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Abstract
The development of large language models offers new possibilities for enhancing
adaptive scaffolding of student learning in game-based learning environments. In this
work, we present a novel framework for automatic plan generation that utilizes text-
based representations of students’ actions within a game-based learning environment,
Crystal Island, to inform adaptive scaffolding of student goal setting and plan-
ning, which are critical elements of self-regulated learning. Plan generation is the task
of automatically generating a set of low-level actions that contribute toward accom-
plishing a target goal given a sequence of student gameplay and their prior completed
goals. We investigate the use of two pre-trained large language models, T5 and GPT-
3.5, in the plan generation framework. The models utilize 144 middle school students
gameplay data, encompassing a total of 11,610 event sequences, as input. The plans
generated by the model are subsequently evaluated against plans crafted by students
during gameplay utilizing an in-game planning support tool in Crystal Island. We
compare automatically generated plans to students’ manually generated in terms of the
number of matching low-level actions, the number of actions that match whenmapped
to higher-level categories of actions, and the distribution of categories of actionswithin
plans. Results indicate that automatically generated plans from both models largely
align in terms of the high-level categories of actions that are included, but the gen-
erated plans feature fewer low-level actions than students’ plans. Plans generated by
T5 align more closely with student plans, whereas GPT-3.5, though not following
student planning patterns, produces valid plans as well. These findings suggest that
LLMs show significant promise for automatically generating plans that can be used
to devise run-time adaptive scaffolding for student planning in game-based learning
environments.
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Introduction

Winne and Hadwin’s model of self-regulated learning (SRL) refers to goal-driven
learning that encompasses the formulation of objectives, the development of plans,
and the continuous monitoring and adaptation of goals and plans (Winne & Hadwin,
1998, 2008; Winne, 2018). Providing support for students’ SRL processes can greatly
assist them innavigating challenging learning tasks, such as solving scientific problems
(Dever et al., 2022). Game-based learning environments can engage learners in self-
regulated learning processes by facilitating goal setting and planning (Boekaerts &
Pekrun, 2015). They can also adapt to individual learner strategies in real time as
students solve problems in the game environment. Game-based learning environments
that are adaptive in game difficulty have demonstrated positive impact on student
motivation and situational interest (Koskinen et al., 2023). Trace data produced from
logs of student interactions with game-based learning environments provides a rich
source of input for such machine learning models. This data has the potential to
enhance student learning experiences by informing adaptive scaffolding tailored to
each student’s individual needs. However, to construct such machine learning models
using classical or deep learning techniques, the input and output of models must be in
a numerical format, leading to challenges in interpreting the resulting plans generated
from such systems. Additionally, constructing robust models that can be implemented
in real-time often requires data from thousands of gameplay sessions, which can be
difficult to acquire in educational settings.

Recent developments in large language models (LLMs) have created new oppor-
tunities for analyzing student log data by using natural language representations of
student learning and problem solving. In general, LLMs are pre-trained on vast quan-
tities of text data, enabling the model to develop a broad understanding of natural
language. Subsequent fine-tuning with domain-specific data equips LLMs to address
specific, downstream tasks within a target domain. This capability introduces oppor-
tunities in adaptive learning, such as generating practice problems, detailed solutions,
and comprehensive explanations (Kasneci et al., 2023). In our research, we explore
how we can leverage LLMs to generate plans aimed at supporting student SRL pro-
cesses and, thereby, enhance their ability to solve scientific problems.

Thework presented in this paper examines the performance of two large pre-trained
language models, T5 and GPT-3.5, in automatically generating problem-solving plans
in the context of a game-based learning environment for middle school science edu-
cation called Crystal Island. We define a plan as a set of actions that contribute
toward accomplishing a target goal and that can be enacted in the game environment.
We refer to the actions that can be directly enacted in gameplay as low-level actions.
Our plan generation framework leverages textual representations of student gameplay
data, as well as students’ previous completed goals and their current target goal as
input. As output, the framework produces a set of low-level actions that form a recom-
mended plan to achieve the target goal. Generated plans from this framework have the
potential to inform the creation of adaptive scaffolding to support students’ learning
strategies and SRL behaviors, by providing assistance to students when constructing
plans and helping to facilitate their gameplay. We present an empirical analysis of
problem-solving plans that were automatically generated by T5- and GPT-based mod-
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els by comparing them to plans students manually created using an in-game planning
tool in Crystal Island.

We aim to answer the following research questions in this work:

RQ1: How does the performance of a fully-supervised fine-tuned LLM compare with
a prompt-engineered few-shot learning approach for the task of student plan
generation?

RQ2: Does the LLM-based student plan generation framework produce valid
problem-solving plans that can be enacted in Crystal Island and achieve
the target goal set by the student?

RQ3: How effectively do LLM-based plan generation models produce plans that can
inform real-time adaptive scaffolding in a game-based learning environment?

To answer these research questions, we conducted a quantitative and qualitative
comparison of LLM-generated plans andmanually generated plans created by students
using the planning support tool in Crystal Island. We examine the alignment of
the different types of plans, as well as the relationship between different high-level
categories of goals and actions that are included in the generated plans. Lastly, we
present examples of generated plans that highlight potential issues in automatic plan
generation, and we discuss directions for addressing these issues to improve their
suitability for driving adaptive scaffolding in game-based learning environments.

Background

SRL in Online Learning

Planning and goal-setting are crucial elements of SRL in many theories (Pintrich,
2000; Winne, 2018; Winne & Hadwin, 1998, 2008; Zimmerman, 2013). Game-based
learning, in particular, requires effective goal setting and plan construction, as students
need to understand tasks and construct strategies to navigate the game environment
(Plass et al., 2020). However, research has shown that students struggle to employ SRL
strategies during challenging learning tasks (Azevedo et al., 2016). Additionally, little
work has been done to explore explicit goal setting and planning in online learning
contexts (Winne, 2018).

Despite this gap, research has shown that when supported in goal setting and plan-
ning, students’ learning experiences are improved in online environments. Azevedo
et. al (2022) demonstrated enhanced learning outcomes when students were aided
in goal-setting through pedagogical agents (Azevedo et al., 2022). Another intelli-
gent logic tutor created to provide strategies to students when developing logic proofs
demonstrated performance improvement in students that adopted the given strategies
(Shabrina et al., 2023).

In our work, we aim to support students similarly in their goal setting and planning
in-real time by employing LLMs. However, it is important to note that in SRL theory,
there is no singular approach to effective planning. Prior work examining plans stu-
dents’ created using the planning tool in Crystal Island identified a wide range of
behaviors in how many plans students created and the types of plans (Goslen et al.,
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2024). Hence, a real-time plan generation system requires the flexibility of generating
many different planning strategies to be adaptive to individual students. We aim to
analyze LLMs capabilities for this task in our work.

Plan Generation

Classical AI planning traditionally revolves around generating sequences of actions
within an environment, a concept we extend to plan generation in Crystal Island
(Ghallab et al., 2004). The field of automated planning has explored various techniques
for plan generation over many years (Blum & Furst, 1997; Hoffmann & Nebel, 2001;
Bercher et al., 2019). Recent approaches include hierarchical planning (Barták et al.,
2021) and self-supervised learning for narrative plan generation (Polceanu et al., 2021).
These methods have been applied in educational contexts with finite, small learning
environments. For example, online learning environments havedemonstrated improve-
ment in student planning and new capabilities for creating study plans using graph
networks (Segedy et al., 2015; Leung & Li, 2003). However, plan generation tasks
in open-world game-based learning environments pose a unique challenge due to the
scale of these environments.

For real-time plan generation in learning environments, it is essential to have an
understanding of students’ underlying problem-solving strategies. Students’ gameplay
within game-based learning environments such asCrystal Island is highly individ-
ualistic and characterized by exploratory behavior. Previous research with Crystal
Island has delved into student goal and plan recognition, which is formalized as a
classification task focused on recognizing students’ goals and plans given a sequence
of their in-game actions (Min et al., 2016, 2017). Long short-term memory (LSTM)
networks were found to be effective in addressing student goal and plan recognition
when treated as a multi-task multi-label classification problem with a binary vector
representation of students’ problem-solving actions (Goslen et al., 2022a, b). Prior
work has also examined the use of LLMs for student goal recognition and found that
T5 significantly outperforms competing machine learning-based methods using tex-
tual representations of student gameplay data as input (Kim et al., 2023). To date,
LLMs have not been previously used to encode students’ gameplay actions for the
purpose of automatic student plan generation. By utilizing textual representations of
student game log data, as well as the generation of textual output for executable in-
game plans, language models hold significant promise for the creation of plans that
are not only human-interpretable but also adaptable to various learning scenarios.

Large LanguageModels

The development of LLMs has been a significant recent advancement in the field of
natural language processing (NLP). These models have proven successful in many
NLP tasks like text summarization (e.g., BART (Lewis et al., 2020)), code assistance
(e.g., Copilot (Chen et al., 2021)), and dialogue generation (e.g., GPT-3 (Brown et al.,
2020), LaMDA (Thoppilan et al., 2022)). In our research, we aim to explore the effec-
tiveness of LLM-based plan generation within game-based learning environments.
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This work compares the validity of plans generated from two language models, T5
(Raffel et al., 2020) and GPT-3.5 (Brown et al., 2020). T5 is a transformer-based lan-
guage modeling framework, adopting a consistent approach where all NLP tasks are
reconfigured into a unified text-to-text format (Raffel et al., 2020). T5’s architecture
is an extension of the original transformer architecture (Vaswani et al., 2017), incor-
porating three key modifications. These modifications involve eliminating the layer
norm bias, repositioning the layer normalization, and adopting an alternative position
embedding scheme. GPT-3.5 is an autoregressive language model trained using 175
billion parameters. It has shown great potential when compared to other languagemod-
els for NLP tasks like text-completion, question answering, and translation (Brown
et al., 2020).

There is growing recognition of the potential of LLMs across a broad range of
educational applications, including lesson planning, assessment, and providing scaf-
folding (Kasneci et al., 2023). In educational settings, T5 has been explored for the
purpose of automatic question generation (Bulathwela et al., 2023; Jiao et al., 2023)
and team communication analysis (Pande et al., 2023). The ability to fine-tune LLMs,
such as T5, has yielded promising results for such tasks. GPT-3 is among the most
widely used LLMs in recent years with applications like generating code explanations
and improving automated evaluation of student text responses (Kasneci et al., 2023;
MacNeil et al., 2022; Cochran et al., 2023). However, to protect student data with-
out transmitting it to external servers, it is essential to train and operate the model
locally on a machine. In this sense, the T5-small (60M parameters) offers a notable
advantage due to its relatively smaller size compared to larger language models like
Llama-2 (7B-70B; Touvron et al. (2023)) and GPT-3.5 (135B). This makes it feasible
to train and deploy the model using the limited computing resources typically avail-
able in educational settings. While the smallest Llama-7B/13B model can be run on
a single/double GPU, respectively, its zero-shot and few-shot performance does not
match that of GPT-3.5, limiting its ability to achieve satisfactory performance. Addi-
tionally, fine-tuning Llama-2 also requires a much higher computing cost compared
to T5-small.

Regarding more recent and advanced LLMs, GPT-4 (Achiam et al., 2023) has
1.76 trillion parameters, approximately 10 times more than GPT-3.5’s 175 billion
parameters, while GPT-4o (Hello GPT-4o, n.d.)ha s a parameter count similar to GPT-
3.5 but the performance often matches to GPT-4. Recent work in adaptive support
has utilized GPT-4 to generate levels of a science game-based learning environment
in real-time through natural language prompts (Kumaran et al., 2024). Although both
GPT-4 and GPT-4o surpass GPT-3.5 in many aspects including factual accuracy, data
analysis, multimodal capabilities, and reduced bias, not all their advanced features
equally benefit plan generation. In our scenario, the most critical aspect is the ability to
handle highly technical and domain-specific content with more complex data analysis.
These enhanced capabilities in GPT-4 and GPT-4o could be potentially advantageous
for our plan generation task that analyzes extended sequences of student actions in
educational games. Despite the technical advantages of GPT-4 and GPT-4o, their API
costs pose a significant barrier in non-commercial and educational domains.GPT-4 and
GPT-4o incur costs that are 60 times and 10 times higher per input token compared to
GPT-3.5, respectively. Consideration is needed because the cost of LLMAPI services
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could potentially restrict educational opportunities that should ideally be accessible
to everyone equally.

Our work explores how we can utilize LLMs to support student learning and
problem-solving by automatically generating plans that can be used to inform adaptive
scaffolding for student SRL.We introduce a novel plan generation framework that uti-
lizes student gameplay data as input to our LLMs and evaluate problem-solving plans
generated by T5- and GPT-based plan generation models against student constructed
plans. We discuss the pros and cons of each language model for this task, as well as
how these models might be integrated into real-time adaptive learning environments
to enhance student learning.

Game-Based Learning Environment

Our work is conducted with a game-based learning environment called Crystal
Island (Rowe et al., 2011; Taub et al., 2020). Designed for eighth-grademicrobiology
education, it immerses students in a mystery narrative where they must investigate the
origins of an illness that has spread across a remote island research station (Fig. 1).
Students can visit different locations on the island, interact with non-player characters,
read educational texts via books and posters, and run tests in a virtual laboratory. A
planning support tool was incorporated into the game to assist students in orienting
themselves to the learning environment and to support their goal setting and planning
processes (Goslen et al., 2022a). Students were prompted throughout their gameplay
to set goals and formulate plans using a drag-and-drop interface (Fig. 2). In the tool,
a plan is defined as a target goal (green) that contains one or more low-level actions
(blue) that contribute toward accomplishing the goals. Students can choose from 20

Fig. 1 Crystal Island game-based learning environment
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Fig. 2 Examples of goals and plans in the planning support tool

low-level goals and 55 low-level actions in the planning tool. Based on the design
of the planning tool, the goals and actions listed in the planning support tool can
be categorized in terms of 5 high-level goal categories (collect data, communicate
findings, form diagnosis, learn science content, gather information) and 6 high-level
action categories (explore, speakwith characters, read science content, gather and scan
items, examine poster, evaluate hypothesis).

The design of this tool is rooted in Winne and Hadwin’s model of SRL (Winne &
Hadwin, 1998, 2008), by allowing students to understand tasks in the game, externalize
goals and plans, and then monitor and adapt those plans through the planning support
tool. The low- and high-level goals and actions can be thought of as a hierarchy, with
the lowest level being low-level actions, as those are direct actions that can be played
in Crystal Island. High-level actions represent categories of actions that can be
taken in the game, with each high-level action mapping to a set of low-level actions.
The highest level in the hierarchy is high-level goals that represent goal categories that
map to sets of low-level goals. Thus, plans students create in the tool are combinations
of low-level goals and actions and are directly traceable with gameplay actions. High-
level goals and actions demonstrate more general strategies students can take in the
game.

Plan-Enhanced Adaptive Game-Based Learning Environment

The small size and nature of educational datasets often limit the performance of certain
machine learning methods, causing prediction tasks to be abstracted to categories or
fewer classification tasks. Additionally, classical machine learning methods require
the conversion numerical input and output, limiting the interpretability of the results of
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suchmodels.With the introduction of pre-trainedLLMs, the task of plan generation has
the potential for significant predictive performance improvement, by allowing formore
fine-grained predictions and interpretable results. Through real-time plan generation,
we can support how students plan to achieve their goals. Figure 3 shows a framework
diagram of an adaptive learning environment that incorporates plan generation models
in real-time.

As students interact with the game-based learning environment, they once again
engage in SRL processes, by exploring the environment to understand tasks, setting
goals based on the game progression, enacting plans to achieve those goals, and mon-
itoring and adapting those plans based on how well they worked for the given goal.
Without the planning tool, students would engage in these SRL behaviors metacogni-
tively. Through the planning support tool, students are able to externalize their plans
at several points throughout the game. These gameplay interactions, as well as their
planning activities, are automatically logged by the system. The data logged from the
system is passed to the student plan generation framework, particularly a sequence of
gameplay events, a target goal selected by the student and a set of previously com-
pleted goals. From this data, the plan generation framework outputs a set of low-level
actions that are playable in Crystal Island. Based on the outputs of these models,
the system can deliver adaptive interventions aimed at improving students’ planning
activities. For example, the plan generation framework can provide benefits in three
aspects: student planning support, plan modification during gameplay, and game diffi-
culty adjustment. 1) If a student is struggling during planning, it generates standardized
plans that align with the presented goal, assisting the student’s planning process in
real-time. 2) If a student encounters difficulties while executing a plan, it suggests
alternative plans, helping the student modify and strengthen the plan to achieve the
goal more efficiently. 3) For students with high abilities and engagement in the game,
it enhances learning experience and engagement by proposing advanced plans that
offer a more diverse and in-depth experience.

Below are a few examples of interventions based on how a learning environment
could adapt to such behaviors using the plan generation framework. Consider a stu-
dent that kept the same goal in their planning tool throughout gameplay, and only

Fig. 3 Example game-based learning environment that incorporates a plan generation framework
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changed the actions within that plan. This type of behavior is indicative of a student
not externalizing their plans fully in the planning support tool because multiple goals
are required to solve the mystery. A plan generation framework could show the student
generated plans similar to other students to help them formulate new plans, prompting
the student to achieve multiple goals. Consider a student that has the same plan per-
sist throughout gameplay, without achieving the corresponding goal for a long time.
Through tracelogs, an adaptive learning environment could identify if each low-level
action in the plan had been enacted in gameplay. If a plan was not already completed,
additional hints or alternative plans generated by the student plan generation frame-
work could be provided to the student, potentially avoiding game abandonment. The
framework could also provide more efficient plans, allowing the student to reach mile-
stones in the game quicker, potentially increasing engagement in the game. Finally,
consider a student that has a high level engagement with the planning support tool, by
voluntarily accessing the planning tool to view and update plans, potentially demon-
strating a high SRL skill-level. The plan generation framework could automatically
provide more detailed hints of alternative actions to achieve their goals. Alternatively,
an adaptive learning environment could adjust the game difficulty by incorporating
new educational concepts based on how quickly the student achieves their goals or
navigates the game’s milestones, preventing the student from getting bored with the
game. The plan generation framework could then automatically generate plans for the
new content and help the student navigate further challenges.

Methods

This sections introduces the methods for constructing a novel plan generation frame-
work that utilizes sequences of students’ gameplay interactions, their completed goals
and a current target goal as input. Through the use of an LLM, the framework produces
a viable set of low-level actions that can be played in the game to achieve the corre-
sponding target goal. To evaluate the framework, we compared the LLM-generated
plans to plans students manually constructed in the planning support tool in Crystal
Island.

In this study, we harness the capabilities of pre-trained LLMs to analyze textual
game trace logs generated by student interactions with the Crystal Island game-
based learning environment and produce corresponding plans to attain specific target
objectives. The process is divided into two main phases. The first phase aims to trans-
form the input to the framework, which are students’ gameplay sequences. We utilize
an encoder to transform the input because the event sequences consist of lists of game
actions and locations, information contextually specific toCrystal Island. The sec-
ond phase involves decoding the output of the framework, the generated plans. We use
a sequence-to-sequence model that incorporates both an encoder and decoder because
the output of the framework encompasses generated plans of varying lengths. Instead
of a traditional classification task, this challenge falls within the realm of language
generation. As a result, a decoder that is proficient in language generation becomes a
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requisite component. In essence, our task necessitates the use of incorporating both
an encoder to encode the gameplay input and a decoder for the plan output (Sutskever
et al., 2014).

Many seq2seq language models have been explored, including well-known exam-
ples like the transformer model (Vaswani et al., 2017) and BART (Lewis et al., 2020).
For our task, we utilize T5-small (Raffel et al., 2020), one of the transformer-based
models, in order to examine the benefits of fine-tuning pre-trained language models
for plan generation, and we utilize GPT-3.5 (Brown et al., 2020) to examine the impact
of prompt engineering with a large language model for plan generation.

T5Model Construction

Wepre-trained the T5model using a pre-processedEnglish language corpus of approx-
imately 700GB in size called the Colossal Clean Crawled Corpus (C4). Among the
various sizes of available T5models, we selected T5-small, which has a size of 600MB
and comprises 60 million parameters, for fine-tuning our plan generation models. This
choicewasmadewith careful consideration of efficientmodel training and the potential
for deploying the model to facilitate real-time plan generation in educational settings,
where compute resources are frequently constrained.

To analyze student log data using LLMs, we considered a series of interactions
by a student with Crystal Island as an event sequence. Student interactions
with Crystal Island were automatically recorded as they navigated the environ-
ment. To construct our input, we extracted three attributes from each game event:
event type (nine possible in-game activities), event argument (additional context
for the event type), and event location (24 locations in the game). To illustrate,
two event types in the game were reading a book and conversing with a charac-
ter. Corresponding event arguments would be the title of the book being read or
the name of the character being spoken to. The final attribute would be the loca-
tion either of these events occurred. For example, one such event would be denoted
as e = (Conversation, Kim, I n f irmary). Note this feature extraction aligns with
prior work done in Crystal Island (Goslen et al., 2022a; Min et al., 2017).

Once we constructed a 3-tuple for each event, we discretized each students’ event
sequences based on the student’s utilization of the planning support tool. A typical
interaction within the context of Crystal Island involved a series of gameplay
events (E1), followed by an interaction with the planning tool where students created
one or more plans that contain various target goals (Gt = {Explore island}). Subse-
quently, there would be another series of events (E2), followed by another planning
tool interaction with updated or new plans (Gt = {Find sick individuals}), and so on,
until they complete their gameplay session. These planning tool interactions highlight
key moments where students are using SRL processes and may need support. Thus,
we segmented event sequences by planning tool interaction to align with real-time
prediction. In other words, our model’s input consisted of the actions taken by stu-
dents up to the point of prediction (a planning tool interaction). Formally, we denote
the input as I : [E = (ei , ei+1, ..., ei+k),Completed : Gc,Goals : Gt ] where E is
the series of game events prior to planning, Gc represents a set of goals that a student
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has completed, and Gt denotes the set of target goals the student constructed during
planning. Note, that Gc could be empty if a student had not completed any of their
goals in the planning tool.

In the planning tool interactions, a student’s plan consisted of one goal with a set
of related low-level actions. Students were prompted to plan at various milestones in
the game, allowing us to use the plans made in these interactions as reference points
for predicting the next plan a student is likely to formulate in real-time. Consequently,
we utilized the sequence of student gameplay actions up to the moment of the student
opening the planning tool as input to our model, and the goals students selected during
the planning tool were used as the target goal.

As an illustration, consider the interaction with Crystal Island described pre-
viously. In this context, the initial input row would be represented as I = [E1,Gc =
{},Gt = {Explore island}] because the student had not completed goals at that point.
For a goal to be considered completed, a student would need to execute all the low-
level actions outlined in their plan prior to opening the planning tool. Thus, if the
student in this example completed each the low-level action from in plan 1 during E2,
then we would consider plan 1 to be completed and the following input row would
be I = [E2,Gc = {Explore island},Gt = {Find sick individuals}]. For the T5 model,
we utilized a cumulative representation of event sequences and set a maximum event
sequence length of 30 (Goslen et al., 2022a).

GPT-3.5 Model Construction

To provide a comparison to the fully-supervised T5 results, we also generated plans
using a few-shot learning approach with OpenAI’s GPT-3.5 model. We utilized the
gpt-3.5-turbo model and generated plans using the chat completions API. We selected
this model because it shows robust performance across a range of tasks, has lower
resource requirements and is lower cost than GPT-4. Because we are able to leverage
student planning activities for evaluation and training, we opted for a few-shot learning
approach. In this request prompt, we included a description of Crystal Island and
the overarching goal of the game, a list of all goals included in the planning tool, a
list of all actions included in the planning tool, and two example inputs with their
corresponding set of planned actions. These example inputs were randomly selected
for each goal category, since not every goal within a category was used more than
two times. This meant that every target goal within the same goal category would
contain the same examples in the prompt, and these examples were excluded from the
analysis. The end of the prompt consisted of the input event sequence (E), the set of
completed goals (Gc) and the target goal (Gt ). Because the GPT-3.5 API has a token
limit per call-response, we limited the number of examples used for few-shot learning
approach to two plans in the prompt.

Table 1 shows an example prompt used in the GPT-3.5 plan generation model.
The event sequences were of length 30 so as to be consistent with the T5 input. The
example event sequences shown in the table resemble T5 input as well.
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Table 1 An example GPT-3.5 prompt

For each given event sequence, completed goals and target goal, generate a set of actions for a
player to enact in a game based learning environment. The setting for the learning environment
is a remote island called Crystal Island where some members of a research team have
recently started to become sick. The player must determine what disease is spreading amongst
the researchers, what food item it is spreading through, and what the correct treatment or
prevention plan is based on the disease that’s spreading. Players can take the following actions
to solve the mystery:

1) speak to virtual characters to learn about their symptoms, the mystery, or microbiology
knowledge

2) read informational texts about types of diseases or other microbiology knowledge

3) collect food items in the world

4) scan food items to see if they contain bacteria, viruses, or carcinogens

5) view posters to learn about the symptoms and treatments of various diseases

A target goal is selected from the following set: [listed 20 goals from the planning tool]. The
set of actions can be chosen from the following: [listed 55 actions from the planning tool].

Plans can contain as many actions as the player wants. An event sequence represents the set
of actions already completed by the player. The completed goals represent the set of target
goals the player already accomplished.

Given an event sequence, completed goals and the player’s next target goal, please generate
a set of actions that a player can enact to accomplish the target goal.

Here is an example:

Event sequence:

Movement LabStairs

Movement Lab

Scanner Bread Lab

PlotPoint TestContaminatedObject Lab

Worksheet Lab

Completed Goals: test objects patients have touched

Target Goal:test food drink patients have consumed

Actions: speak with camp nurse, speak with patients, examine poster about salmonellosis

Generate a set of actions for the following:

Event sequence:

BooksAndArticles Scientific Method Infirmary

ConceptMatrices Scientific Method Infirmary

BooksAndArticles How do diseases spread? Infirmary

ConceptMatrices How do diseases spread? Infirmary

Movement InfirmaryStairs

Completed Goals:

Target Goal:test food drink patients have consumed

Actions:

Note: event sequences and example plans have been reduced for space. Actual prompts included event
sequences of length 30 and two example plans
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Evaluation

Dataset

The dataset used in this work was collected during the COVID-19 pandemic from
a group of 144 middle school students. Students played the game remotely during
asynchronous science class time. The average age of students was 13.2 years, with
60% being female. Students played the game for 94.7 minutes on average (SD=47.7)
and completed pre- and post-tests. Students’ gameplay was logged automatically,
yielding game log datawhich included students’ in-game planning activities. Students’
plans were distributed across five categories of goals as follows: collect data: 22%,
communicate findings: 4%, form diagnosis: 13%, learn science content: 22%, and
gather information: 40% (Goslen et al., 2022a).

Experiment setting

For T5, we performed a 5-fold cross-validation of fine-tuning the models to prevent
the memorization of input plans and to generate plans for all the student data. The
input also allowed multiple goals. A total of 510 plans were included for the analysis,
with 11,610 cumulative event sequences. We selected the hyperparameters from pre-
liminary explorations with the search space of learning rate [0.0001, 0.0003, 0.0005]
and batch size [4, 8, 16] and fixed the following hyperparameters for T5: a learning
rate of 0.0003, a batch size of 4, an input max length of 1024, a weight decay of 0.01,
and a warmup setting of 1000.

For GPT-3.5, we conducted prompt engineering through few-shot learning,
described in the Method section, omitting the use of cross-validation. Unlike the
T5 model, each API call consisted of one single goal, meaning if an input had more
than one target goal associated with it, we would make separate API calls for each
target goal and provide the same input to the model. This was done to ensure the
interpretability of the GPT-3.5 response. We also did not construct event sequences
cumulatively for this model because API calls were limited to a maximum of three per
minute, increasing our runtime considerably. After removing the provided examples
from the dataset, we had 497 generated plans from the GPT-3.5 model.

Quantitative and Qualitative Analysis

To evaluate both languagemodels’ ability to generate plans and to answer our research
questions, we developed evaluation methods to qualitatively and quantitatively assess
the generated plans. Because currently there is not a validated approach to evaluate
plans in Crystal Island, these evaluation methods are meant to be exploratory in
nature and provide a range of techniques for plan evaluation. Our quantitative metrics
(RQ1) focus on the percentage of actions within the generated plan (GP) that match
actions in the corresponding student plan (SP). To calculate this percentage,we counted
how many actions in the GP matched the actions in the SP and divided by the size of
the GP. We calculated the percentage of actions in the GP that matched actions in the
corresponding SP at the low-level (pL ) and also using the high-level action categories
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(pH ). Additionally, we examined the percent matched across three cases (1) where
the size of SP and GP were equal (SP = GP), (2) where the GP was larger than the
SP (SP < GP), and (3) where the GP was smaller than the SP (SP > GP). This
analysis provided more insights into how each model performed compared to student
plans and when it might be useful to use generated plans in adaptive systems.

For our qualitative analysis (RQ2 andRQ3), we compared the contents of generated
plans fromeachmodelwith students’ plans using high-level goal and action categories.
For T5, GPT-3.5, and student plans, we separated plans into groups by mapping the
target goal of the plan to its corresponding goal category. There were five total goal
categories: gather information, learn science content, form diagnosis, collect data, and
communicate findings. Then, we mapped the low-level actions in each of these groups
to their high-level action categories and summed each action category. This provided
a way to understand which types of actions were being used for each goal category.
In our analysis, we examined the high-level action category distributions of both T5
and GPT-3.5 generated plans and compared them to student high-level action category
distributions for each goal category. Finally, we extracted several example plans from
the language models, as well as students-created plans, to present a comparison of the
quality of plans. Examples were chosen from each of the target goal categories and
were meant to showcase a wide variety of behavior and how our system could provide
intervention and support with these generated plans. These examples contribute to
the overall discussion on how language models could be leveraged for adaptivity in
learning environments.

Results

RQ1: How Does the Performance of a Fully-Supervised Fine-Tuned LLM Compare
with a Prompt-Engineered Few-Shot Learning Approach for the Task of Student
Plan Generation?

To compare the fully-supervised and few-shot learning approaches, we assessed the
T5 and GPT-3.5 generated plans based on the size of generated plans and how closely
they matched the student plans. Figure 4 illustrates the distribution three variables
considered in this evaluation: (1) the differences in plan size between student-created
plans and those generated by the T5 model (left), (2) low-level match percentages
(center), and (3) high-level match percentages (right).

The plan size difference had a median of 0.0 (mean = 0.0, SD = 3.4). In this
case, a negative difference indicated the generated plans contained more low-level
actions than the student plans. The maximum observed difference in plan size was
26, signifying that the T5 model was larger than the corresponding student plan by 26
low-level actions.

The match percentage for low-level actions (pL ) had a median of 0.0 (mean =
25.2, SD = 32.3), as depicted in the center boxplot. Among the 11,610 generated
plan instances, 8.1% generated all low-level actions present in the corresponding
students’ plans. We also observed that 51.2% of generated plans had no low-level
actions matching those of the student plan.
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Fig. 4 Distribution metrics for T5 generated plans

The match percentage for high-level actions (pH ) had a median of 66.7 (mean =
59.8, SD= 41.9). Notably, therewas an increase in exactmatches for high-level actions
to 44.4% and a decrease in the amount of plans with no high-level action match to
24.8%. Although a small percentage of T5 generated plans closely matched students’
low-level actions, the increase in high-level match percentage indicates that the model
generated low-level actions within the same high-level categories. These generated
plans could prove useful for adaptive support in that it could show students a wide
variety of plans that would be similar to their own plan, allowing them to reflect on
their plan.

Figure 5 shows the distributions of the plans generated from the GPT-3.5 model.
The boxplot on the left shows the median plan size difference was -1 (mean=-0.49,
SD=2.44). The maximum and minimum plan size difference were both 10, meaning
at most the GPT model included 10 additional low-level actions in its plan and at
least the student included 10 more low-level actions in their plan. This difference is
a bit smaller than the T5 generated plans, possibly due to token limitations with the
API. For GPT plans, low-level action match percentage (pL ) had a median of 0.0
(mean=19.0, SD=28.7). Out of 497 GPT generated plans, 6.0% had plans where all

Fig. 5 Distribution metrics for GPT generated plans
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low-level actionsmatched that of the students’ plans and 58.9% contained no low-level
action matches to the corresponding student plan. For GPT-3.5, the median pH was
50.0% (mean=50.3% , SD=41.5%). Similarly to T5, we saw an increase in generated
plans where all high-level actions were present in the students’ plan to 33.6% and a
decrease in no matches to 28.9%. These results were lower than the T5 match rates at
the high-level, indicating T5 more closely aligned with students’ plans.

A comparison ofmatch rate betweenLLMs is shown inTable 2. For bothmodels,we
observed a match percentage increase between low-level and high-level match rates.
For T5 generated plans, the case SP=GP performed best in terms of low-level match-
ing, whereas for GPT-3.5 the case SP > GP contained the highest pL . This indicates
that fully-supervised fine-tuning methods (T5) performed best in terms of generating
plans very similar to students, and few-shot learning with prompt engineering (GPT-
3.5) potentially generated subsets of students plans. For both LLMs, we noticed the
largest increase in matches when the generated plan was smaller than the student plan
(SP > GP). We believe these could be reflective of potentially more efficient plans,
because the generated plans contained fewer low-level actions and these actions were
within the same high-level category. These types of generated plans demonstrate a
potential use-case for real-time systems that could help the student access more of the
game in the time allotted. The case of SP < GP performed worse for both models,
which indicates that when the models generate larger plans, they are more distinct
from the student plans. Overall, we found that for both cases of match rate GPT-3.5
performed worse than T5, but followed similar trends as T5.

Furthermore, there was a significant difference in average plan size difference,
low-level matching and high-level matching between T5 andGPT-3.5 generated plans.
Results froma two-sided t-test showed a significant difference in the average difference
in plan size between T5 and GPT-3.5 generated plans (p < 0.0001). Additionally,
results from twoWilcoxon rank sum tests showed a significant difference in the average
percent matched for both low-level actions (p < 0.0001) and high-level actions (p <

0.0001) between T5 and GPT-3.5 generated plans.

RQ2: Does the LLM-Based Student Plan Generation Framework Produce Valid
Problem-Solving Plans that can be Enacted inCRYSTAL ISLAND and Achieve the
Target Goal Set by the Student?

Table 3 shows the high-level action distribution for students, T5 and GPT-3.5. For goal
categories “gather information”, “learn science content” and “collect data”, T5 had

Table 2 The percents of action matches between T5 and GPT-3.5 generated plans and students’ plans at
the low-level (pL ) and high-level (pH )

T5 GPT-3.5
N dist (%) pL (%) pH (%) N dist (%) pL (%) pH (%)

SP = GP 21.4 34.7 66.0 19.3 28.9 47.9

SP < GP 42.5 16.1 46.8 52.7 10.4 39.1

SP > GP 36.1 30.2 71.2 27.9 32.9 71.3

Overall 100.0 25.2 59.8 100.0 21.9 51.2
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Table 3 High-level action category distribution for each high-level goal across student, T5, and GPT-3.5
plans

Collect Communicate Form diag- Learn science Gather
data (%) findings (%) nosis (%) content (%) info. (%)

T5 Explore 5.94 13.74 0.00 23.07 57.47

Speak with characters 19.44 24.29 6.57 34.06 20.73

Read science content 8.78 29.53 1.63 21.01 9.45

Gather and scan items 55.34 12.04 48.68 11.28 6.41

Examine poster 7.53 11.26 3.26 9.62 4.97

Evaluate hypothesis 2.96 9.14 39.86 0.96 0.96

GPT-3.5 Explore 0.26 0.00 4.35 24.60 94.33

Speak with characters 26.04 22.22 41.30 20.27 4.08

Read science content 7.55 19.44 17.39 22.55 0.35

Gather and scan items 40.89 0.00 4.35 0.46 0.71

Examine poster 24.74 22.20 28.26 31.44 0.53

Evaluate hypothesis 0.52 36.11 4.35 0.68 0.00

Student Explore 5.99 8.33 0.00 14.92 58.97

Speak with characters 20.39 16.67 0.00 33.97 17.76

Read science content 15.08 8.33 71.62 22.22 6.57

Gather and scan items 50.78 8.33 8.11 11.11 9.77

Examine poster 3.10 41.67 14.86 14.60 5.86

Evaluate hypothesis 4.67 16.67 5.41 3.17 1.07

very similar distributions to students’ plans. This is expected as these are themost used
goal categories and T5 had more training data than GPT-3.5. Interestingly, students
used primarily “read science content” actions for the goal of “form diagnosis”, but
T5 generated plans that mainly consisted of “gather and scan items” and “evaluate
hypothesis” for the same goal. This demonstrates a case where the generated plan
might benefit students, as evaluating a hypothesis helps to form a diagnosis in the
game. Therefore, suggesting this action as part of the planning process could aid in
the students’ overall comprehension and learning efficiency.

The GPT-3.5 generated plans varied in comparison to the student plans. For exam-
ple, the GPT-3.5 “gather information” high-level goal almost exclusively consisted of
“explore” actions. “Gather information” goals were the most used by students and are
the most general of the goals presented in the planning tool, meaning there are several
ways to complete the goals. This implies there should be diversity in the high-level
actions for this high-level goal, so the GPT-3.5 model is not ideal in this case. Notably,
the “communicate findings” category had distinct distributions for all three sets of
plans. This goal category is the most specific goal category out of the group, with the
game explicitly describing how to communicate findings and win the game. To do this,
a player must fill in the diagnosis and speak with the camp nurse. GPT-3.5 generated
plans were the only plans that were composed of the two corresponding high-level
actions to accomplish this goal.
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To further understand the performance of the few-shot learning technique used with
GPT-3.5, we compared the GPT-3.5 plans with the examples provided in the prompt.
We found that 5.8% of GPT-3.5 generated plans contained all actions present in the
examples provided in the prompt, and 27.1% contained at least half of the actions
provided. Alternatively, 52.5% of the GPT-3.5 plans contained no actions present in
the examples but were generated based on the given context information, shown in
Table 1. One interesting case was where GPT-3.5 combined both provided examples
as its generated plan. Overall, while the GPT-3.5 generated plans did not align with
students’ plans, it was generally able to generate valid plans beyond the provided
examples.

RQ3: How Effectively do LLM-Based Plan GenerationModels Produce Plans that
can Inform Real-Time Adaptive Scaffolding in a Game-Based Learning
Environment?

To answer this question, we extracted example plans that showcase the nuances of
plan validity analysis. Table 4 shows an example student, T5, and GPT-3.5 plans
for each listed target goal. Each distinct target goal shown in the table was selected
from a different goal category to provide more comprehensive examples. There was a
wide variety of plans for each goal across all sets of plans (student created and LLM-
generated). This variance is evident in the data, and we observed similar patterns
between LLM-generated plans. For each goal category, we extracted interesting cases
of generated plans that have implications for how we might implement such models
in adaptive systems.

The generated plans for the “test objects patients have touched” goal (a) demon-
strated a case where the plan is very long, and in this case exceeds the amount of items
a player could pick up at a time. This could be beneficial to students to understand their
options and finetune their hypothesis, but it could also contribute to students trying to
game the system by testing all objects. We did notice that most generated plans for
this goal included the action “use scanner and test objects”, which is crucial to achiev-
ing the goal. This highlights that LLMs have the capability of providing contextually
important information.

“Report evidence-based diagnosis” (b) was the least used goal, and to achieve it
students are instructed to fill in information on their diagnosis worksheet and speak
with the camp nurse about the diagnosis. None of the plans included the speak action,
but they did include several “fill in” actions. Interestingly, the T5 model generated a
plan identical to a different students’ plan. We noticed T5 did this several times, which
could be beneficial in real-time settings. This type of cross-student hints could help
foster collaboration or competition in the game. For example, if the plan generated
by the LLM based on student A’s game event sequence is similar to student B’s plan,
it implies that the student B is going through a similar situation as student A. Thus,
it can encourage collaboration with these two students, allowing them to share the
reasoning and execution methods behind their plans, there by increasing performance
and engagement in the game.
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Table 4 Example student-created plans and LLM-generated plans for a target goal in each goal category

Target goal (a) Test objects patients have touched

Target goal (a) Test objects patients have touched

Student plan speak with lead scientist, pick up lettuce, speak with virus expert, speak with bacteria
expert, read about viruses, pick up peanuts, use scanner to test objects

T5 plan pick up raw chicken, pick up cheese, pick up egg, pick up water, pick up lettuce, pick
up yogurt

GPT-3.5 plan pick up water, pick up apple, pick up bread, pick up cheese, pick up egg, pick up
sandwich, pick up lettuce, pick up jelly, pick up peanuts, pick up raw chicken, pick up
bananas, use scanner to test objects

Target goal (b) Report evidence-based diagnosis

Student plan fill in symptoms

T5 plan read about storing food

GPT-3.5 plan examine poster about salmonellosis, speak with lab technician, fill in symptoms, fill in
tested object, fill in test results, fill in final diagnosis

Target goal (c) Evaluate hypothesis anthrax

Student plan read about viruses, read about carcinogens, read about mutagens, read about microbes

T5 plan fill in symptoms, fill in prediction about anthrax, fill in prediction about smallpox

GPT-3.5 plan speakwith lead scientist, read about smallpox, speakwith lab technician, examine poster
about smallpox

Target goal (d) Learn about disease

Student plan go to infirmary, speak with camp nurse, speak with patients, read about microbes,
examine poster about influenza, examine poster about ebola, examine poster about
botulism

T5 plan go to laboratory, go to lead scientist’s quarters, speak with lab technician, read about
how diseases spread

GPT-3.5 plan go to dining hall, speak with camp cook, go to laboratory, speak with lab technician

Target goal (e) Explore camp

Student plan go to infirmary, go to lead scientist s (bryce s) quarters, go to laboratory, go to living
quarters

T5 plan go to infirmary, go to lead scientist’s quarters, go to laboratory, go to living quarters,
speak with lab technician, read about smallpox, speak with virus expert

GPT-3.5 plan go to beach, go to dining hall, go to forest

For the target goal “evaluate hypothesis anthrax” (c), both models generated plans
that included an action having to do with smallpox. This could be due to smallpox
actions being enacted by several students, however in a real-time system, we would
want to ensure suggested planned actions align with the target goal. Additionally,
anthrax is not a potential solution for the game, so suggesting a different disease
might give away the mystery and prevent the student from learning.

For the target goal “learn about disease” (d), GPT-3.5 seemed to interpret this goal
as learning about the specific diseases presented in the game, while the game offers
more general educational content about diseases. We can tell this because the actions
it generated are to go to a location and speak with a character. The purpose of these
characters are to explain the situation on the island, particularly with the camp cook.
More general information about disease is found in other locations, which would be
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represented in the game trace logs. Additionally, there is another goal in the same
category called “learn about outbreak” that is meant to be more game specific. This
might indicate that we should define each goal for the model for better results. The T5
model plans generated several “go to” actions where science content is located, but it
is unclear if the model was aware of that connection. T5 plans also included several
“read” and “speak” actions, which are appropriate for this target goal.

GPT-3.5 included many “go to beach” and “go to forest” actions for the “explore
camp” (e) goal, which is a bit off-task for the game. In contrast, the dining hall does
offer useful information for solving the mystery, so the plan is not entirely invalid. In
contrast, T5 plans contained several meaningful locations as well as “speak” actions,
which could benefit the student in getting oriented in the game.

Overall, these patterns demonstrate the potential for LLMs to inform real-time
systems. Generally, these models generated coherent plans, with no duplicates and
generated actions aligning with students’ actions. We did identify instances of hallu-
cinations in both models, but they still aligned with actions that could be completed in
the game. For example, one T5 generated plan included the action “pick up yogurt”,
which is not in the planning tool but is still present in the game. GPT-3.5 had sev-
eral more general, natural language actions like “scan objects to test for bacteria and
viruses”. While this does not align with the planning tool, it provides additional rea-
soning to the action, which could help students in their understanding. We will discuss
further implications of these findings in 8.2.

Discussion

Training Approach Comparison Implications

Our results demonstrate the promise of leveraging language models for plan gener-
ation in game-based learning environments. We found T5-based generated plans are
very closely aligned with student plans and GPT-3.5-based plans are more summative
in nature. This aligns with our understanding of the methodology, as the T5 model
was fully supervised using cross validation and the GPT-3.5 model utilized a few
shot learning approach with the game context and two examples provided for every
input. This distinction is important in educational settings, as we typically have small
quantities of data to train on.

The T5 model did take longer to run as the fine-tuning of the language model
requires considerable computational power. The model seemed to work particularly
well and generally generated valid plans. On the other hand, the GPT-3.5 model had
different types of limitations. The token limit to the API proved to be a challenge
as to how to concisely explain the task and provide the input for each API request.
Additionally, unlike ChatGPT there is no memory allocated for API calls, so the same
information has to be provided several times, limiting us to one event sequence per call.
Additionally, the API is not free, even for GPT-3.5, which is a significant disadvantage
relative to open-sourcemodels. These factors informedour decision to limit the number
of generated plans. Thus, we did not utilize a cumulative representation of the event
sequences like we did for the T5 model. Additionally, API calls were limited to three
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calls per minute, making the runtime much longer. Despite these limitations, the GPT-
3.5 generated plans followed similar trends to theT5models and demonstrated promise
in generating plans in a game-based learning environment context.

In a practical implementation of this plan generation framework, it might prove
more beneficial to use a language model like T5 that can be fined-tuned with no
financial cost. The computational effort could be completed before the classroom
implementation, and then the generative model could be run in real-time as students
are interacting with the learning environment. Currently, using the GPT-3.5 API might
not be practical for real-time classroom use because of cost and run-time limitations.
Another drawback of using OpenAI GPT services is that data shared with a third-party
and potentially can be used as training data by OpenAI. Depending on the type of data
collected in a classroom setting, this type of data sharing could raise issues of consent
and data usage.

Implications for Adaptive Learning Environments

Our results demonstrated that over half of plans generated by both language models
aligned with the corresponding high-level action category from student plans. This
suggests that even in situations where there were few low-level action matches, the
plans still incorporated similar high-level actions to students. Based on the design of
the planning tool, low-level actionswithin a high-level action category share a common
narrative purposewithin the game. For example, the “explore" high-level actionmainly
maps to “go to" low-level actions, all ofwhich involve exploring the gameenvironment.
As an illustration, consider a student’s plan that included the following actions: “go
to infirmary”, “speak with camp nurse”. The T5 predicted plan in this instance was:
“speak with lead scientist”, “go to infirmary”, "go to lead scientist’s quarters." All
actions align with the given goal when mapped to their high-level action category,
event though the “speak” action differs. Generating different planned actions from
students’ ones is desirable because only if there exist some differences between LLM
generated plans and students’ plan, LLM can provide meaningful advice to students,
although more work could be done to understand which plans would be beneficial in
a real-time scenario. For example, the action “speak with camp nurse” is a distinction
from the student’s plan. Early in the game, it is beneficial for a player to engagewith the
camp nurse, so prompting a student to speak with her could enhance their gameplay
and overall experience in the game. Incorporating a temporal element to the plan
generation might prove helpful to improving the models. We also noticed that some
sets of low-level actions generated for a given student were present in other students’
plans targeting the same goals. We believe this is due to the nature of language models
generating most probable plans for the situation the student is in rather than fully
personalized to individual students. In a real-time scenario, these predictions could
help improve students’ planning abilities through demonstrating more efficient plans.
There is also a potential for the game to adapt to individual students’ strategies by
providing instructive hints with these plans.

A limitation of this research pertains to the concept of optimal planning activities.
To our knowledge, there does not exist a ground truth for optimal plans in an open-
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world game-based learning environment such as Crystal Island. In this research,
we rely on plans created by students as our reference point, but it is important to note
that there was a considerable range in the planning activities exhibited by students.
The extent to which students utilized the planning support tool varied significantly,
both in terms of how frequently they accessed it and how many plans they formulated
during gameplay. The analysis of the high-level action category distributions between
student and language model plans further demonstrated the ability of language models
to generate plans resembling those of students. Although our language models appear
to generate plans resembling those of students, the absence of a clear measure for plan
quality makes it challenging to determine whether the generated plans are superior to
those created by students. Furthermore, educational games present two key strategies
for students: winning the game and learning the educational material. Depending
on a student’s primary objective, an adaptive system may need to tailor its prompts
accordingly. Achievement goal orientations have been shown to provide insights into
students’ approach to these strategies, as well as other metacognitive behaviors like
motivation (Cloude et al., 2019). Incorporating such metrics into the language models
could help improve generated plans in adaptive systems.

We also noticed that the language models occasionally generated low-level actions
that were not available for students to choose for their plans using the planning support
tool but were playable within the game. For instance, students have the ability to pick
up items and test then them for various diseases in the game. One low-level action we
observed in a generated plan was “pick up coconut." Players can pick up a coconut in
the game, but cannot select that as a planned action in the planning tool. The planning
tool was designed to limit the amount of low-level actions offered to students to reduce
cognitive load. Consequently, “pick up coconut" was omitted, as it is not essential for
solving the mystery. One potential approach to address this problem is to introduce
action constraints because relying solely on the general game context and students’
plans is likely to result in suboptimal plans. Nevertheless, it’s noteworthy that the
language model generated valid low-level actions in this context, as this indicates
potential for LLMs to generate content for such support tools. This could help with
designing similar SRL-based tools or extending the planning support tool to other
game-based learning concepts.

Although there is no correct answer to the goal-setting and planning that students
strive to achieve, there can be various strategies to make plans, such as being more
efficient or seeking more knowledge. Our approach differs significantly from existing
work in that it provides opportunities for students to review candidate plans learned
from the collective intelligence of their peers’, enabling them to reflect on and adjust
their own plans as necessary, which is another key component of SRL. Most impor-
tantly, this approach is not specific to the game domain, as the generated plans are
learned from data rather than manually created by experts. Thus, our framework has
generality beyond Crystal Island to other educational games.

Overall, we find that the utilization of LLMs demonstrates promise for the task
of plan generation and has the potential to enhance online learning environments. In
challenging learning scenarios, like Crystal Island, students can become confused
about next steps, then frustrated and then give up on the game entirely. The planning
support tool helps orient them in the game and can help facilitate engaging in SRL
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processes. However, an LLM-driven plan generation system would help improve this
experience even further and potentially prevent negative emotions from occurring. For
example, if a student is constructing and enacting plans, but is not getting closer to
solving the mystery of the game. The existing version of Crystal Island could not
assist, while the plan generation framework could provide specific guidelines adaptive
to the student’s learning situation. Furthermore, a classical machine-learning based
plan generation method would train gameplay data in a numerical format and, given
the limited size of the dataset, output only numerical categories of high-level actions.
This is because there are 6 high-level actions versus 55 low-level actions, and there is
not enough data to train on all 55 low-level actions using classical machine learning
models like Random Forest or LSTM. LLMs provide the capability of pre-training
on large language corpora creating more robust models. Thus, an LLM would allow
for natural language versions of the gameplay data (which are more interpretable) to
be input and can output any number of low-level actions for the plan generation task.
This widens the capabilities of plan generation models in general. In our case, the
LLM-based plan generation framework could generate several potential options for
the student and help facilitate them continuing in the game.

Conclusion and FutureWork

In this work, we introduce a plan generation framework that leverages LLMs for the
task of plan generating sets of problem-solving actions within a game-based learning
environment by utilizing textual representations of student gameplay. This framework
is evaluated by presenting a quantitative and qualitative analysis of both T5 and GPT-
3.5 generated plans, as well as plans created by students using a planning support
tool in the game. Results show that both LLMs have the ability to generate valid
problem-solving plans, with T5 plans aligning more closely to student plans due to
its fully-supervised fine-tuned training approach. T5 also shows similar patterns in
the types of actions generated for a given goal category. GPT-3.5 had more variability
in its plans, likely because of the few-shot learning approach; it typically included
different actions for each goal category than did student-generated plans. Despite
their differences, both models demonstrated the potential of utilizing LLMs to provide
adaptive, real-time assistance to students through the generation of problem-solving
plans.

These findings point towards several areas for future research. Exploring the perfor-
mance ofmore recent releases of ChatGPT, likeGPT-4 andGPT-4o, could prove useful
to understanding the potential benefit of these models in educational settings. Apply-
ing these plan generation techniques to other online educational environments could
further demonstrate the generalizability of the methods and the potential of LLMs for
the task of plan generation. Metrics for plan evaluation are still needed for game-based
learning environments in the context of science problem-solving. Additional work is
needed to assess the quality of plans constructed by students and model-generated
plans. Incorporating both sequentiality of goals and other high-level strategy metrics,
like achievement goal orientation, into the models, may help improve the framework
for real-time adaptive support. Exploring how suchmethods could be applied to gener-
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ating other types of SRL scaffolding or enhancing current tools would provide insight
into the generalizability of these techniques. Additionally, exploring how natural lan-
guage representations of the input data impacts performance is a promising area for
future work. Finally, it will be important to investigate how incorporating LLM-based
plan generation models into game-based learning environments can drive adaptive
scaffolding to create more effective learning experiences for students.
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