM and the factors that regulate the delicate balance
of cells therein also play a role in metastasis and protection of
cancer cells from treatments. Recent work suggests that bone-
metastasizing tumors likely interact with and are stimulated by
various cells in the BMM. Specifically, bone marrow stromal
cells have been shown to induce proliferation in multiple my-
eloma [57] and metastatic breast cancer cell lines [58], while
pro-osteoblastic treatments have been used to successfully
reduce tumor burden in the bone [59, 60]. Very recently, stud-
ies suggest that mature bone marrow adipocytes may protect
myeloma cells from chemotherapeutics [61] and that
osteocyte-derived factors promote tumor cell proliferation
[62]. Elevated levels of SOST have been detected in multiple
myeloma patients, and SOST has been shown to be increased
in osteocytes directly exposed to tumor cells [62], suggesting
that high SOST may contribute to conditions favorable to
metastasis either directly or indirectly by regulating the cellu-
lar makeup of the bone marrow. Indeed, studies suggest that
MATcontributes to systemic adiponectin levels [18•] and that
adiponectin levels may be related to myeloma susceptibility
[63]. In mice, HFD may create permissible conditions for
myeloma colonization of the bone marrow [64], and in
humans, bone metastases more frequently occur in older pa-
tients who typically have increased bone marrow adiposity
[65].

Although each of these pieces of data suggests a relation-
ship between SOST, adipose tissue, and cancer invasion of the
bone, the direct signals and definitive roles of each contribut-
ing factor are as yet largely undefined. These reports demon-
strate the importance of the microenvironment and bone-
derived signals on energymetabolism and specifically adipose
deposition. Additional studies are required to truly investigate
the complex relationship between SOST and bone marrow
adipose tissue as we seek to understand metastasis and uncov-
er future disease treatments.
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