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Abstract
Large language models (LLMs) offer an opportunity to make large-scale changes to 
educational content that would otherwise be too costly to implement. The work here 
highlights how LLMs (in particular GPT-4) can be prompted to revise educational 
math content ready for large scale deployment in real-world learning environments. 
We tested the ability of LLMs to improve the readability of math word problems and 
then looked at how these readability improvements impacted learners, especially 
those identified as emerging readers. Working with math word problems in the con-
text of an intelligent tutoring system (i.e., MATHia by Carnegie Learning, Inc), we 
developed an automated process that can rewrite thousands of problems in a frac-
tion of the time required for manual revision. GPT-4 was able to produce revisions 
with improved scores on common readability metrics. However, when we examined 
student learning outcomes, the problems revised by GPT-4 showed mixed results. In 
general, students were more likely to achieve mastery of the concepts when working 
with problems revised by GPT-4 as compared to the original, non-revised problems, 
but this benefit was not consistent across all content areas. Further complicating this 
finding, students had higher error rates on GPT-4 revised problems in some content 
areas and lower error rates in others. These findings highlight the potential of LLMs 
for making large-scale improvements to math word problems but also the impor-
tance of additional nuanced study to understand how the readability of math word 
problems affects learning.
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Rewriting Content with GPT‑4 to Support Emerging Readers 
in Adaptive Mathematics Software

Recent advancements in Large Language Models (LLMs) have demonstrated impres-
sive performance across a variety of writing tasks (Ali et al., 2023, Anthropic, 2023, 
Chen et al., 2021, Gomez-Rodriquez & Williams 2023, Mugaanyi et al., 2024, OpenAI, 
2023). The current work applied this technology to adjusting the reading level of edu-
cational materials to meet the needs of a key student demographic–emerging readers 
(i.e., students whose reading comprehension skills lag behind their peers; see Partici-
pants section for a description of how emerging readers were identified for the current 
study). In a recent study, human authors followed a style guide focused on clarity and 
specificity, to revise a set of math word problems from Carnegie Learning’s MATHia 
adaptive learning software (Almoubayyed et  al., 2023a). A randomized experiment 
showed that emerging readers who received the revised content spent less time com-
pleting the problems and achieved higher rates of mastery compared to emerging read-
ers who received the original content. LLMs offer a scalable solution to expanding the 
revision process but given the tendency for LLMs to introduce inaccurate information 
when revising text (Arbel & Becher, 2023; Butler et al., 2024; Huang et al., 2024), it is 
important to test the extent to which LLM revisions drive improvements in readability 
and performance across a range of content.

As a first step in this process, we previously prompted ChatGPT-4 (March 2023 ver-
sion) to revise the same set of word problems using the same style guide used during 
the human revision process (Norberg et al., 2023). ChatGPT-4 successfully produced 
revised problems with significantly improved readability – sometimes outperform-
ing the human-revised problems on common readability metrics (e.g., Flesch-Kincaid 
Grade Level [FKGL], Kincaid et al., 1975), as well as newer metrics (e.g., the modi-
fied Crowdsourced Algorithm of Reading Comprehension [CAREC-M], Crossley 
et al., 2019, and Sentence-BERT [SBERT], Crossley et al., 2023, Reimers & Gurevych, 
2019). This was a promising start, but improvements to readability scores do not always 
translate to improvements to reading comprehension (e.g., McNamara et  al., 1996; 
O’reilly & McNamara, 2007; Ozuru et  al., 2009). Thus, the current study extended 
prior work by (a) assessing the effect of texts revised by the LLM on student perfor-
mance in MATHia and (b) expanding the prompt to produce revisions for a broader 
range of problems to understand how effects seen in one content domain generalize to 
others. We expected the LLM revised problems to have a similar effect on student per-
formance in MATHia as the human rewrites in Almoubayyed et al. (2023a). That is to 
say we expect the revised problems to improve performance specifically for emerging 
readers.

Relationship Between Reading and Math Learning

A central motivation to revise math word problems is the well-established rela-
tionship between reading skill and performance in math (e.g., Almoubayyed 
et  al., 2023c; Daroczy et  al., 2015; Greisen et  al., 2021; Helwig et  al., 1999; 
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Koedinger & Nathan, 2004). The relationship may in part be causal. Struggling 
with or failing to accurately decode the text of the problem can interfere with 
numerical processing and impair a student’s ability to integrate numerical infor-
mation with the larger text (Daroczy et al., 2015; Fuchs et al., 2006; Fuchs et al., 
2018). This can lead to a kind of Matthew effect (Merton, 1968) wherein typical 
readers also advance in mathematics at a faster rate than emerging readers.

Math word problems can pose specific challenges for reading comprehension. 
For example, (1) is the introduction to a math problem meant to be solved by 
middle school students.

(1) Michelle is walking her two immense dogs. At the same time the dogs 
see two squirrels on opposite sides of the street. Michelle sits down to try 
to hold the dogs, but it does not work. First the larger dog pulls Michelle 
so hard that she is thrown 7 feet backwards. She lets go of the leash of the 
larger dog, and then the smaller dog drags her forwards at a rate of 2.4 feet 
per second. Let the distance backward from where Michelle sits down be 
negative and the distance forward be positive.

At a basic level, this problem features some vocabulary that may be difficult 
for emerging readers at this grade level (e.g., immense) and some mathematical 
phrasing (e.g., Let) that may be unfamiliar to a middle school math learner. As 
with many math word problems, it also contains temporal and spatial adverbs 
(First, Then, backwards, forwards). Although these phrases are critical to under-
standing the relationship among the sentences, they can also slow down process-
ing (Bestgen & Vonk, 2000; Hoeks et  al., 2004; Zwaan, 1996) especially for 
younger readers (Cain & Nash, 2011), and generally require the reader to hold 
more information active for longer during the text integration process (Millis & 
Just, 1994). Thus, even before adding in the requirement that students track math-
ematical components of the text or perform computations, word problems can 
present challenges to student comprehension.

Unfortunately, reading difficulties are widespread. In 2022, 69% of 8th grad-
ers were categorized as non-proficient readers (National Center for Educational 
Statistics, 2022). Although students need exposure to challenging text in order 
to grow their reading abilities (Betts, 1946; Keene & Zimmerman, 1997; Miller, 
2002; Morris et al., 2019; Mounla et al., 2011), when a task is too complex, rates 
of learning can decline and frustration grow (Metcalfe, 2011). Improving the 
readability of math word problems is one way to ensure that students can focus on 
learning math without increasing cognitive load related to reading.

The effect of reading comprehension on math learning can be quantified by 
looking at the correlations between math problem performance and end-of-year 
English Language Arts (ELA) test scores. Almoubayyed et al. (2023c) looked at 
the ratio of correlations between outcomes in MATHia and ELA test scores and 
outcomes in MATHia and math state scores. They found that the ratio was greater 
than average for some content areas, suggesting that success here was more 
dependent on reading skills. To support readers in these spaces, a style guide for 
creating readable, grade-appropriate word problems for middle school students 
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was developed (Almoubayyed et al., 2023a). The guidance included using short 
sentences, reducing anaphors and lexical diversity, and simplifying vocabulary. 
The researchers then revised MATHia word problems to fit the new style guide. 
Students who received the revised problems had higher rates of mastery over the 
content and finished the problems up to 30% faster than students who received the 
original problems. Importantly, the benefits of the revisions were stronger for stu-
dents identified as emerging readers. These results indicate that math learning can 
be enhanced by improving the readability of the word problems.

Although improvements to readability generally aid reading comprehension and 
reduce cognitive load (e.g., Just & Carpenter, 1980), there are circumstances where 
performance can actually decline as readability increases (e.g., McNamara et  al., 
1996; O’reilly & McNamara, 2007; Ozuru et al., 2009). This decline in comprehen-
sion with improved readability specifically affects students who have high domain 
knowledge but lower reading ability (O’reilly & McNamara, 2007). It may be that 
for emerging readers who are less likely to engage in active reading, increasing the 
ease of processing of a text that already covers a topic familiar to the reader leads to 
overconfidence in comprehension and further reduces close reading. Indeed, readers 
are less likely to attend to nonsense words embedded in texts with higher readability 
and are more likely to display over confidence in their ability to comprehend these 
texts suggesting that a tendency to engage in active reading is related to how difficult 
the text feels to the reader (Norberg, 2022). Thus, improving the readability of word 
problems needs to be balanced with analysis of student performance to ensure the 
revisions are not having a negative effect for any subgroup.

Improving Readability with LLMs

Intelligent tutoring systems (ITS), like MATHia, have thousands of word problems 
grouped into content areas which we term workspaces. The findings from Almou-
bayyed et  al. (2023c) suggested additional workspaces beyond those revised in 
Almoubayyed et  al. (2023a) would benefit from revisions to improve readability. 
The human revision process took ~ 45 h to revise 200 problems (30 scenarios).1 This 
time included completing the revisions, placing the revisions into the code base, and 
evaluating them for quality assurance both before and after the problems were added 
to the code base. To make readability improvements more scalable, we tested the 
ability of LLMs to complete the revisions.

LLMs are being tested as an option to reduce the human labor required for 
improving text readability in multiple domains, including health care, law, and edu-
cation (Arbel & Becher, 2023; Butler et al., 2024; Huang et al., 2024). In each study, 

1 MATHia word problems are created from scenarios which provide the bulk of the text for the problem. 
A problem generator then swaps out substitutable components of the problem (e.g., pronouns, names, 
objects, and numbers) to create multiple versions of the scenario. 30 scenarios in this case created 200 
problems, 100 in each of two workspaces. Students do not see more than one version of each scenario in 
a single workspace.
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LLMs were consistently able to improve the readability of the texts according to 
common readability benchmarks (e.g., Flesch-Kincaid Grade Level [FKGL]; Kin-
caid et al., 1975) which can assess vocabulary difficulty, sentence complexity, cohe-
sion, or their combinations. Despite the improvements in readability metrics, each 
study also cited concerns about the LLMs injecting false information into the narra-
tive and the importance of keeping a human-in-the-loop to evaluate revisions.

Results from these prior studies were in line with our prior findings. Norberg 
et  al. (2023) prompted ChatGPT-4 (March 2023 version) to revise the same word 
problems revised by humans in Almoubayyed et al. (2023a). The ChatGPT-4 revi-
sions were significantly improved over the original problems on a metric assessing 
syntactic and lexical diversity as well as cohesion. As in other studies, not all of 
ChatGPT-4’s revisions were viable for use in MATHia. In side-by-side comparisons 
with the original content, human reviewers rejected 13% of the revisions as missing 
critical information or having other errors which they perceived as reducing their 
ability to comprehend the problem. These problems were revised again by the LLM 
until they passed human inspection. Even with this rate of rejection, the LLM revi-
sions reduced time to revise the word problems by more than half. However, the pro-
cess still took 19 h with the bulk of that time spent incorporating the problems into 
the MATHia code base though human evaluations of the problem and time spent 
prompting ChatGPT-4 through its online interface were also a factor. In the current 
study we overview steps we took to further reduce the time in human labor.

Critically, to our knowledge, studies using LLMs to improve text readability (e.g., 
Arbel & Becher, 2023; Butler et al., 2024; Huang et al., 2024) have only evaluated 
the text itself, not how well it enhances comprehension or performance. In the cur-
rent study, we go beyond readability metrics and human qualitative evaluations 
to assess the impact of LLM-based content revisions on student performance. We 
further test the generalizability of such findings by performing additional revisions 
on new sets of word problems and evaluating student performance in these new 
workspaces.

Current Study

The current study had two primary objectives. The first was to test the ability of 
the LLM to perform revisions with greater automaticity across a wider variety of 
problems while still maintaining the same improvements in readability. General-
izing to new workspaces and increasing automaticity required the formation of a 
new prompt, a process we detail in the Materials section. Broadly, the new prompt-
ing process required the LLM to revise the problems in the same format as they 
appeared in the code. This greatly reduced human labor related to encoding the 
problems and was critical to creating a scalable solution.

The second objective of the study was to assess how the LLM revisions affected 
student performance in MATHia and whether the effects were similar to those found 
for the human revisions in Almoubayyed et al. (2023a). We expected similar results 
for all revised workspaces. However, improvements in readability may not translate 
to improvements in comprehension or math performance, and if they do, they may 
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not demonstrate effects equally across all types of problems or for all reading levels. 
Thus, we performed the tests across four workspaces to assess how well improve-
ments to readability generalized across different content domains.

Method

The ultimate goal of the LLM generated problems was to improve student math per-
formance. Thus, the primary experimental task in the study assessed student learn-
ing by evaluating student error and mastery rates as well as their time to completion 
and how many problems the student had to solve before reaching completion. Before 
placing LLM generated problems in front of students, we also ensured the valid-
ity of the rewrites by assessing their readability using readability metrics and hav-
ing human evaluators accept or reject the revisions. We report the reliability of the 
LLM for improving readability metrics, the human evaluators’ rejection rate, and the 
effect of the LLM revisions on student outcomes.

Participants

MATHia is currently used by over 600,000 students in the United States, mostly 
students in grades 6–12 who use it as part of Carnegie Learning’s blended math 
curriculum. Students who started any of the target learning domains (i.e., MATHia 
workspaces) between August 15th and December 22nd, 2023 and completed the 
workspace prior to the time of analysis (January 30, 2024) were included in the 
study (n = 83,082).2 Study participants were randomly assigned to receive either the 
control (pre-existing MATHia problems) or problems rewritten by GPT-4.

This work is motivated by helping emerging readers to access math content, so it 
was important to evaluate how this subpopulation responded to the revisions. Par-
ticipant’s reading ability was determined using a deep learning model trained on stu-
dent performance (i.e., errors and hint usage) in an introductory MATHia workspace 
which does not include math (Almoubayyed et al., 2023c). The model consists of 
a neural network that has been shown to accurately predict end-of-year ELA exam 
scores, with an area under the receiver operator characteristic curve (AUC) of 0.80. 
Almoubayyed et al. (2023b) found that the model generalized well to a district in a 
different state with a different exam (AUC = 0.76). It did not show systemic bias in 
comparisons based on race or gender, even when tested on a different district than 
the one on which it was trained. We used this model to evaluate students’ predicted 
reading ability. Following the procedure used in Almoubayyed et  al. (2023a), we 

2 Students from two districts participating in a separate study (which used the same materials) or from 
districts who have opted out of field trials were excluded from enrollment. 12.99% of students had not 
completed the workspace prior to analysis. There were no systematic differences in completion based on 
condition (13.06% of students from the control condition and 12.91% of students from the LLM rewrites 
condition).
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categorized students as emerging readers if their predicted reading ability placed 
them in the bottom quartile of students within a workspace. Within each condition 
(LLM rewrite or control) the percentage of students categorized as emerging and 
non-emerging readers was similar, rounding to between 24–25% of students catego-
rized as emerging readers.

Teachers can permit students to bypass the introductory lesson from which pre-
dictions about reading ability are made. When this happens, we are not able to 
predict their reading ability. Thus, students who did not complete the introductory 
lesson (12.25%) were dropped from analysis. There were no systematic differences 
in this exclusion across conditions (< 0.01% difference). This left 72,905 students 
available for analysis.

It was possible, depending on the sequence the teacher was using and the students 
rate of progression through the sequence, that the same student could complete 
more than one of the target workspaces over the course of the semester. 27.61% of 
students completed more than one of the target workspaces (18.26% completed 2 
workspaces, 9.84% completed 3 workspaces, and fewer than 0.001% completed all 
4 workspaces). Due to typical patterns related to when and how often workspaces in 
MATHia are assigned by teachers, student enrollment across workspaces was une-
qual (11,362 in Analyzing Models of Two-Step Linear Equations Integers, 13,307 in 
Analyzing Models of Two-Step Linear Equations Rationals, 42,471 in Modeling the 
Constant of Proportionality, and 33,565 in Modeling Linear Relationships Using 
Multiple Representations). See Tables 1 and 2 for sample sizes within each cell.

Given the observed effect sizes found by Almoubayyed et al. (2023a) (Cohen’s 
d = 0.15) and a significance threshold of α = 0.05, we estimated that a minimum of 
972 observations would provide sufficient power (β = 0.80) to detect a difference 
between the two groups. Thus, all models detailed in the Analytic Plan were well 
powered.

Materials

MATHia

The revised problems were drawn from and tested in MATHia (formerly Cognitive 
Tutor, (Ritter et al., 2007)), an ITS developed by Carnegie Learning, Inc. MATHia 
is typically used for around 40% of the in-classroom instruction and practice time. 
Students are assigned specific content in MATHia by their teachers to fit with the 
learning objectives for their math course. Math lessons in MATHia, called “work-
spaces,” can be either “Concept Builders” that teach a math concept, or “Mastery” 
workspaces that allow the students to practice problems towards mastery of a set 
of skills or knowledge components (KCs). MATHia uses the student’s work on dif-
ferent steps within a problem (correct answers, errors, hint requests) to determine 
whether the student has mastered the associated KC using Bayesian Knowledge 
Tracing (Corbett & Anderson, 1994). KCs typically require multiple demonstra-
tions of correct performance (without errors or hint requests) to reach mastery, and 
students will typically complete between 3 and 25 problems within a workspace to 
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reach mastery, depending on their performance. When MATHia determines that the 
student has mastered all KCs associated with the workspace, it progresses the stu-
dent to the next workspace. Occasionally, students complete a predetermined num-
ber of problems (typically 25) without mastering every skill in a workspace. In those 
cases, students are also moved on to the next workspace. We call the latter case a 
“promotion.”

Workspaces

Workspaces in this study were selected to meet two criteria: (a) They had high 
historic usage during fall semesters and (b) the ratio of correlations between the 
workspace’s outcomes and ELA test scores to that of the correlation between the 
workspace’s outcomes and math state scores was greater than average, which is 
interpreted as more highly related to reading than average (Almoubayyed et  al., 
2023c). Four workspaces were selected. Two of the workspaces we label Simpler 
and two Complex based on differences in their computational complexity and the 
number of steps required to complete the problem. The two sets of workspaces were 
similar in readability (see Table 3 in the Results) though the Complex workspaces 
had more words in the primary text of the problem (m = 75.96, sd = 23.62) compared 
to the Simpler workspaces (m = 46.5 words, sd = 6.55), t(231.36) = -15.54, p < 0.001.

Simpler Workspaces The two Simpler workspaces, Analyzing Models of Two-Step 
Equations Integers (targets 7th grade) and Analyzing Models of Two-Step Equations 
Rationals (targets 8th grade), required students to recognize how components of the 
text were reflected in an equation. The only difference between the two workspaces 
was the type of numbers they employed: The rationals workspace included decimal 
numbers instead of using only integers. To solve the problem, students dragged and 
dropped the appropriate part of an equation onto its description (see Fig. 1).

The Simpler workspaces were selected for this study because prior revisions by 
humans had successfully improved their readability and reduced the time emerging 
readers spent mastering the workspace (Almoubayyed et al., 2023a). Following the 
successful outcomes resulting from the human revisions, they formally replaced the 
original problems within MATHia prior to the start of the experiment.3 Thus, for the 
Simpler workspaces, the control problems represent the human rewrites and allow 
us to directly test the efficacy of LLM rewritten content to that of human rewritten 
content within the same workspace.

Complex Workspaces The two Complex workspaces involve graphing. One 
of the workspaces, Modeling the Constant of Proportionality (part of the 
7th & 8th grade sequences), requires students to create tables, construct an 

3 After finding strong effects of improved student performance when receiving the human re-written 
problems as compared to the original problems (Almoubayyed et al., 2023a), it would have been unethi-
cal to continue to present students with the original problems in these workspaces.
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equation, and plot the values from the table onto a graph (see Fig.  2). The 
second workspace, Modeling Linear Relationships Using Multiple Represen-
tations (part of the 8th grade sequence), requires students to use the number 
properties to evaluate and solve one- and two-step equations (see Fig. 3). The 

Fig. 1  Example problem from one of the Simpler workspaces. Note. The word problem is from Analyz-
ing Models of Two-Step Equations Integers and asks students to recognize how the components of the 
equation relate to the text. Analyzing Models of Two-Step Equations Rationals uses the same word prob-
lems and structure but replaces integers with decimal numbers. The problem presented was revised by 
humans as part of Almoubayyed et al. (2023a)

Fig. 2  Example problem from Complex workspace Modeling the Constant of Proportionality. Note. The 
word problem asked students to recognize units in the text, construct an equation to answer the questions, 
and plot the points on the graph. The problem presented is the non-revised version



1 3

International Journal of Artificial Intelligence in Education 

Complex workspaces were chosen because of the ways they differed from the 
Simpler workspaces in the types of steps students were required to complete, 
allowing us to test the generalizability of effects on student performance. The 
Complex workspaces still had greater correlations to reading than average, 
but the correlations were weaker than for the Simpler workspaces. Indeed, 
while all steps in the Simpler workspaces required students to read for com-
prehension, half of the steps in the Complex workspaces required extracting 
information from the text while the remaining steps were more strictly math-
ematical (e.g., plotting points on a graph). Supporting the increased complex-
ity of the new workspaces are measures of time to completion and error rate. 
Students took on average 54.31 min longer to complete Complex as compared 
to Simpler workspaces, t(39,741) = 140.9, p < 0.001. Students also made 1.87 
more errors per problem in Complex as compared to Simpler workspaces, 
t(41,350) = 109.8, p < 0.001.4

LLM Prompts

We used OpenAI’s ChatGPT-4 online interface (March 14 version) for revising the 
Simpler workspaces or GPT-4 API (June 13 version) for revisions to the Complex 

Fig. 3  Example problem from Complex workspace Modeling Linear Relationships Using Multiple Rep-
resentations. Note. The word problem asked students to recognize units in the text, construct an equation 
to answer the questions, and plot the points on the graph. The problem presented is the non-revised ver-
sion

4 As the same student may have completed more than one workspace, hierarchical linear models of time 
to completion and error rate included students as a random intercept.
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workspace (OpenAI, 2023).5 The shift in interfaces followed practical considera-
tions related to scaling the workflow and emerging accessibility to the API. The 
switch to using the API necessitated changes to the prompting style. Below we over-
view the original prompting technique and then how we modified this technique to 
create a shorter prompt which was capable of revising a broader range of word prob-
lems. Ultimately both techniques resulted in similar improvements in readability of 
the word problems (see Table 3).

Simpler Workspaces Prompt In Norberg et  al. (2023) we distilled the style guide 
used by human authors to revise word problems in Almoubayyed et al. (2023a) into 
a chain-of-thought prompt to ChatGPT-4 (accessible on OSF, https:// osf. io/ xwz3h/). 
Chain-of-thought prompting provides examples of expected output and explains the 
reasoning behind the examples (Saravia, 2022; Wei et  al., 2022). The prompt led 
to revisions with significantly improved readability over the original problems as 
measured by the CAREC-M which assess syntax, lexical diversity, and cohesion, 
p < 0.001.

Despite its success in improving readability, the ChatGPT-4 prompt had a num-
ber of practical drawbacks. First, the resulting prompt was long (1,572 words, 2,143 
tokens, and requiring approximately 995 output tokens). As a result, ChatGPT-4’s 
response was often truncated requiring a follow up prompt to continue before it 
would finish. At that time, a shorter prompt was required for compatibility with the 
API. Second, the prompt was workspace specific. In creating a prompt for a new set 
of workspaces, we sought to create one which would generalize to support revisions 
to a broader range of problems. Finally, the word problems which were revised by 
ChatGPT-4 were not embedded within code. Encoding the problems following revi-
sion still required significant human labor.

Complex Workspaces Prompt In creating a new prompt which would be compat-
ible with the API for GPT-4, we leveraged a finding from Norberg et al. (2023) that 
ChatGPT-4 performed better when it was asked to explain a readability concept 
(e.g., passive versus active voice) and then identify it within the text before attempt-
ing a revision. In the new prompt, we asked the LLM to first explain what readabil-
ity issues existed in the problem, then to explain how it could revise the problem to 
address these issues, and finally to revise the problem. This method was not as con-
sistently effective as the chain-of-thought approach, but it was more generalizable to 
new word problems with novel structures. To compensate for the reduced consist-
ency, we implemented a recursive workflow in which we leveraged Python libraries 
to assess readability and asked GPT-4 to revise again when its revision did not meet 
the threshold for improvement (one standard deviation improvement on measures of 
FKGL and SBERT; defined later in Measures and Analytic Plan).

5 We tested other LLMs but at the time of revisions only GPT-4 was able to retain the correct structure 
of the problem in revision.

https://osf.io/xwz3h/
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We also changed the prompt to direct GPT-4 to do some of the encoding work, 
thus reducing the need for a human to encode the problems following revision. 
Instead of providing the text of the problem as seen by the user, we provided GPT-4 
with the text as it looks in the MATHia code base, see (1). This includes tags to 
identify components of the problem (e.g., < slope >) and placeholder text which 
ensures variation between problems (e.g., ~ heShe instead of she).

(1) At the beginning of the summer, there are < interceptPhrase > living 
in a field. < slope > Each < ind > week < /ind > for the rest of the summer, 
another rabbit moves in < /slope > . ‘How many < {dep} > will be living in the 
field < indep >  < indOtherUnitVal >  < Other >  < /indep > after summer starts?’.

The new prompt presented the LLM with a more challenging task. GPT-4 had to 
identify issues with readability in a sparse text where key elements were alluded to 
but not stated directly. Improving readability while still retaining the placeholders 
and tags would create a truly scalable solution. We supported GPT-4 processes with 
regex functions to clean up errors and identify anomalies. In 2–6 we outline this 
workflow.

(2) Provide initial prompt: This comprised the problem (with placeholders) and 
broad instructions for revision. This initial prompt was 483 words (651 tokens) 
and is provided in Appendix A.
(3) Calculate readability scores for GPT-4’s output: This comprised Flesch-
Kincaid Grade Level (FKGL; Kincaid et al., 1975) and SBERT score (Crossley 
et al., 2023; Reimers & Gurevych, 2019). These metrics reflect different aspects 
of readability, with FKGL assessing the complexity of the sentences and vocabu-
lary (in terms of length) and SBERT assessing the semantic similarity of the text 
to other texts.
(4) Additional Revisions with GPT-4, as needed: If the SBERT and FKGL scores 
were not improved by more than one standard deviation, steps 2 and 3 could be 
repeated up to three times. In these cases, GPT-4 was provided the initial prompt, 
its prior output, and a new prompt giving more specific advice on elements of the 
text to revise, such as reducing vocabulary complexity (187 words, 257 tokens; 
see Appendix A for the full prompt). Even after three revision attempts, 29% of 
revisions did not reach the required threshold. In these cases, the revision with the 
best combined FKGL and SBERT score was accepted.
(5) Correct GPT-4 errors, as needed: GPT-4’s output often contained minor 
errors in the structure of the code tags (e.g., < slope > without < /slope >) or 
duplicate words where the meaning of placeholder text had not been understood 
(e.g., ~ heShe followed by he). We relied on Python regex functions to identify 
these issues, fixing them directly where possible or alternatively flagging them 
for human intervention.
(6) Following the automated revision process, manual human inspection for qual-
ity assurance was completed. Reviewers looked at the original problems side-by-
side with the revisions and were asked to accept the problem if they believed it 
did not decrease readability. During human review, problems were sent back for 
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further LLM revisions at a rate of 21% which was greater than the 13% revision 
rate in Norberg et al. (2023). Human review of the problems was implemented 
again after the problems had been uploaded into MATHia. This time, humans 
answered each question in the revised workspaces to ensure all problems were 
solvable and could be appropriately tutored with the information provided in the 
LLM rewrite. This process did not identify any additional errors related to the 
LLM rewrite. Even with the increased revisions, the new workflow which auto-
mated the encoding process reduced human labor to ~ 6 h compared to the 19 h 
required Simpler Workspace Prompt procedure.

Procedure

Experimental design, condition assignment, and outcome monitoring were con-
ducted using UpGrade, an open-source platform for managing field tests in EdTech 
software that has been integrated into MATHia (Ritter et  al., 2020). Teachers are 
responsible for assigning students a workspace to complete in MATHia and choose 
workspaces which match their educational objectives. Teachers are aware of the pos-
sibility of ongoing experimental testing in MATHia but do not know which work-
spaces may currently be part of a study. When a student started one of the target 
workspaces in this study, UpGrade assigned them to one of the two conditions (con-
trol or LLM rewrite) with equal probability. Because the analyses on the Simpler 
workspaces use a different control (i.e., human rewrites as opposed to the original 
problems) and that content was generated with a different prompting procedure, we 
separate our comparisons into Experiment A and B.

Measures and Analytic Plan

Readability

We first assessed the readability of the LLM revised problems as compared to the 
original problems and, in the case of the Simpler workspaces, as compared to the 
human revised problems. The measures we selected each assess unique text char-
acteristics including word frequency, word and sentence complexity, semantic 
similarity within a text, and the interaction of several of these features. The New 
Dale-Chall (NDC; Chall & Dale, 1995) is calculated based on sentence length 
and the percentage of words in a text that may be considered unfamiliar (i.e., are 
not part of a set of 5,000 pre-selected common words). The NDC was chosen as 
it evaluates vocabulary difficulty, an area where LLMs have previously struggled 
(Norberg et  al., 2023). FKGL (Kincaid et  al., 1975) compares word counts to 
sentence and syllable counts to determine the appropriate grade level for a text. 
It is one of the most widely used open-source methods of calculating readability, 
including for estimating the readability of LLM generated texts (e.g., Arbel & 
Becher, 2023; Butler et al., 2024). Despite its widespread use, the FKGL has had 
mixed results in terms of predicting reading comprehension (cf. Crossley et al., 
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2017; Duffy, 1985; Zainurrahman et al., 2024). This has led to the development 
of metrics which consider features related to syntax, lexical diversity, and cohe-
sion of which the Modified Crowdsourced Algorithm of Reading Comprehen-
sion (CAREC-M; Crossley et al., 2019) was selected because it was modified to 
evaluate shorter texts like the ones used in this study and correlates more strongly 
with reading outcomes than the FKGL (Choi & Crossley, 2022). SBERT (Cross-
ley et al., 2023; Reimers & Gurevych, 2019) is a newer transformer-based deep 
learning model which assesses the semantic similarity within a text and performs 
well relative to earlier metrics. Higher SBERT values indicate greater readabil-
ity. All metrics were evaluated using the Automatic Readability Tool for English 
(ARTE, Choi & Crossley, 2022). Significance comparisons were conducted using 
t-tests to compare LLM rewrites to the original problems for all four outcomes.

Performance Outcomes

All models included contrast coded fixed effects of condition (LLM rewrites com-
pared to control), student reading level (emerging compared to non-emerging), and 
their interaction. When a significant interaction was present, pairwise contrasts 
were performed to assess simple effects with a Tukey correction applied to correct 
for multiple comparisons. Because students were nested within schools, we also 
included a random effect of school. We used the maximal random effects structure 
supported by the data (Matuschek et al., 2017). The structure used for each model 
is reported in the Tables in Appendix B. Emerging readers were identified based on 
the model described above in Participants.

We considered four outcome measures also assessed by Almoubayyed et  al. 
(2023a): Promotion Rate, Errors per Problem, Total Problems Completed, and Time 
to Completion. Promotion rate and time to master a workspace in MATHia have reli-
ably predicted end-of-year state math test scores (Zheng et al., 2019). Thus, these 
measures offer a well-rounded assessment of student performance in a workspace.

Promotion Rate Promotion rate refers to the percentage of students who failed to 
master at least one skill within a workspace after completing a pre-defined num-
ber of problems (25 for the workspaces in this experiment). Interventions which 
decrease promotion rates suggest that more students are able to master the material 
as a result of the intervention. As this is a binary variable, we used a generalized 
linear mixed effects model.

For the remaining comparisons, we only consider students who mastered the 
workspace. As students who do not master the material also have greater error rates, 
complete the maximum number of problems, and spend more time in the workspace, 
segmenting this population out from further analyses ensures we are not double-
counting the effect captured in the model on promotion rate.

Time to Complete a Workspace The time in minutes that a student spends to com-
plete a workspace. Time to complete a workspace can be affected by variables 
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external to student learning. We use this measure in combination with other meas-
ures to provide additional insight into student performance across conditions. Spe-
cifically, time here is a measure of how long it took students to master all skills 
within a workspace. Students spending less time while still mastering the same skills 
as their peers in the control group would be a positive learning outcome.

Errors Per Problem The average number of errors a student made per problem.

Total Problems Completed MATHia updates students’ mastery of relevant skills as 
they work through problems in a workspace. Once students have mastered all skills 
in a workspace, they graduate to the next workspace. Thus, the number of problems 
completed reflects the rate of the students’ progression towards mastery.

Statistical tests were performed in R Project for Statistical Computing using lme4 
(Bates et al., 2016) and emmeans (Lenth, 2022).

Additional Comparisons

A comparison between human revised word problems and the original problems 
was conducted as part of Almoubayyed et al. (2023a). The success of these rewrites 
led to the replacement of the original problems with the human revised problems in 
MATHia. Thus, our primary comparison for the Simpler workspaces is between the 
LLM rewritten and human revised problems. If the LLM revisions result in similar 
improvements to performance, we expect a statistically null difference in the out-
comes based on which revision (LLM or human) that the student received. Because 
a null effect only suggests that a difference between the groups was not detected, we 
add an additional comparison to prior data collected for the original word problems. 
As an additional set of analyses, we thus compare the LLM revisions (data collected 
in Fall 2024) to the results from Almoubayyed, Bastoni et al. (data collected in Janu-
ary 2023, n = 6008 students who received the original problems).

Results

Readability Outcomes

Both prompting methods yielded significant improvements in readability. As 
reported in Norberg et  al. (2023), readability for problems revised by the Chat-
GPT-4 prompt showed significantly improved CAREC-M scores (measuring syntax, 
lexical diversity, and cohesion) over the original problems, t(58) = 4.04, p < 0.001, 
and human rewrites, t(58) = 4.09, p < 0.001. All other differences were non-sig-
nificant, all p-values > 0.05. For problems revised by the GPT-4 prompt, the LLM 
rewrites were significantly improved over the original problems across all metrics, 
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including SBERT scores, t(74) = -2.07, p = 0.04, CAREC-M scores, t(74) = 2.94, 
p = 0.004, New Dale-Chall, t(72) = 3.67, p < 0.001, and Flesch-Kincaid Grade Level, 
t(74) = 4.69, p < 0.001. See Table 3 for means and standard errors.

Performance Results

We separate student outcomes based first on their workspace type (Simpler or Com-
plex) and then based on the outcome being measured. We focus in these sections 
on the results related to the manipulation. For all outcomes there was a significant 
effect of reading ability. Emerging readers were more likely to be promoted (i.e., 
not master a workspace). Those who did master the workspaces also spent longer in 
the workspace, needed to answer more questions before achieving mastery, and had 
higher error rates than non-emerging readers. Main effects related to reading ability 
are reported in the tables in Appendix B alongside the random effects structure.

Simpler Workspace Results (Experiment A)

Experiment A compared outcomes for students who receive the GPT-4 revised prob-
lems to students who received human revised problems. Almoubayyed et al. (2023a) 
found the human rewrites had improved outcomes compared to the original prob-
lems (i.e., lower promotions rates, fewer errors per problem, fewer problems needed 
before completing the workspace, and decreased time to complete the workspace). 
Thus, successful GPT-4 revisions, when compared to the human rewrites, should 
reflect improved or null performance. Critically, a null result does not mean there is 
no difference between the two groups, thus we complement the results here with a 
comparison to the outcome data for the non-revised problems from Almoubayyed, 
Bastoni, et al. See Table 1 for descriptive statistics.

Promotion Rate

For Analyzing Models of 2-Step Equations—Integers there was a marginal effect 
of revision type (i.e., human or ChatGPT-4 revised). Students who received the 
ChatGPT-4 revised problems had 1.18 times (95% CI:[1.00, 1.18]) greater odds of 
being promoted as compared to students who received the human revised problems, 
z = 1.90, p = 0.06.6 The interaction between revision type and reading ability was not 
significant, z = 1.39, p = 0.16.

For Analyzing Models of 2-Step Equations—Rationals, there were no significant 
effects of the type of rewrite overall, z = 0.46, p = 0.65, nor its interaction with read-
ing ability, z = -0.46, p = 0.65.

Although there was some evidence that emerging readers were more likely to 
master the Analyzing Models of 2-Step Equations—Integers when they received 

6 Outcomes for a generalized linear model are in log odds. We back transform log odds to odds for ease 
of interpretation within the text.
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the human rewritten content. It was still possible that the ChatGPT-4 revised prob-
lems represented an improvement over the original problems. This was the case. 
For Analyzing Models of 2-Step Equations—Integers, students who received the 
ChatGPT-4 revised problems had 0.82 times lower odds (95% CI:[0.72, 0.94]) of 
being promoted compared to students who received the original problems, z = -2.88, 
p = 0.004. The interaction between revision type and reading ability was not signifi-
cant, z = -0.18, p = 0.86.

Results were similar for Analyzing Models of 2-Step Equations—Rationals. Stu-
dents who received the ChatGPT-4 revised problems had 0.64 times lower odds 
(95% CI:[0.52, 0.77]) of being promoted compared to students who received the 
original problems, z = -4.57, p < 0.001. The interaction between revision type and 
reading ability was not significant, z = -1.26, p = 0.21.

Time to Completion

For Analyzing Models of 2-Step Equations—Integers and Analyzing Models of 
2-Step Equations—Rationals there were no significant differences in time to com-
pletion based on rewrite condition nor its interaction with reading ability, all p-val-
ues were > 0.10.

Almoubayyed et  al. (2023a) reported medians for time to completion follow-
ing the discovery of outliers in their data. Indeed, 8% of data from the prior study 
exceeded the maximum time to completion found in the current study. Because there 
is a systematic difference in the distribution of outliers across the two datasets, we 
did not perform comparisons on time to completion between data from the Chat-
GPT-4 rewrites and the original problems.

Errors Per Problem

For Analyzing Models of 2-Step Equations—Integers, there were no significant dif-
ferences in error rates based on rewrite condition, t(9827) = 0.75, p = 0.46. How-
ever, there was an interaction between rewrite condition and reader status such that 
the effect of receiving the LLM rewrites was greater for emerging readers than for 
non-emerging readers, t(9876) = 2.06, p = 0.04. Although the effects differed based 
on reading ability, there were no significant simple effects. Emerging readers did 
not show significant differences in error rates based on rewrite condition, z = 1.59, 
p = 0.11, nor did non-emerging readers, z = 1.39, p = 0.16.

For Analyzing Models of 2-Step Equations—Rationals there was a marginally sig-
nificant effect of rewrite condition such that students made 0.06 fewer errors (95%: 
CI:[-0.12, 0.00]) per problem on average when completing ChatGPT-4 rewrites as 
compared to the human rewrites, t(12280) = -1.90, p = 0.06. However, there was no 
significant interaction based on reading ability, t(12280) = -0.49, p = 0.63.

Comparisons to the original problems showed that error rates for ChatGPT-4 
rewritten problems were reduced. For Analyzing Models of 2-Step Equations—
Integers, students made 0.31 fewer errors (95% CI:[-0.40, -0.22]) per problem, 
t(8486) = -160.49, p < 0.001, and for Analyzing Models of 2-Step Equations—
Rationals, they made 0.48 fewer errors (95% CI:[-0.58, -0.39]) per problem, 
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t(8204) = -10.19, p < 0.001. There were no additional significant interactions with 
reading ability for either workspace, all p-values were greater than 0.48.

Number of Problems Completed

There were no significant differences in the number of problems students completed 
prior to achieving mastery nor in their interactions with reading ability for either 
workspace at the 0.05 level when comparing ChatGPT-4 rewrites to human rewrites. 
However, students did complete 0.55 fewer problems (95% CI:[-0.29, -0.81]) per 
workspace when they received the ChatGPT-4 rewrites as compared to the origi-
nal problems, t(8486) = -4.09, p < 0.001. There were no additional interactions with 
reading ability, t(8486) = 0.36, p = 0.72.

Simpler Workspaces (Experiment A) Summary

Student performance across rewrite conditions was broadly similar. However, there 
was one notable marginally significant difference which might suggest that the 
human rewritten problems had an overall better effect on student outcomes than the 
ChatGPT-4 rewritten problems. Emerging readers were marginally more likely to 
be promoted (i.e., not master) the Analyzing Models of 2-Step Equations—Integers 
workspace when they received the ChatGPT-4 revised problems than when they 
received the human revised problems. However, this same effect was not true for the 
Analyzing Models of 2-Step Equations—Rationals workspace where comparisons 
of error rates showed a marginal effect that favored the ChatGPT-4 rewrites. Given 
these two opposing marginal effects and the null results for the remaining measures, 
we conclude that the effect of the ChatGPT-4 rewrites on student outcomes was sim-
ilar to the human rewrites. Indeed, as with the human rewrites, direct comparison 
between performance on the ChatGPT-4 rewritten and the original problems showed 
that the revised problems resulted in higher rates of mastery, that students required 
fewer problems to reach mastery, and that students made fewer errors per problem 
when they received the ChatGPT-4 revised problems.

Complex Workspaces (Experiment B)

In Experiment B, the GPT-4 revisions were compared to the original set of prob-
lems. The workspaces in Experiment B were also believed to be more complex. We 
find support for that in comparing median times to complete Simpler versus Complex 
workspaces. The Simpler workspaces took a median time of 16.78 min whereas the 
Complex workspaces took a median time of 65.57 min. This additional 54.31 min 
(95% CI:[53.55, 55.06]) required on average to complete the Complex workspaces 
as compared to the Simpler workspace reflects the additional steps and complexity 
in the workspaces reported in Experiment B, t(39741) = -140.90, p < 0.001. Table 2 
provides descriptive statistics.
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Promotion Rate

For the Modeling the Constant of Proportionality workspace, there were no signif-
icant effects based on whether the problems were revised by GPT-4, all p-values 
were greater than 0.22.

For Modeling Linear Relationships Using Multiple Representations, the odds of 
promotion were 0.93 times (95% CI:[0.87, 0.99]) lower when students received the 
GPT-4 rewritten problems as compared to the original problems, z = -2.41, p = 0.02. 
There was no significant effect of the interaction between rewrite condition and 
reading ability, z = 1.43, p = 0.15.

Time to Completion

For Modeling the Constant of Proportionality students spent 1.59 fewer minutes 
(95% CI:[-2.79, -0.39]) completing the workspace when the they received the GPT-4 
rewritten problems compared to the original problems, t(514) = -2.59, p = 0.01. 
There was no significant effect of the interaction between rewrite condition and 
reading ability, t(26702) = -1.54, p = 0.12.

For Modeling Linear Relationships Using Multiple Representations, there were 
no significant differences in the time it took to complete the workspace based on 
rewrite condition, all p-values were greater than 0.71.

Errors Per Problem

For Modeling the Constant of Proportionality, students who received the GPT-4 
rewrites made 0.12 more errors (95% CI:[0.05, 0.19]) per problem on average 
than students who received the original problems, t(40750) = 3.40, p < 0.001. 
The interaction between reading ability and rewrite condition was not significant, 
t(40750) = 1.00, p = 0.32.

For Modeling Linear Relationships Using Multiple Representations, students 
who received the GPT-4 rewrites made 0.16 more errors (95% CI:[0.10, 0.21]) per 
problem on average than students who received the original problems, t(384) = 5.36, 
p < 0.001. The interaction between reading ability and rewrite condition was not sig-
nificant, t(16490) = 0.88, p = 0.38.

Number of Problems Completed

For both Modeling the Constant of Proportionality and Modeling Linear Relation-
ships Using Multiple Representations workspaces there were no significant effects 
related to the rewrite condition, all p-values were greater than 0.12.

Complex Workspaces (Experiment B) Summary

Results for the Complex workspaces were mixed. For both workspaces, students 
made more errors on problems that were revised according to the GPT-4 work-
flow. However, this increase in errors was not coupled with lower rates of mastery. 
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Indeed for Modeling Linear Relationships Using Multiple Representations promo-
tion rates were lower among students who received the GPT-4 rewritten problems, 
meaning that these students mastered the content at a greater rate. Ultimately, mas-
tery of the content is the primary goal, and we take this effect as promising despite 
the increased rate of error on the path to mastery. Further, students who mastered 
the Modeling the Constant of Proportionality workspace were able to do so more 
quickly when they received the GPT-4 rewritten problems. Notably, this was not 
accompanied by a reduction in the number of problems they needed to complete and 
may therefore reflect that students solved the individual problems more quickly.

Overall, when comparing both to the original problems, the GPT-4 revisions to 
the Complex workspaces had less effect on student outcomes than the ChatGPT-4 
revisions to Simpler workspaces. Even when significant, effect sizes in Experiment 
B were small in comparison to the effects from Experiment A and results were not 
consistent across workspaces. We therefore interpret the findings as evidence that 
interventions to improve readability must be tested on student outcomes to deter-
mine to what extent those improvements affected learning.

General Discussion

We set out to test the ability of GPT-4 to improve the readability of math word prob-
lems and to subsequently improve student math outcomes, especially among emerg-
ing readers who may struggle to learn math as a result of their difficulty with reading 
word problems. GPT-4 successfully improved the readability of the problems, but 
the effect this had on student outcomes was varied. In two workspaces, rewrites per-
formed by ChatGPT-4 had similar effects to rewrites performed by human authors 
and resulted in significant improvement in student outcomes over the original con-
tent. In a second set of workspaces, there were some signs that the GPT-4 rewritten 
content improved student mastery rates but these problems also resulted in higher 
error rates compared to the original problems. The discrepancy in results suggests 
that improving the readability of word problems improves outcomes for some types 
of problems more than for others. Further, it highlights the need for additional work 
in this area before LLMs can be used to improve the readability of text more broadly.

Effects of Readability on Math Outcomes

We expected revisions to the content to differentially affect emerging versus non-
emerging readers as in Almoubayyed et al. (2023a). This expectation was not sup-
ported. Where effects were observed, interactions were rare and simple effects did 
not suggest noteworthy differences between groups. The null result here suggests 
that all students regardless of their reading skill are affected similarly by changes to 
the readability of math word problems.

Student outcomes in the workspaces labeled Simpler were sensitive to 
improvements in the readability of math word problems. Across the board, 
these revisions led to improved outcomes over the original content and similar 
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outcomes to the human revised content. Effects for the Complex workspaces 
were both more muted and mixed in the direction of the effect. The key dif-
ference between the Simpler and more Complex workspaces was the extent to 
which all of the steps relied on a mixture of reading and mathematical reason-
ing. In the Simpler workspaces, all steps within the problem required readers to 
attend closely to the story in the text in order to understand the formation of the 
equation. Thus, each response required careful reading. In the Complex work-
spaces, students needed to comprehend the text to extract appropriate variables 
but then they had to perform additional steps which did not involve the text (e.g., 
plotting points on a graph). Outcomes for these more strictly mathematical steps 
may be less affected by changes to the readability of the word problem.

One puzzling finding was the increased rates of error for both of the more 
complex workspaces. One possibility is that the GPT-4 rewrites, despite improv-
ing readability scores, were less clear. However, in one of these workspaces, 
students mastered the content at a greater rate, so it seems unlikely that the 
revisions had a negative effect on student learning more broadly. It is not imme-
diately clear why this discrepancy in results would arise. The increased error 
rates did not negatively affect mastery rates nor increase the time students spent 
in the workspace which suggests that the increased error was small enough so 
as to not indicate differences in learning. Nevertheless, systematic differences 
based on which type of problem students received were present. It is still possi-
ble that increased readability in the problems resulted in more careless errors as 
might occur if students’ ease-of-process heuristics led them to be overconfident 
in their responses (e.g., Son & Metcalfe, 2000). In future work, we plan a closer 
analysis of which skills showed the greatest discrepancy in errors and how those 
may relate to changes in the LLM revisions. This type of close analysis will be 
important both to inform how LLMs can be used for this work and to understand 
the relationship between text readability and performance on math word prob-
lems more broadly.

Limitations

A few limitations associated with implementing interventions in active learn-
ing environments should be noted. First, Simpler and Complex workspaces were 
revised using different prompts. The differential effects could be related to the 
differences in prompting rather than differences in how changing the readability 
of the problems affects outcomes. While this is a distinct possibility, we think 
this is unlikely to be driving the effect for two reasons. First, readability met-
rics suggest that the readability of the GPT-4 revised Complex workspaces were 
similarly improved as the ChatGPT-4 revised Simpler workspaces. Second, the 
problems revised by GPT-4 were subject to the same quality assurance process 
as those revised by ChatGPT-4. Human raters read the problems and rejected 
ones they believed had introduced errors or reduced readability of the problem. 
The rejected problems were revised again until a satisfactory version was pro-
duced. Although human reviewers rejected a greater percentage of the problems 
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revised by GPT-4, all problems that were included in the experiment ultimately 
passed this inspection. Thus, it seems likely that results are related more to how 
the workspaces are affected by improvements in readability rather than differ-
ences in the quality of questions the two different prompts produced.

Future Directions

The relationship between reading ability and solving math word problems is well 
established (Almoubayyed et al., 2023c; Daroczy et al., 2015; Greisen et al., 2021; 
Helwig et  al., 1999; Koedinger & Nathan, 2004). Indeed, in this study emerging 
readers had lower performance across all metrics. It is less clear how improvements 
to the readability of math word problems affect this relationship. Broad changes to 
readability improved student outcomes for some math word problems but not others. 
Although aspects of readability like sentence length, word frequency, and lexical 
diversity have been largely predictive of reading comprehension, the comprehensi-
bility of math word problems may be more dependent on other factors like iconic-
ity (i.e., displaying events in temporal order). LLMs offer an opportunity to iter-
ate improvements, targeting more precise changes in word problems and deploying 
those changes more broadly to directly test how changes to the readability relate to 
math learning and particularly to discover if a specific readability metric is useful 
for capturing the readability of math word problems. Such work may help add preci-
sion to understanding how specific findings related to the readability of a text are 
affecting student performance.

Conclusion

GPT-4 was able to produce revisions to math word problems which were compara-
ble to human revisions of the same problems. This was true both in assessments of 
their readability and in their effect on student performance in MATHia. However, 
the extensive prompting required in this first attempt did not provide a scalable solu-
tion to revising additional workspaces. By implementing API calls to GPT-4 within 
Python code we were able to create a workflow that substantially reduced the human 
labor needed to make large-scale changes in educational materials. The revisions 
produced by this prompt show similar improvements to the readability of the prob-
lems and all problems were approved by human reviewers before deployment. Nev-
ertheless, effects on student performance for this second set of revisions were more 
muted with only the revisions for one of the two workspaces improving student rates 
of content mastery. Further, despite the increased rate of mastery, the LLM revisions 
also led to higher error rates.

The results here highlight the importance of exercising caution when making 
generalizations about the impact of improved readability on student learning out-
comes. Supporting emerging readers may require more than making problems more 
readable in general. Nevertheless, the results here also illustrate the potential for 
using LLMs both to improve educational materials and to understand what types of 



 International Journal of Artificial Intelligence in Education

1 3

improvements are most efficacious. By including LLMs in the workflow, offloading 
the most labor-intensive aspects of the work (writing and coding), we can generate 
materials more efficiently and deploy experiments more rapidly than using human 
labor alone. While we report the results from 4 workspaces here, we have already 
deployed GPT-4 to revise an additional 14 workspaces (encompassing over 1600 
problems). We are optimistic that the rich data set we will generate across multiple 
workspaces will reveal more about how improvements in readability affect learning 
gains for specific skills.

Appendix A

Complex Workspaces Prompt

First Pass

You are a math problem revision bot. Your job is to revise math problems and make 
them easier for 6th graders to read.\n.

The text you will be given is not the final version the student will read. It contains 
placeholder text which begins with $. The placeholder text will later be substituted 
for actual text. You should leave the placeholder intact. Remember the placeholder 
text represents words. Be careful not to duplicate text that will be inserted by the 
placeholder. In particular, placeholders that contain the word “phrase” often repre-
sent the unit, so you should not insert a unit following these placeholders.\n.

It is critical that values like [_value_slope] and [/_value_slope] ${ORT} are 
retained in the output.\n.

In your revision, prioritize using simple but precise vocabulary (e.g., ‘nests’ is 
better than ‘bird homes’ and ‘was’ is better than ‘had been’). Pronouns, especially 
“it” can be vague. Restate what “it” is instead of using the pronoun.\n.

Sometimes the original problem may contain abstractions like ‘Area K’. Make 
them concrete. For instance, ‘Area K’ might be a ‘field’ and ‘Area L’ a ‘backyard.’\n.

Do not rewrite parts of the text that are already simple. Leave simple words that 
are specific like “buy” and “spend” as they are. Your revisions should never increase 
the complexity of the text.\n.

You have a bad bias towards reorganizing sentences by adding clauses to the 
beginning of the sentence. Avoid adding clauses at the beginning of sentences (e.g., 
‘During …,’, ‘In …,’). Use shorter sentences instead.\n.

Stay in active voice, always. Define active voice before you start revising.\n.
You should change the text as much as necessary to improve readability, but keep 

in mind that the scale must stay the same. Size is important because nesting some-
times occurs in problems where there are, for example, a number of schools in a 
district or a number of teams in a league. Changing league to team will throw off the 
numbers. Instead change hard words like ‘leagues’ to words with equivalent sizes 
like ‘clubs.’\n.
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You can remove text (including placeholders) that are not relevant to the 
problem.\n.

For reference, the values for some placeholders have been provided. These are 
just to help you predict appropriate words. Do not substitute the placeholders in the 
text with their values.\n.

Before you begin, write a few sentences about what makes a text easy for 6th 
graders to read. Then write a few more sentences about how you might improve 
the readability of the text provided. Focus on the reading difficulty. Don’t comment 
on placeholder text. Assume placeholder text will not be seen by the students. You 
should list a few vocabulary words from the text that are ok to keep as is and then 
list a few vocabulary words which are difficult. Remember, placeholder text should 
not be listed among the vocabulary to change.

Subsequent Passes (when necessary)

Your revision did not improve the readability enough. Please try again. Here are 
some tips to keep in mind: \n.

1. The text should have low lexical diversity. Use the same words rather than diver-
sifying the vocabulary.\n

2. Keep sentences short. You have a tendency to use a lot of clauses in your sen-
tences. Break long sentences into shorter ones.\n

3. Choose the most likely words. This might mean changing the meaning of the text. 
It’s ok to completely change the topic to make the text more clear.\n

4. Be precise. Use words like ‘bought’ over ‘got.’ You like to use the word “use” a 
lot. You’re over using it. Be more precise. For example, don’t use “use” in place 
of “spend.”\n

5. Make sure the topic is one for which 6th graders have sufficient background 
knowledge. If not, change the topic.\n

6. Balance providing context with removing information (words and phrases) that 
is not critical to completing the math problem. All placeholder text should be 
considered critical.

7. Maintain the same structure you did previously labeling this problem < Revised 
Problem 1 > .

Appendix B

Tables for all mixed effects models run as part of this study are provided below. 
Contrast coding was used in all models with tables specifying how to read the direc-
tion of the effect. In all cases, the direction of the effects reflects receiving the LLM 
rewrites or status as an emerging reader (Tables 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25).
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Table 4  Human versus LLM rewrites comparison for Analyzing Models of Two-Step Linear Equations 
Integers

Odds of being Promoted

Predictors Odds Ratios CI z p

(Intercept) 0.10 0.09 – 0.11 -31.46  < 0.001
LLM Rewrites 1.18 0.99 – 1.39 1.90 0.057
Emerging Readers 2.99 2.60 – 3.43 15.49  < 0.001
LLM Rewrites × Emerging Readers 1.21 0.93 – 1.58 1.39 0.164
Random Effects
σ2 3.29
τ00 School Id 0.77
τ11 School Id. LLM Rewrites 0.01
ρ01 School Id -0.57
ICC 0.19
N School Id 476
Observations 11362
Marginal  R2 / Conditional  R2 0.054 / 0.234

Table 5  Human versus LLM rewrites comparison for Analyzing Models of Two-Step Linear Equations 
Rationals

Odds of being Promoted

Predictors Odds Ratios CI z p

(Intercept) 0.05 0.04 – 0.06 -36.10  < 0.001
LLM Rewrites 1.05 0.84 – 1.32 0.46 0.645
Emerging Readers 3.68 3.12 – 4.34 15.46  < 0.001
LLM Rewrites × Emerging Readers 0.93 0.67 – 1.28 -0.46 0.646
Random Effects
σ2 3.29
τ00 School Id 0.71
τ11 School Id. LLM Rewrites 0.14
ρ01 School Id 0.05
ICC 0.19
N School Id 375
Observations 13307
Marginal  R2 / Conditional  R2 0.073 / 0.245
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Table 6  Original versus 
LLM rewrites comparison for 
Analyzing Models of Two-Step 
Linear Equations Integers

Odds of being Promoted

Predictors Odds 
Ratios

CI z p

(Intercept) 0.15 0.14 – 0.16 -55.92  < 0.001
LLM Rewrites 0.82 0.72 – 0.94 -2.88 0.004
Emerging Readers 3.63 3.18 – 4.15 18.96  < 0.001
LLM 

Rewrites × Emerg-
ing Readers

0.98 0.75 – 1.27 -0.18 0.859

Observations 9525
R2 Tjur 0.043

Table 7  Original versus 
LLM rewrites comparison for 
Analyzing Models of Two-Step 
Linear Equations Rationals

Odds of being Promoted

Predictors Odds 
Ratios

CI z p

(Intercept) 0.08 0.08 – 0.09 -49.87  < 0.001
LLM Rewrites 0.64 0.52 – 0.77 -4.57  < 0.001
Emerging Readers 4.50 3.71 – 5.48 15.18  < 0.001
LLM 

Rewrites × Emerg-
ing Readers

0.78 0.53 – 1.15 -1.26 0.209

Observations 8734
R2 Tjur 0.038

Table 8  Human versus LLM Rewrites for Analyzing Models of Two-Step Linear Equations Integers

Time to Completion in Minutes

Predictors Estimates CI t p

(Intercept) 26.78 25.80 – 27.76 53.41  < 0.001
LLM Rewrites 0.32 -0.65 – 1.28 0.64 0.519
Emerging Readers 6.71 5.51 – 7.91 10.95  < 0.001
LLM Rewrites × 
Emerging Readers

0.72 -1.20 – 2.64 0.73 0.464

Random Effects
σ2 416.02
τ00 School Id 45.63
τ11 School Id. Emerging Readers 16.69
ρ01 School Id 0.74
ICC 0.08
N School Id 464
Observations 10262
Marginal  R2 / Conditional  R2 0.017 / 0.101
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Table 9  Human versus LLM Rewrites for Analyzing Models of Two-Step Linear Equations Rationals

Time to Completion in Minutes

Predictors Estimates CI t p

(Intercept) 20.35 19.59 – 21.10 53.09  < 0.001
LLM Rewrites -0.01 -0.68 – 0.66 -0.02 0.983
Emerging Readers 4.45 3.52 – 5.38 9.34  < 0.001
LLM Rewrites × Emerging Readers -1.08 -2.42 – 0.27 -1.57 0.116
Random Effects
σ2 255.65
τ00 School Id 25.50
τ11 School Id. Emerging Readers 14.39
ρ01 School Id 0.58
ICC 0.08
N School Id 368
Observations 12605
Marginal  R2 / Conditional  R2 0.013 / 0.095

Table 10  Human versus LLM Rewrites for Analyzing Models of Two-Step Linear Equations Integers

Error Rate

Predictors Estimates CI t p

(Intercept) 3.48 3.40 – 3.55 87.64  < 0.001
LLM Rewrites 0.03 -0.05 – 0.11 0.75 0.455
Emerging Readers 0.86 0.76 – 0.96 17.23  < 0.001
LLM Rewrites × Emerging Readers 0.16 0.01 – 0.31 2.06 0.039
Random Effects
σ2 2.61
τ00 School Id 0.30
τ11 School Id. Emerging Readers 0.12
ρ01 School Id 0.15
ICC 0.11
N School Id 464
Observations 10262
Marginal  R2 / Conditional  R2 0.042 / 0.145
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Table 11  Human versus LLM Rewrites for Analyzing Models of Two-Step Linear Equations Rationals

Error Rate

Predictors Estimates CI t p

(Intercept) 2.76 2.69 – 2.83 74.62  < 0.001
LLM Rewrites -0.06 -0.12 – 0.00 -1.90 0.058
Emerging Readers 0.61 0.53 – 0.68 15.20  < 0.001
LLM Rewrites × Emerging Readers -0.03 -0.15 – 0.09 -0.49 0.626
Random Effects
σ2 1.99
τ00 School Id 0.27
τ11 School Id. Emerging Readers 0.08
ρ01 School Id 0.41
ICC 0.11
N School Id 368
Observations 12604
Marginal  R2 / Conditional  R2 0.029 / 0.139

Table 12  Originals versus LLM 
Rewrites for Analyzing Models 
of Two-Step Linear Equations 
Integers

Error Rate

Predictors Esti-
mates

CI t p

(Intercept) 3.68 3.63 – 3.72 160.49  < 0.001
LLM Rewrites -0.31 -0.40 – -0.22 -6.85  < 0.001
Emerging Readers 1.09 1.00 – 1.18 23.85  < 0.001
LLM 

Rewrites × Emerg-
ing Readers

0.07 -0.11 – 0.24 0.71 0.478

Observations 8490
R2 /  R2 adjusted 0.074 / 0.073

Table 13  Originals versus LLM 
Rewrites for Analyzing Models 
of Two-Step Linear Equations 
Rationals

Error Rate

Predictors Esti-
mates

CI t p

(Intercept) 2.96 2.91 – 3.00 124.61  < 0.001
LLM Rewrites -0.48 -0.58 – -0.39 -10.18  < 0.001
Emerging Readers 0.61 0.51 – 0.70 12.76  < 0.001
LLM 

Rewrites × Emerg-
ing Readers

0.06 -0.13 – 0.25 0.64 0.525

Observations 8208
R2 /  R2 adjusted 0.047 / 0.046
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Table 14  Human versus LLM Rewrites for Analyzing Models of Two-Step Linear Equations Integers

Number of Problems Completed

Predictors Estimates CI t p

(Intercept) 11.15 10.91 – 11.38 93.92  < 0.001
LLM Rewrites -0.01 -0.24 – 0.22 -0.11 0.913
Emerging Readers 1.99 1.69 – 2.30 12.74  < 0.001
LLM Rewrites × Emerging Readers -0.11 -0.56 – 0.34 -0.47 0.642
Random Effects
σ2 22.54
τ00 School Id 2.58
τ11 School Id. LLM Rewrites 0.08
τ11 School Id. Emerging Readers 1.52
ρ01 -0.31

0.48
ICC 0.10
N School Id 464
Observations 10262
Marginal  R2 / Conditional  R2 0.027 / 0.123

Table 15  Human versus LLM Rewrites for Analyzing Models of Two-Step Linear Equations Rationals

Number of Problems Completed

Predictors Estimates CI t p

(Intercept) 9.71 9.49 – 9.93 86.91  < 0.001
LLM Rewrites -0.05 -0.23 – 0.13 -0.59 0.557
Emerging Readers 1.64 1.39 – 1.88 12.96  < 0.001
LLM Rewrites × Emerging Readers -0.11 -0.46 – 0.25 -0.58 0.562
Random Effects
σ2 18.05
τ00 School Id 2.41
τ11 School Id. Emerging Readers 0.99
ρ01 School Id 0.48
ICC 0.11
N School Id 368
Observations 12604
Marginal  R2 / Conditional  R2 0.023 / 0.132
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Table 16  Original versus LLM 
Rewrites for Analyzing Models 
of Two-Step Linear Equations 
Integers

Number of Problems Completed

Predictors Estimates CI t p

(Intercept) 11.45 11.32 – 11.59 170.69  < 0.001
LLM Rewrites -0.55 -0.81 – -0.29 -4.09  < 0.001
Emerging Readers 2.35 2.08 – 2.61 17.49  < 0.001
LLM 

Rewrites × Emerg-
ing Readers

0.10 -0.43 – 0.62 0.36 0.719

Observations 8490
R2 /  R2 adjusted 0.039 / 0.039

Table 17  Original versus LLM 
Rewrites for Analyzing Models 
of Two-Step Linear Equations 
Rationals

Number of Problems Completed

Predictors Esti-
mates

CI t p

(Intercept) 10.17 10.03 – 10.31 141.69  < 0.001
LLM Rewrites -1.19 -1.47 – -0.91 -8.29  < 0.001
Emerging Readers 1.92 1.64 – 2.21 13.40  < 0.001
LLM 

Rewrites × Emerg-
ing Readers

-0.47 -1.03 – 0.09 -1.64 0.101

Observations 8208
R2 /  R2 adjusted 0.035 / 0.035

Table 18  Original versus LLM Rewrites for Modeling the Constant of Proportionality

Odds of being Promoted

Predictors Odds Ratios CI t p

(Intercept) 0.02 0.02 – 0.02 -52.76  < 0.001
LLM Rewrites 1.14 0.93 – 1.39 1.24 0.216
Emerging Readers 3.52 3.08 – 4.03 18.25  < 0.001
LLM Rewrites × Emerging Readers 0.98 0.75 – 1.28 -0.14 0.891
Random Effects
σ2 3.29
τ00 School Id 1.19
τ11 School Id. LLM Rewrites 0.10
ρ01 School Id 0.15
ICC 0.27
N School Id 782
Observations 42471
Marginal  R2 / Conditional  R2 0.063 / 0.316
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Table 19  Original versus LLM Rewrites for Modeling Linear Relationships Using Multiple Representa-
tions

Odds of being Promoted

Predictors Odds Ratios CI t p

(Intercept) 0.32 0.29 – 0.34 -27.95  < 0.001
LLM Rewrites 0.93 0.87 – 0.99 -2.41 0.016
Emerging Readers 2.47 2.32 – 2.63 27.94  < 0.001
LLM Rewrites × Emerging Readers 1.09 0.97 – 1.24 1.43 0.153
Random Effects
σ2 3.29
τ00 School Id 0.90
τ11 School Id. LLM Rewrites 0.01
ρ01 School Id -0.06
ICC 0.22
N School Id 956
Observations 33565
Marginal  R2 / Conditional  R2 0.035 / 0.243

Table 20  Original versus LLM Rewrites for Modeling the Constant of Proportionality

Time to Completion in Minutes

Predictors Estimates CI t p

(Intercept) 84.50 82.41 – 86.60 79.05  < 0.001
LLM Rewrites -1.59 -2.79 – -0.39 -2.59 0.010
Emerging Readers 20.87 19.64 – 22.11 33.15  < 0.001
LLM Rewrites × Emerging Readers -1.87 -4.26 – 0.52 -1.54 0.124
Random Effects
σ2 2772.33
τ00 School Id 639.51
τ11 School Id. LLM Rewrites 3.07
ρ01 School Id -0.99
ICC 0.19
N School Id 780
Observations 41477
Marginal  R2 / Conditional  R2 0.023 / 0.206
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Table 21  Original versus LLM Rewrites for Modeling Linear Relationships Using Multiple Representa-
tions

Time to Completion in Minutes

Predictors Estimates CI t p

(Intercept) 83.11 81.22 – 85.00 86.22  < 0.001
LLM Rewrites -0.22 -1.75 – 1.32 -0.28 0.782
Emerging Readers 11.79 10.20 – 13.38 14.57  < 0.001
LLM Rewrites × Emerging Readers 0.57 -2.50 – 3.63 0.36 0.717
Random Effects
σ2 2547.99
τ00 school_id 484.89
τ11 school_id.ProblemCondition1 2.34
ρ01 school_id 0.82
ICC 0.16
N school_id 907
Observations 26493
Marginal  R2 / Conditional  R2 0.007 / 0.166

Table 22  Original versus LLM Rewrites for Modeling the Constant of Proportionality

Error Rate

Predictors Estimates CI t p

(Intercept) 6.49 6.36 – 6.63 92.69  < 0.001
LLM Rewrites 0.12 0.05 – 0.19 3.40 0.001
Emerging Readers 1.54 1.44 – 1.64 29.41  < 0.001
LLM Rewrites × Emerging Readers 0.07 -0.07 – 0.21 1.00 0.317
Random Effects
σ2 9.12
τ00 School Id 2.80
τ11 School Id. Emerging Readers 0.54
ρ01 School Id 0.71
ICC 0.21
N School Id 780
Observations 41474
Marginal  R2 / Conditional  R2 0.036 / 0.243
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Table 23  Original versus LLM Rewrites for Modeling Linear Relationships Using Multiple Representa-
tions

Error Rate

Predictors Estimates CI t p

(Intercept) 4.44 4.36 – 4.51 115.33  < 0.001
LLM Rewrites 0.16 0.10 – 0.21 5.36  < 0.001
Emerging Readers 0.51 0.44 – 0.59 12.85  < 0.001
LLM Rewrites × Emerging Readers 0.05 -0.06 – 0.16 0.88 0.380
Random Effects
σ2 3.34
τ00 School Id 0.77
τ11 School Id. LLM Rewrites 0.01
τ11 School Id. Emerging Readers 0.23
ρ01 0.32

0.52
ICC 0.17
N School Id 907
Observations 26492
Marginal  R2 / Conditional  R2 0.012 / 0.182

Table 24  Original versus LLM Rewrites for Modeling the Constant of Proportionality

Number of Problems Completed

Predictors Estimates CI t p

(Intercept) 10.63 10.51 – 10.75 175.54  < 0.001
LLM Rewrites 0.03 -0.05 – 0.12 0.74 0.457
Emerging Readers 1.25 1.16 – 1.33 28.30  < 0.001
LLM Rewrites × Emerging Readers -0.13 -0.30 – 0.03 -1.56 0.120
Random Effects
σ2 13.60
τ00 School Id 1.82
τ11 School Id. LLM Rewrites 0.01
ρ01 School Id -0.86
ICC 0.12
N School Id 780
Observations 41474
Marginal  R2 / Conditional  R2 0.018 / 0.134
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Table 25  Original versus LLM Rewrites for Modeling Linear Relationships Using Multiple Representa-
tions

Number of Problems Completed

Predictors Estimates CI t p

(Intercept) 13.81 13.65 – 13.98 162.21  < 0.001
LLM Rewrites -0.09 -0.26 – 0.07 -1.09 0.274
Emerging Readers 0.90 0.72 – 1.08 9.81  < 0.001
LLM Rewrites × Emerging Readers 0.14 -0.18 – 0.45 0.84 0.401
Random Effects
σ2 26.79
τ00 School Id 3.16
τ11 School Id. LLM Rewrites 0.19
τ11 School Id. Emerging Readers 0.42
ρ01 0.22

0.07
ICC 0.11
N School Id 907
Observations 26492
Marginal  R2 / Conditional  R2 0.005 / 0.113
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