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Abstract
Purpose of Review Post-translational modifications (PTMs),
specifically serine phosphorylation, are essential for determi-
nation and tuning up an activity of many proteins, including
those that are involved in the control of gene transcription.
Transcription factors PPARγ2 and RUNX2 are essential for
mesenchymal stem cell (MSC) commitment to either adipo-
cyte or osteoblast lineage. This review is summarizing current
knowledge how serine phosphorylation PTMs regulate activ-
ities of both transcription factors and MSCs lineage
commitment.
Recent Findings Both PPARγ2 and RUNX2 transcriptional
activities are regulated by similar PTMs, however with an
opposite outcome. The same p38 MAPK mediates serine
phosphorylation that leads to activation of RUNX2 and inac-
tivation of PPARγ2. The process of protein phosphorylation is
balanced with a process of protein dephosphorylation. Protein
phosphatase 5 simultaneously dephosphorylates both pro-
teins, which results in activation of PPARγ2 and inactivation
of RUNX2.

Summary This review provides a summary of the Byin yang^
fine-tuned mechanism by which p38MAPK and PP5 regulate
MSCs lineage commitment.

Keywords Osteoblasts . Adipocytes . p38MAPK . PP5 .

RUNX2 . PPARγ2 . Bone . Rosiglitazone

Introduction

It has been accepted that marrow mesenchymal stem cells
(MSCs) lineage commitment occurs by a stochastic mecha-
nism in which factors specific to one lineage dominate and
suppress the activity of factors of another lineage [1]. The
lineage commitment can be triggered by environmental cues
consisting of BMP and Wnt signaling for osteoblast and fatty
acids and hormonal stimulation for adipocytes resulting in
transcriptional upregulation of two key proteins: the runt-
related transcription factor 2/core-binding factor-α1
(RUNX2/CBFA1; also known as AML3 and PEBP2αA)
and the peroxisome proliferator-activated receptor gamma2
(PPARγ2 or NR1C3) [2•]. Reciprocal regulation of expres-
sion of these two transcription factors includes the activity of
Wnt signaling which upregulates RUNX2 and suppresses
PPARγ2, and suppressive effect of PPARγ2 onWnt signaling
activity and RUNX2 expression [2•, 3, 4]. An additional
mechanism which operates at the level of activity of both
proteins includes TAZ (transcriptional coactivator with PDZ-
binding motif) which co-activates RUNX2-dependent gene
transcription while repressing PPARγ-dependent gene tran-
scription [5].

Activation of PPARγ nuclear receptor consists of binding
specific ligand and formation of heterodimer with another
nuclear receptor, retinoid X receptor alpha (RXRα). The an-
tidiabetic drugs thiazolidinediones (TZDs) act as PPARγ full
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agonists which commit MSCs to adipocyte and irreversibly
suppress osteoblast lineage [6]. The induction of adipocyte
and suppression of osteoblast lineage by TZDs includes im-
mediate upregulation of PPARγ2-dependent gene transcrip-
tion and immediate downregulation of RUNX2-dependent
gene transcription, both events occurring before changes in
the expression of these factors are observed [7•]. Such rapid
response is consistent with fine-tuned regulation of protein
activities at the level of their post-translational modifications
(PTMs).

PPARγ and RUNX2 Activities are Regulated
at the Level of Serine Phosphorylation

Protein phosphorylation is a common PTM for as many as
30% of all proteins and encompasses tens of thousands of
distinct phosphorylation sites [8]. The phosphorylation pro-
cess may be specific to particular serine, threonine, or tyrosine
residues in the target protein [9]. Phosphorylation introduces a
charged and hydrophilic group in the side chain of amino
acids, possibly changing a protein’s structure by altering in-
teractions with nearby amino acids. Some phosphorylation
sites appear to have evolved as conditional Bon^ switches,
allowing these proteins, such as RUNX2, to adopt an active
conformation only in response to a specific signal [10]. While
other phosphorylation sites have evolved as conditional Boff^
switches blocking the activity these proteins, such as PPARγ.

PPARγ2 activities are linked to the status of serine phos-
phorylation by members of the ERK and MAP kinase family
(p38 MAPK and JNK) and CDK5 [11, 12]. PPARγ2 can be
phosphorylated by p38 MAPK at serine 112 (S112), which
severely decreases pro-adipocytic transcriptional activity of
the receptor [13, 14]. Dephosphorylation of S112 is an imme-
diate response to activation of PPARγ2 with full agonist
rosiglitazone and switching on a pro-adipocytic program
[15••]. In contrast, the inverse PPARγ agonist SR10171,
which increases levels of S112 phosphorylation, inhibits
proadipocytic activity and renders animals’ resistant to high-
fat-diet-induced obesity [16••]. PPARγ2 can also be phos-
phorylated at serine 273 (S273), and this phosphorylation
event occurs shortly after the onset of high fat diet feeding
and increases with progressive obesity [17]. Both, phosphor-
ylation of S112 and S273, correlates with dysregulation and
decreased expression of PPARγ target genes including
adiponectin. Insulin sensitization provided by full and partial
PPARγ agonists correlates with their ability to block phos-
phorylation of PPARγ2 at S273, leading to consideration of
this PTM as sensitizing to insulin [17]. The surrounding of
S273 amino acids in the PPARγ2 protein forms a consensus
site favored by CDK5 kinase [18]. A unique feature of CDK5
is that it is activated by system of p35/p25 kinases instead of
cyclins [19]. On the organismal level, CDK5 is activated by

pro-inflammatory cytokines and circulating free fatty acids
which levels increase in obesity [20]. We have recently
showed that the phosphorylation status of S273 is also in-
volved in a regulation of osteoclastogenesis. Thus, dephos-
phorylation of S273, an event that sensitizes to insulin, in-
creases osteoclast differentiation from hematopoietic precur-
sor and increases support for osteoclastogenesis by increasing
RANKL expression in cells of mesenchymal lineage [16••].
Perhaps it sounds provocative at this point, but the regulation
of bone resorption and insulin sensitivity by the same PTM
suggests interdependence of these two processes; perhaps as a
part of a mechanism leading to the release from the bone
matrix of the bioactive and insulin sensitizing form of
osteocalcin [21].

RUNX2 is also a phosphorylation target for ERK/MAPK
pathway. RUNX2 has several serine residues that are identi-
fied as sites for phosphorylation and correlates with either a
positive or a negative regulation of RUNX2 activity measured
as target gene expression. For instance, phosphorylation at
S104 and S451 negatively regulates RUNX2 activity [22,
23]. These PTMs cause RUNX2 ubiquitination and eventual
proteasomal degradation. In addition, phosphorylation of
RUNX2 at the S369, S373, and S377 by glycogen synthase
kinase 3 beta (GSK-3β) is also associated with the loss of
activity of this transcription factor [24]. YES-associated pro-
tein interacts with RUNX2 resulting in tyrosine phosphoryla-
tion and suppression of RUNX2 transcriptional activity [25].
However, MAPK-dependent phosphorylation of S301 and
S319 sites is indispensable for activation of RUNX2 and os-
teoblast differentiation [26]. Besides activation of RUNX2
through phosphorylation of S301 and S319 [27], p38
MAPK can also phosphorylate S28, S31, S244, and S472,
which probably act as permissive sites for RUNX2 association
with the transcriptional co-activator CREB-binding protein
and increase in transcriptional activity [28].

p38 MAPK Regulation of Adipocyte and Osteoblast
Differentiation

The p38 MAPK family is composed of four proteins: p38α,
p38β, p38γ, and p38δ encoded by Mapk14, Mapk11,
Mapk12, andMapk13 genes, respectively. Their coding genes
have a distinct tissue distribution, and they appear differential-
ly expressed, with p38α the most highly expressed isoform in
osteoblasts [29]. The p38 pathway has been implicated in
controlling differentiation of mesenchymal cells including
marrow MSCs. The p38 MAPK signaling pathway is critical
for skeleton development, maintenance of bone homeostasis,
and osteoblast differentiation [30]. On the other hand, the p38
MAPK inhibits adipogenesis on multiple levels including in-
hibition of upstream regulators of PPARγ activity such as
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C/EBPβ [31], C/EBPα [32], and NFATc4 [33], as well as
PPARγ2 through phosphorylation at S112 [34].

Downregulation of p38 activity correlates positively with
adipocyte differentiation. Activation of JNK or suppression of
p38 MAPK is required for differentiation of 3 T3-L1 cells to
adipocytes [35]. p38MAPK activity seems to decrease during
3 T3-L1 adipocyte differentiation, and a decrease in p38
MAPK activity correlates with PPARγ increased transcrip-
tional activity and adipocyte gene markers expression [35].
Furthermore, pharmacological inhibition or genetic disruption
of p38 MAPK has also been shown to increase PPARγ2 tran-
scriptional activity and expression of adiponectin and leptin
in vitro [34]. In contrast, rescue of p38 MAPK in mouse em-
bryonic fibroblast p38 MAPK knockout cells reduced
PPARγ2 activity to the basal level of wild-type cells [34].

Conversely, the p38 MAPK plays a pivotal role in different
steps of osteoblast differentiation. The differentiation of prima-
ry human MSCs or murine C2C12 cell line toward osteoblasts
requires p38 MAPK activity [36, 37], while its pharmacologic
inhibition with SB203580 impairs osteoblast differentiation of
MC3T3 cells and expression of phenotype-specific markers
including alkaline phosphatase, osteocalcin, and collagen [38,
39]. In vivo deletion of p38 MAPK or its upstream activator
TAK1 hamper osteoblast and osteocytes terminal differentia-
tion and function [27, 30, 40]. In fact, multiple models of p38
conditional knockout show the overlapping phenotype with
models carrying RUNX2 functional deficiency, including ani-
mal phenocopy of human cleidocranial dysplasia syndrome that
is related to the mutation in Runx2 gene locus. Mutations in
genes affecting the outcome of the p38 MAPK pathway can
cause developmental bone disorders such as chondrodysplasia,
cleidocranial dysplasia, or faciogenital dysplasia. In addition,
the activity of this signaling pathway is altered in the context
of osteoporosis, inflammatory osteolysis, obesity, and
osteopetrosis. As seen in specific knockout animal models, de-
leting some key upstream targets of the p38 MAPK pathway,
TAK1, MLK3, MKK3/6, and NBR1 affects different stages of
osteoblast differentiation [30, 40].

Role of Protein Phosphatase 5 (PP5) in Regulation of
RUNX2 and PPARγ2 Activities Although a critical role of
MAPK activities in the regulation of MSCs differentiation
toward osteoblast and away from adipocytes is well docu-
mented, until recently there has been essentially no informa-
tion about the mechanisms which regulate the opposite,
PPARγ and RUNX2 dephosphorylation. It is a logical possi-
bility that the fine balance between phosphorylation and de-
phosphorylation of both proteins constitutes a mechanism re-
sponsible for the maintenance of MSCs undifferentiated phe-
notype and their responsiveness to differentiating factors. For
example, activation of PPARγ with full agonist rosiglitazone
leads to rapid upregulation of adipocytic gene expression
which possess PPRE sequences in their promoter region, but

at the same time there is a PPRE-independent rapid downreg-
ulation of osteoblast-specific genes [7•]. This suggests that the
mechanism suppressing osteoblast gene expression is inde-
pendent from PPARγ direct transcriptional activity. It has
been reported that MAPK activity is decreased as a result of
prolonged treatment with rosiglitazone and it correlates with
decreased RUNX2 phosphorylation and activity [41••]. It has
been also shown that the expression of Runx2 gene is de-
creased in U33/γ2 cells after 72 h of rosiglitazone treatment,
much later than the RUNX2-dependent osteoblast gene
markers which expression is decreased rapidly 2 h after treat-
ment [7•]. This suggests a synchronized and reciprocal mech-
anism which in the yin yang manner regulates rapid switch in
MSCs differentiation toward osteoblasts or adipocytes.

Protein phosphatase 5 (PP5) is a member of the phosphopro-
tein phosphatase family with specificity for serine and threonine
residues [42–44]. However, PP5 is unique in that it contains three
consecutive tetratricopeptide repeat (TPR) motifs, making up a
TPR domain [45, 46]. The TPR domain contain binding sites for
long-chain, polyunsaturated fatty acids [47, 48] as well as bind-
ing sites for HSP90 protein chaperon [49]. Unlike othermembers
of the phosphoprotein phosphatase family in solution, PP5 has
little catalytic activity, because the TPR domain folds over the
catalytic site blocking substrate access [47]. This state of auto-
inhibition is reversed when PP5 binds to free fatty acids or
HSP90 via its TPR domain, which triggers a conformational
change and allows substrate access to the PP5 catalytic site [50].

PP5 is a multi-tasking mediator of cellular responses to
environmental and endogenous stimuli. To date, PP5 has been
identified as a key effector for inactivation of three major
MAPK signal components, Rac GTPase, Raf, and ASK1
[51]. PP5 also plays a role in cell cycle progression in several
ways. First, treatment of cells with PP5 antisense RNA leads
to hyperphosphorylation of p53 and subsequent cell cycle
arrest in the G1 phase [46, 52, 53] Second, PP5 also binds to
two proteins, CDC16 and CDC27, which are members of the
anaphase-promoting complex (APC) which is required for
anaphase initiation and the exit from mitosis [46, 53, 54].
Finally, PP5 plays an important role in DNA-damage repair
and cell cycle arrest by attenuating the activities of a check-
point kinase, ATM (ataxia telangiectasia mutated) [55].
Additionally, PP5 interacts with transcription factors includ-
ing estrogen receptor [56], glucocorticoid receptor [57], and
PPARγ [13].

Upon rosiglitazone treatment, PP5 dephosphorylates
PPARγ at S112 and promotes pro-adipocytic transcriptional
activity in mouse embryonic fibroblasts [13]. Most recently, it
has also been shown that in response to rosiglitazone in mar-
row MSCs PP5 forms complexes with both PPARγ and
RUNX2, which results in dephosphorylation of S112 in
PPARγ and activation of adipocytic and dephosphorylation
of S319 in RUNX2 and inhibition of osteoblastic activities
[15••]. In both cases, HSP90 has been found to be present in
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the complex suggesting that PP5 activation and interaction
with PPARγ2 and RUNX2 are mediated through TPR do-
mains. These findings reconcile a concept that PPARγ2 and
RUNX2 transcriptional activities are regulated simultaneously
albeit with opposite effect on MSCs differentiation.
Accordingly, dephosphorylation of PPARγ at S112 and
RUNX2 at S319 by PP5 induces adipocytic and suppresses
osteoblastic differentiation, whereas phosphorylation of
PPARγ at S112 and RUNX2 at S319 by p38 MAPK sup-
presses adipocytic and induces osteoblastic differentiation.
Figure 1 summarizes this relationship.

Effects of Rosiglitazone

An ultimate support for PP5 role in reciprocal regulation of
adipocyte and osteoblast differentiation has been provided by

animal model of PP5 deficiency and its skeletal response to
pharmacologic treatment with rosiglitazone. Thus, mice with
global deficiency in PP5 are characterized with increased bone
mass and decreased volume of marrow adipose tissue (MAT).
Ex vivo, MSCs deficient in PP5 have an increased propensity
to differentiate to osteoblasts and a compromised differentia-
tion to adipocytes. This correlates with increased phosphory-
lation of S112 in PPARγ2 and S319 in RUNX2 in MSCs
[15••].

As shown extensively in animals and humans, pharmaco-
logic treatment with TZDs including rosiglitazone leads to
bone loss and increased skeletal fragility [58–61, 62•]. In
mice, rosiglitazone-induced bone loss results from unbalanced
bone remodeling with decreased bone formation and in-
creased bone resorption, and is associated with a massive ac-
cumulation of MAT [59]. Consistently with PP5 reciprocal
regulation of PPARγ2 and RUNX2 activities, animals defi-
cient in PP5 are resistant to rosiglitazone-induced bone loss.
Thus, feeding mice rosiglitazone-supplemented diet which in-
duced up to 50% of trabecular bone loss in WT animals, did
not affect the bone mass in PP5 deficient mice and did not
compromise osteoblast activity. Moreover, lack of PP5
protected from accumulation of MAT [15••].

Interestingly, PP5 deficiency protected the skeleton entirely
from the negative effect of rosiglitazone. This is surprising
from two points. First, that PP5 is an exclusive phosphatase
conveying rosiglitazone effect on PPARγ2 and RUNX2 ac-
tivities. Indeed, a series of in vitro tests consistently showed
that PP5 is sufficient to convey an entire effect of rosiglitazone
on PPARγ2 and RUNX2 activities and MSCs differentiation
toward adipocytes and osteoblasts [15••]. Second, that PP5
regulates osteoclast differentiation and function known to be
stimulated in the PPARγ dependent manner with
rosiglitazone. This additional activity of PP5 requires more
studies to characterize it in the tissue-specific context. Most
importantly, the role of PP5 in regulation of energy metabo-
lism through PPARγ and bone metabolism through PPARγ2/
RUNX2 warrants more specific studies to determine the role
of this protein in the cross talk between bone and energy
metabolism.

Conclusions

The close relationship between energy and bone metabolism
includes variety cues and outcomes which provide for mech-
anistic responses. The inter-relationship between p38 MAPK
and PP5 signaling is one of the paradigms of yin yang regu-
lation of MSCs differentiation and regulation of bone and
energy metabolism. Corroboration of these mechanisms may
identify pharmacologic targets for simultaneous treatment of
bone and energy metabolism diseases.
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Fig. 1 Regulation of RUNX2 and PPARγ at the level of serine
phosphorylation. a p38 MAPK is activated by growth factors,
osteogenic hormones, insulin, and glucose. Activation of p38 MAPK
results in the phosphorylation of both RUNX2 and PPARγ.
Phosphorylation of RUNX2 increases its activity, whereas
phosphorylation of PPARγ decreases its activity. This results in MSCs
allocation shifted to osteoblastic lineage. b PP5 is activated by free fatty
acids and protein interaction through TPR motifs. Activation of PP5
results in dephosphorylation of both RUNX2 and PPARγ .
Dephosphorylation of RUNX2 decreases its activity, whereas
dephosphorylation of PPARγ increases its activity. This results in MSCs
allocation shifted to adipocytic lineage
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