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Abstract
In recent years, the pre-training of Large Language Models (LLMs) in the educa-
tional domain has garnered significant attention. However, a discernible gap exists 
in the application of these models to mathematics education. This study aims to 
bridge this gap by pre-training LLMs on authentic K-12 mathematical dialogue 
datasets. Our research is structured around three primary research questions (RQs) 
that investigate the impact of fine-tuning data size and pre-training in downstream 
Natural Language Processing (NLP) tasks, and the efficacy of LLMs in text genera-
tion tasks within the mathematical context. Our findings indicate that data size plays 
a pivotal role in the performance of LLMs in downstream NLP tasks, with larger 
datasets yielding more consistent and improved results. Furthermore, pre-trained 
models consistently outperformed their non-pre-trained counterparts, emphasizing 
the importance of leveraging prior knowledge in LLMs. In the realm of text gen-
eration, we found that our model can not only enhance mathematical understanding 
and performance on downstream math tasks but also generate more engaging and 
human-like language.

Keywords LLMs · Math education · Pre-train

Introduction

Mathematics stands as not only a foundational subject but also a cornerstone in the 
educational landscape, critical for both academic pursuits and everyday problem-
solving (D’Ambrosio, 2007). Its importance is further magnified given its applica-
bility across diverse disciplines and real-world scenarios (Ernest et al., 2016). How-
ever, the inherently challenging nature of math, coupled with its abstract concepts, 
often poses significant hurdles for learners. To better support students’ math learning 
and prepare for future workforce development, educational research in mathemat-
ics has examined one-on-one tutoring, curricular innovations, and meta-cognitive 
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skill training to effectively and successfully cater to the diverse needs of students’ 
math learning (Callender et al., 2016; Gao et al., 2017; Kim & Lee, 2010). How-
ever, prior educational attempts to facilitate math learning mainly focus on manual 
support, highlighted by their limitations in scalability (e.g., supporting hundreds of 
thousands of students), flexibility (e.g., personalizing learning), and cost constraints 
(e.g., high cost of tutor training and associated service fees) (Xing & Du, 2019; Cal-
lender et al., 2016; Gao et al., 2017; Guill & Bos, 2014).

To address the aforementioned limitations in math learning studies, educators 
have examined automated support using emerging learning technologies such as 
deep neural networks to promote a paradigm shift towards supporting teaching and 
learning driven by artificial intelligence (AI). For instance, Hussain et  al. (2019) 
employed deep learning to predict student performance, enabling educators to 
provide real-time, personalized feedback, which in turn enhances student success. 
Safarov et  al. (2023) combined deep learning with clustering to deliver tailored 
e-education content, ensuring students receive content aligned with their unique 
learning styles. Lastly, Bannert et al. (2014) employed process mining to analyze 
the sequences of students’ self-regulated learning activities, allowing educators to 
identify and address specific areas where students may struggle, thereby improving 
their overall learning experience. As an advancement of deep learning, Large Lan-
guage Models (LLMs) enable a more accurate, contextual, and adaptive analysis 
of student artifacts. An LLM often is pre-trained on vast amounts of textual data,1 
allowing it to understand, generate, and interact with human language. LLMs’ 
unparalleled precision in natural language understanding stands in stark contrast 
to traditional NLP tools and earlier deep learning models like Recurrent Neural 
Networks, which, while valuable in their time, lack the depth and breadth of under-
standing that LLMs demonstrate.

LLMs have been successfully adopted to provide real-time feedback, generate 
contextually relevant content, and facilitate interactive learning sessions (Xing 
et  al., 2015;  Li & Xing, 2021;  Matelsky et  al., 2023; Sallam et  al., 2023). For 
example, Matelsky et al. (2023) introduced a tool that utilizes LLMs to provide 
automated feedback on open-ended questions. Their findings affirmed the tool’s 
efficacy in delivering quick and tailored feedback, assisting students in pinpoint-
ing areas that require further attention and improvement. Moore et  al. (2023) 
implemented LLMs to co-create educational content with students, enhancing the 
quality and range of learning resources. This integration has resulted in improved 
learning analytics and personalized educational experiences. In math learning 
settings, given the intricate and specialized nature of mathematics, which encom-
passes abstract concepts, domain-specific vocabulary, and symbolic representa-
tions, conventional models often face challenges when applied to mathemati-
cal contexts. Therefore, educators have proposed pre-trained LLMs specifically 
designed and fine-tuned for mathematical contexts as a solution. These LLMs 
utilize a wealth of mathematical data, ranging from basic arithmetic to advanced 
calculus, to better comprehend and process mathematical language. For instance, 

1 LLMs in our study are scoped in text-based models.
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Shen et al. (2021) introduced MathBERT which was pre-trained on an extensive 
mathematical corpus and demonstrated superior performance in mathematical 
tasks compared to its counterparts without specific exposure to large corpus of 
mathematics. Wang et al. (2023) introduced Math-Shepherd, trained on automati-
cally constructed supervision data, significantly enhancing the accuracy of LLMs 
on mathematical tasks without relying on human annotations. Additionally, Yu 
et  al. (2023) introduced MetaMath, a fine-tuned language model specialized in 
mathematical reasoning, which was trained on the MetaMathQA Dataset–a col-
lection of diverse, rephrased mathematical questions– and demonstrated superior 
performance on solving math word problems. Similarly, Nakamoto et al. (2023) 
explored enhancing automated scoring of mathematical explanations using LLM-
generated datasets, showing that this semi-supervised approach significantly 
improves evaluation metrics.

Currently, mainstream training datasets for mathematical models can be catego-
rized into three types: the first category uses mathematical problem-solving data-
sets such as GSM8K and MATH, or augmented versions of these datasets such as 
the MetaMathQA dataset, as exemplified by the MetaMath. The second category 
involves training models on scientific articles from platforms such as arXiv.org, 
such as MathBERT. The third category uses datasets generated by LLMs, such as 
in the Math-Shepherd project. These datasets have been shown to improve the math-
ematical understanding or performance on mathematical downstream tasks to some 
extent. However, few studies have focused on enhancing the quality of LLM out-
puts using naturalistic and authentic math learning datasets in K-12 settings. Such 
authenticity of math learning is important as it tends to capture common conceptual 
and procedural problem-solving patterns among students, teen language use, and 
math expert guidance (Bunch & Martin, 2021). To address the gap, we propose a 
unique approach: Utilizing large-scale authentic K-12 student mathematical discus-
sions facilitated by paid math professionals for LLM pre-training. Our study’s goal 
is bi-fold: (1) Investigate whether training our model on this authentic discussion 
dataset enhances its capability in understanding mathematics and handling down-
stream tasks and (2) whether such pre-training improves LLMs’ ability to mimic the 
expressive ways of K-12 students, thereby producing outputs that are more natural.

Additionally, given the intense computational demands of LLMs, mainstream 
pre-training attempts are primarily focused on medium to small models or smaller 
datasets. Taking these constraints into account, this study explores the potential of 
leveraging recently introduced larger language models for mathematical tasks. We 
propose the pre-training of expansive models such as Llama, Llama-2, and GPT-J 
to cater to mathematical contexts. To evaluate our pre-trained models, we establish 
three distinct tasks: (1) single-label classification, (2) multi-label classification, and 
(3) text generation. In this setup, Tasks 1 and 2 aim to investigate the performance 
of the pre- trained model in downstream tasks, while Task 3 focuses on the text 
generation ability in a mathematical context. For a comprehensive comparison, we 
use Llama, Llama-2, and GPT-J models as our base models. These models serve as 
a baseline, allowing us to measure the improvements gained by our pre-trained mod-
els. Simultaneously, GPT 3.5 is also employed as the benchmark model for further 
evaluation and comparison. Our objective is to robustly explore the feasibility of 
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training models on this forum discussion dataset and assess the performance of the 
trained models under various potential influencing factors. We make the following 
contributions in this work:

(1) We build pre-trained Llama, GPT-J, and Llama-2 by pre-training the base Llama, 
GPT-J, and Llama-2 on authentic K-12 mathematical dialogue datasets. We pub-
licly release pre-trained Llama, GPT-J, and Llama-2 as a community resource 
at: https:// huggi ngface. co/ uf- aice- lab.

(2) We evaluate the performance of pre-trained Llama, GPT-J, and Llama-2 for three 
general NLP tasks: (a) single-label classification, (b) multi-label classification, 
and (c) text generation and compare its performance to the baseline models. In 
our experiments, all pre-trained models demonstrated a noticeable improvement 
in performance across the three tasks when compared to their respective base 
models. To demonstrate our contribution, we have conducted research on the 
following research questions (RQs):

1. To what extent does fine-tuning data size influence LLMs performance in text 
classification in math learning settings?

2. To what extent does pre-training influence LLMs performance in text clas-
sification in math learning settings?

3. To what extent does pre-training influence LLMs performance in NLP text 
generation tasks?

Related Work

Pre-training and fine-tuning represent the dual facets of the reusability paradigm 
inherent to LLMs. At its core, pre-training involves training a model on a vast cor-
pus of text, enabling it to learn general linguistic patterns, structures, and knowl-
edge from diverse domains. The pre-training phase typically employs objectives to 
predict missing words in a sentence, thereby facilitating the model’s understanding 
of context and semantics (Devlin et  al., 2019). In contrast, fine-tuning is the sub-
sequent phase where a pre-trained model is further trained on a specific task or 
relatively small dataset, allowing the model to specialize and adapt its previously 
acquired knowledge to the nuances of the target task (Howard & Ruder, 2018). The 
synergy between these phases offers multiple benefits. Firstly, it capitalizes on the 
vast knowledge captured during pre-training, reducing the need for extensive labeled 
data in the fine-tuning phase. Secondly, it accelerates the training process for spe-
cific tasks, as the model starts with a robust foundational understanding. Lastly, 
research has shown that this two-step process often leads to state-of-the-art perfor-
mance across a plethora of NLP tasks (Raffel et al., 2020).

The quantum of pre-training, or the extent to which a model is pre-trained, is 
influenced by a myriad of factors that can significantly shape the model’s subse-
quent performance and adaptability. One of the most pivotal factors is the size of the 
data on which the model is pre-trained. Large-scale datasets encompassing diverse 

https://huggingface.co/uf-aice-lab
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linguistic patterns and domains empower the model to capture a broader spectrum 
of knowledge, leading to a more robust and generalized understanding (Veyseh 
et  al., 2022). However, the benefits of increasing data size may exhibit diminish-
ing returns, especially when the data becomes redundant or less relevant to the tar-
get tasks (Wang et al., 2020). Context, another crucial determinant, pertains to the 
nature and quality of the data used for pre-training. Models pre-trained on context-
rich datasets that mirror real-world scenarios or specific domains tend to exhibit 
superior performance when fine-tuned for related tasks, as they have been exposed 
to relevant semantic structures and nuances (Gururangan et al., 2020). Thus, while 
the sheer volume of data is vital, the contextual relevance and diversity of the pre-
training data play an equally, if not more, significant role in determining the efficacy 
of the pre-trained model.

Educational studies also emphasize the pre-training of LLMs for specific down-
stream tasks. So far, a niche yet significant segment of research has ventured into the 
pre-training of LLMs within educational contexts. For instance, Xiao et al. (2023) 
have ventured into the pre-training of LLMs within educational contexts, specifi-
cally in generating reading comprehension exercises for middle school students in 
China. Nakamoto et al. (2023) pre-trained LLMs to enhance the automated scoring 
of mathematical self-explanations using a semi-supervised approach that integrates 
LLM-generated datasets, significantly improving the model’s accuracy and evalua-
tion capabilities. Similarly, Leinonen et al. (2023) have dived into the pre-training of 
LLMs in enhancing programming error messages to make them more comprehen-
sible for novice programmers, demonstrating significant improvements in the inter-
pretability and actionability of these messages. These pioneering efforts can be cat-
egorized based on three primary dimensions: model architecture, pre-training data 
size, and domain specificity.

Regarding model architecture, two predominant paradigms emerge: the Masked 
Language Model (MLM) and the Causal Language Model (CLM). MLMs, exem-
plified by BERT, are trained to predict masked or concealed words within a sen-
tence, thereby learning rich contextual representations (Devlin et al., 2019). On the 
other hand, CLMs, as embodied by models such as GPT, predict subsequent words 
in a sequence, inherently adopting an autoregressive approach (Radford et al., 2019). 
Recent educational research underscores the advantages of CLMs over MLMs, par-
ticularly for tasks necessitating sequential comprehension and generation, such as 
essay writing or narrative creation (MacAvaney et al., 2021).

In terms of pre-training data size, a salient observation in the realm of educational 
LLMs is the prevalent reliance on relatively smaller training datasets. For example, 
Ogueji et al. (2021) trained a multilingual language model on small data with just 
about 12,000 sentences, offering a scalable and efficient solution for linguistic diver-
sity in NLP applications. While these datasets can be effective, they might not fully 
harness the expansive potential of LLMs (Zhang & Wallace, 2015). The burgeon-
ing field of edu- cational big data accentuates the significance of leveraging larger, 
diverse datasets for pre-training. Such datasets ensure that models are comprehen-
sively equipped to tackle a spectrum of educational challenges, from basic compre-
hension tasks to complex problem-solving.
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For domain, currently, a substantial portion of pre-training endeavors is 
anchored in open domains or specialized fields, such as science and literature. For 
instance, in the domain of science education, Liu et al. (2023b) developed the Sci-
EdBERT model by pre-training BERT and SciBERT with domain-specific data, 
which significantly enhanced the models’ ability to automatically score scientific 
writings, thereby automating educational tasks with high accuracy. Niklaus and 
Giofré (2022) created the BudgetLongformer by training Longformer models 
with the Replaced Token Detection task on legal texts, achieving state-of-the-
art performance on legislation summarization and demonstrating cost-effective 
methods for developing high-performance models in specialized fields. While 
domains such as science and literature are undeniably pivotal, there is a grow-
ing consensus on the imperative to diversify pre-training initiatives, ensuring they 
cater to a broader educational spectrum and more varied student demographics.

Experiment Setup

Pre‑training Model

In this experiment, we selected Llama, Llama-2, and GPT-J models for pre-
training. Their basic information can be referred to in Table 1. The reasons for 
selecting these models are multifaceted. First, their open-source nature ensures 
transparency, accessibility, and the potential for community-driven improve-
ments. Their open-sourced nature helps democratize AI advancements, allow-
ing researchers and developers from various backgrounds to access, modify, and 
build upon these models  (Liu et  al., 2023c). Secondly, their powerful perfor-
mance is indicative of the cutting-edge advancements in the field of NLP (Tou-
vron et  al., 2023a, b; Wang & Komatsuzaki, 2022). These models have dem-
onstrated state-of-the-art results in various benchmarks, making them prime 
candidates for rigorous tasks. Additionally, factors such as community support, 
adaptability to diverse tasks, and their scalability also played a crucial role in 
their selection.

Table 1  Description of models

Models Description

Llama by Meta
Touvron et al. (2023a)

Language Model Meta-AI (Llama) is introduced as a collection of foun-
dation language models ranging from 7 to 65B parameters. Llama-2

Llama-2 by Meta
Touvron et al. (2023b)

Llama-2 is developed as a family of pre-trained and fine-tuned Touvron, 
LLMs, with versions Llama-2 and Llama-2-Chat, available at scales 
up to 70B parameters. It is an updated version of Llama and variants 
of Llama-2 with 7B, 13B, and 70B parameters have been released

GPT-J by Eleuther AI
Wang and Komatsuzaki 

(2022)

GPT-J 6B is a state-of-the-art transformer language model developed 
Wang using Ben Wang’s Mesh Transformer JAX framework with 6 
billion trainable parameters
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Pre‑training Data

We executed a comprehensive study within Algebra Nation (AN),2 an online math-
ematics digital platform with more than one million active users annually. Our 
research involved gathering all discussion threads and responses from AN’s MySQL 
database spanning the period from September 1, 2015, to September 1, 2021. After 
filtering out threads without any responses, our dataset comprised 3,097,139 dis-
cussion-response combinations, contributed by 71,918 AN participants. We defined 
a ’post’ as the start of a continuous discussion and a ’reply’ as a reaction to such a 
post. Interaction on AN primarily involved two groups: paid or volunteer educators 
and the students they assist. Of the dataset, 97% were students, and 3% were educa-
tors. Specifically, students contributed 95% of the posts and 73% of the replies, while 
educators accounted for 5% of the posts and 27% of the replies. This rich dataset 
played a crucial role in developing and assessing AI-driven tools tailored for mathe-
matics education, as shown in Table 2. From these responses, we can observe subtle 
differences between human and machine replies. For example, samples 1 and 2 not 

Table 2  Pre-training and task 3 data

Post Reply

Sample 1 Can someone please help me get the answer to 
this problem!!!

I’m stuck. Rearrange the formula F = mg + ma 
for a

You need to get the a by itself
Do you know how to do that?
To get a by itself, start with 

subtracting mg! Try watch-
ing one of the videos to see 
if that could help you:)I 
promise their video literally 
ALWAYS help

Sample 2 in my class I’m learning about slope and every-
thing that follow slope

Yesterday I took a test and there was this one 
question that confused me. instead of y = mx + b 
it gave me 2x + 3y + 6. how do I do this to get it 
equal to y = mx + b?

do you mean 2x + 3y = 6?
First subtract 2 × on both sides
Post what you get

Sample 3 when you have 3x-18 = 7x + 63, would it matter 
what you combined first?

Basically you are just getting 
variables on one side and 
constants on the other and 
then combining like terms

Sample 4 45 = 2y + 5x????? hey, what are you solving for?
If you’re solving for y subtract 

5 × from both sides and 
divide by 2. If you’re solving 
for x subtract 2y from both 
sides and divide by 5

2 https:// www. mathn ation. com/. AN was officially renamed to Math Nation in late 2022. However, data 
in this study was collected in 2021, and we intend to use AN as a reference to differentiate our future 
studies involving the latest data.

https://www.mathnation.com/
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only provide solutions but also offer educational facilitation, such as recommending 
videos or providing step-by-step prompts in their responses. Not all responses fol-
low this pattern; for instance, samples 3 and 4 offer a direct answer. Nevertheless, 
their mode of expression seems to be more acceptable to students. Combined with 
the data set, we can further elaborate on our two research directions: (1) Traditional 
mathematical training materials, such as the GSM8K and MATH datasets, typically 
present mathematical concepts through a straightforward format of problems and 
solutions. These datasets effectively enhance models’ understanding of mathemati-
cal concepts and their performance on downstream mathematical tasks, both from a 
human cognitive perspective and empirically demonstrated viewpoints. There will 
be common conceptual and procedural problem-solving patterns among students, 
teen language use, and expert guidance. We hypothesize that such discussions, 
rather than traditional materials, could potentially enhance a model’s ability to grasp 
mathematical concepts. We primarily evaluate this through NLP downstream tasks 
in Task 1 and 2. (2) Typically, when posing a question to models like GPT-3.5, the 
model provides a direct answer using academic language. While this direct response 
approach can be efficient, it might not always be conducive to student learning. This 
type of direct response is closely related to the nature of the training datasets used 
in model development. However, our dataset differs significantly from these well-
crafted datasets such as GSM8K and MATH which are derived from real-world stu-
dents’ mathematical discussions and boast a substantial volume of data. Compared 
to the academic language generated by models, the language used in our dataset may 
be more accessible and appealing to K-12 students. Therefore, we aim to explore 
whether this dataset not only enhances the model’s ability to understand mathemat-
ics but also enables it to produce more humanlike language that engages students 
which is evaluated through NLP text generation tasks in Task 3.

Pre‑training Methods

In our research, we adopted three distinct methodologies for pre-training our models: 
the conventional direct training approach, alongside the more innovative LoRA and 
Q-LoRA techniques. A notable observation was that when juxtaposed with LoRA 
and Q-LoRA, the traditional method not only exhibits a higher GPU memory con-
sumption but also demands more resources and takes longer. Our rationale for inte-
grating these tripartite techniques was twofold: Firstly, we were keen on ascertaining 
whether models pre-trained under each of these paradigms could consistently yield 
satisfactory and robust outcomes. Secondly, by leveraging the efficiencies of LoRA 
and Q-LoRA, we position ourselves to seamlessly integrate even larger and more 
complex models in future experiments, such as the formidable 60B Llama model. 
This strategic approach not only underscores our commitment to optimizing model 
performance but also paves the way for potential breakthroughs in large-scale model 
training and deployment.

LoRA (Localized Re-Adaptation) is a novel adaptation technique tailored for 
Large Language Models (LLMs), addressing the complexities of pre-training them 
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(Hu et  al., 2021). This strategy emphasizes efficiency, avoiding inference latency 
and maintaining input sequence length. In other words, instead of training the entire 
model from scratch, LoRA allows us to adjust only specific parts of the model for 
different tasks, which saves time and resources. Q-LoRA (Quantized LoRA) takes 
the efficiency of LoRA a step further by reducing the amount of memory needed 
during training (Dettmers et al., 2024). This is done by compressing the model data 
into smaller, more manageable sizes without losing important information. For 
instance, with Q-LoRA, we can train very large models (such as those with 65 bil-
lion parameters) on a regular consumer-grade GPU, something that was previously 
impossible. This means more people can work with advanced models without need-
ing expensive hardware.

Model Evaluation

Task 1 Single‑label Classification

Task 1 focuses on a single-label classification problem based on the question 
body and answer. The data for this experiment is sourced from ASSISTments, an 
online learning platform that specializes in K-12 mathematics education. ASSIST-
ments allows teachers to assign coursework and evaluate their students’ perfor-
mance through grading and detailed reports. The dataset consists of teacher-graded 
responses from students answering open-ended questions, with a total of 1,000,000 
pairs of problems and responses. These pairs cover 5,699 unique mathematical prob-
lems spanning 273 different topics within the K-12 curriculum. The grading system 
in ASSISTments is binary, where a grade of 0 indicates an incorrect or improve-
ment-needed response and a grade of 1 signifies a correct or acceptable answer. 
Specific examples of data samples are illustrated in Table  3, which showcases a 
selection of problem-response pairs and their corresponding correctness. The pri-
mary metric for evaluation is accuracy. For the experiment setting, 2,000 data points 
from the dataset were designated as the test set. The remaining data was sampled in 
increasing batch sizes: 100, 200, 500, 1,000, 2,000, and 5,000, with each size sam-
pled five times. Various model architectures were fine-tuned across the training set 
for five epochs, followed by a comprehensive evaluation using the test set.

Table 3  Task 1 data

Question Correctness Correctness

Sample 1 What is 1% of 75?
Anna charges $8.50 per hour to babysit

0.75 1

Sample 2 How long will it take Anna to earn $51.00? 6 1
Sample 3 Naomi’s allowance is $2.00 per week. If she con-

vinces her parents to double her allowance each 
week for two months, what will her weekly allow-
ance be at the end of the second month (week 8)?

16 0

Sample 4 Write the division expression in words: g/h + 12 The quotient of g and 
12 divided by h

0
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Task 2 Multi‑label Classification

Task 2 is centered on classifying dialogues, with each dialogue potentially associ-
ated with multiple categories, highlighting a multi-label classification challenge. 
In Task 2, we utilized the paired annotations dataset from NCTE Classroom Tran-
script Analysis dataset (Demszky & Hill, 2023). The paired annotations dataset 
provides turn-level annotations for student_on_task, teacher_on_task, high_uptake, 
and focusing_question on 2,349 dialogues between teachers and students, using the 
majority rater labels. Each metric is a single label, where 1 indicates a match or pres-
ence, and 0 indicates a non-match or absence. Specific examples of data samples are 
illustrated in Table 4, which showcases a selection of student–teacher pairs and their 
corresponding annotations. The model’s performance is gauged using three pivotal 
metrics: precision, recall, and F-1 scores (Zhang & Zhou, 2013). Precision score, 
ranging from 0 to 1, measures the ratio of correctly predicted positive observations 
to the total predicted positives. A higher precision, approaching 1, indicates fewer 
false positives and greater accuracy in identifying true positives. Recall, also known 
as sensitivity, calculates the ratio of correctly predicted positive observations to all 
actual positives. Its value also ranges between 0 and 1, with a higher recall indicat-
ing that the model captures a larger proportion of actual positives. F-1 Score is the 
harmonic mean of precision and recall, providing a balance between the two. An F-1 
score closer to 1 indicates a better balance between precision and recall, ensuring 
that both false positives and false negatives are minimized. The experimental setup 
mirrors that of Experiment 1, where, due to data volume constraints, training data 
is segmented into batches of sizes 100, 200, 500, 1000, and 1800. 500 data entries 
were reserved in advance to serve as the test dataset. 

Task 3 Text Generation
The Task 3 experiment is centered on a model specifically crafted to generate textual 
content. The experimental data for Task 3 consists of 1,000 paired discussions from 
AN discussion-response pairs that were reserved before pre-training and did not par-
ticipate in the pre-training process. We employed all models to undertake generation 
and evaluation tasks on these dialogues. The assessment criteria for the generated 
text are both comprehensive and multifaceted: BLEURT, BERTSCORE, Readabil-
ity, and Coherence Score. BLEURT evaluates the caliber of the generated text, with 
a particular emphasis on machine translation and other related text generation fields. 
Anchored in the BERT model, BLEURT’s objective is to resonate more with human 
evaluations by harnessing the power of pre-trained contextual embeddings (Sellam 
et al., 2020).

where ci and ri are the candidate and reference sentences, respectively. Readability 
determines the ease with which a reader can decipher the generated text. A myriad 
of time-tested formulas and metrics, such as the Flesch-Kincaid Grade Level and 
the Gunning Fog Index, are deployed to quantify the readability of the text (DuBay, 
2004). In this experiment, we used Flesch Reading Ease (Farr et al., 1951) which 

(1)BLEURT Score =
∑

(BERTembeddings
(

ci, ri
)

⋅ parameters)
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ensures that the content remains approachable to its target audience. The Flesch 
Reading Ease score is calculated as follows:

This formula outputs a number from 0 to 100, where higher scores indicate mate-
rial that is easier to read. BERTSCORE delves deep into the quality of text genera-
tion by calculating the similarity between candidate and reference sentences within 
the BERT embedding realm (Zhang et  al., 2019). Historically, BERTSCORE has 
showcased a strong alignment with human evaluations across a spectrum of bench-
mark datasets. BERTSCORE calculates the quality of text generation by computing 
cosine similarity within the BERT embedding space:

where ci and rj are tokens from the candidate and reference sentences, respectively, 
and N is the number of tokens in the candidate. Coherence Score typically evalu-
ates the logical and structural consistency embedded within the generated text. This 
ensures a natural flow and logical sequence in the content, making it reader-friendly. 
The coherence score in our model is calculated using the BERTScore, which meas-
ures the semantic similarity between the generated text (candidates) and the original 
questions (references). The Coherence Score (F 1coh) using BERTScore is computed 
as the harmonic mean of precision (Pcoh) and recall (Rcoh), which are calculated from 
theembeddings of the candidate and reference sentences:

where Pcoh (precision) is the cosine similarity between each token in the candidate 
sentence and its closest match in the reference sentence, Rcoh (recall) is the cosine 
similarity between each token in the reference sentence and its closest match in the 
candidate sentence. Collectively, these metrics present a well-rounded perspective 
on the quality, readability, and coherence of the text produced by the models in Task 
3.

Experiment Workfolw

Figure 1 demonstrates how we set up and conducted the experiment.

1. We first split the full dataset into training (n ≈ 3,000,000) and evaluating 
(n = 1,000) sets. Llama, Llama-2, and GPT-J were pre-trained with the training 
set and evaluated with the evaluation set in Task 3.

2. We used a powerful machine with 128 gigabytes of CPU RAM and eight 
NVIDIA A100 80G GPUs to train LLM. Python packages, PyTorch (Paszke 

(2)FRE = 206.835 − 1.015

(

total word

total sentences

)

− 84.6

(

total syllables

total words

)

(3)BERTSCORE =
I

N

N
∑

i=1

max
j

cos
(

BERTembed
(

ci
)

,BERTembed
(

rj
))

(4)F1coh
= 2 ×

Pcoh × Rcoh

Pcoh + Rcoh
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et al., 2019) and HuggingFace’s Transformers (Wolf et al., 2020) were used 
to provide the computing infrastructure with GPUs. During the pre-training 
phase, we used an initial learning rate of 1e-4 and trained on the complete 
dataset for 3 epochs using the Adam optimizer. Additionally, we employed a 
batch size of 16, adjustable between 8 and 32 depending on the model size.

3. We evaluated and compared the pre-trained models, base models, and bench-
mark models. For this purpose, we designed three specific tasks for these mod-
els. Tasks one and two are downstream classification tasks. We first fine-tuned 
all models on datasets of varying sizes and then evaluated and compared them 
on a unified evaluation dataset. In the fine-tuning phase, we similarly used an 
initial learning rate of 1e-4 and trained on the complete dataset for 5 epochs 
using the Adam optimizer. The model largely converged and remained stable 
between the 3rd and 5th epochs. Task 3 is a text generation task. We used the 
1,000 paired discussion data set retained from phase 1 to generate, evaluate, 
and compare all models. For detailed task content and data descriptions, please 
refer to the subsequent sections.

Results

The experimental results for Task 1 are shown in Table  5,3 and Fig.  2 illustrates 
the variation in accuracy of different models for Task 1 as the number of fine-tune 
instances changes. Based on the chart and table, we can observe that GPT-3.5 
leads in this task, achieving the best predictive accuracy across different fine-tune 
instances. The results for Task 2 are presented in Table 6. Considering the composite 

Fig. 1  Experiment workflow

3 Additionally, we have examined tasks 1 and 2 using a bag-of-words method with SVM, linear regres-
sion, and RandomForest, trained with the max sample size in each task (n task1 = 5000, n task2 = 1800). 
Their results yielded accuracies around 0.75 in task 1 and 0.45 in task 2. Since these two tasks focus on 
investigating the effectiveness of pretraining LLMs with authentic mathematical learning data, results of 
these traditional NLP models are not included in the results and discussion.
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metrics of precision, recall, and F-1 score, we notice that for Task 2, GPT-3.5 loses 
its leading position. Instead, Pre-trained GPT-J excels on relatively smaller fine-tune 
datasets, while pre-trained Llama-2 performs better on larger datasets. The results 
for Task 3 are stored in Table 7, and Fig. 3 shows the bar distribution of various 
evaluation metrics and models for Task 3. Through the experimental data, we can 
observe that Pre-trained Llama-2 achieves the best performance. Furthermore, by 
synthesizing the results from all three tasks, we can see that the pre-trained mod-
els generally outperform the non-pre-trained models. Additionally, as the number 
of fine-tune instances for the task increases, all models show a certain degree of 
improvement in their performance on that task.

Discussion and Conclusion

Educational research focusing on the pre-training of Large Language Mod-
els (LLMs) has predominantly targeted disciplines like science and literature, as 
highlighted by McNamara et  al. (2017), while mathematics education has often 
been overlooked. This oversight is critical because mathematics possesses unique 

Table 5  Task 1 single-label classification outcomes

Bolded values represent the best results in the respective columns

Fine-tune Instances 100 200 500 1000 2000 5000

GPT-J 0.61 ± 0.02 0.60 ± 0.04 0.66 ± 0.01 0.72 ± 0.01 0.77 ± 0.01 0.84 ± 0.01
Pre-trained-GPT-J 0.61 ± 0.02 0.61 ± 0.03 0.67 ± 0.01 0.72 ± 0.01 0.78 ± 0.02 0.85 ± 0.00
Llama 0.59 ± 0.04 0.60 ± 0.04 0.63 ± 0.01 0.67 ± 0.01 0.69 ± 0.03 0.73 ± 0.05
Pre-trained-Llama 0.61 ± 0.02 0.62 ± 0.03 0.63 ± 0.01 0.68 ± 0.03 0.72 ± 0.03 0.74 ± 0.04
Llama-2 0.61 ± 0.02 0.61 ± 0.02 0.65 ± 0.02 0.71 ± 0.02 0.72 ± 0.05 0.81 ± 0.06
Pre-trained-Llama-2 0.60 ± 0.03 0.60 ± 0.04 0.65 ± 0.02 0.67 ± 0.03 0.75 ± 0.02 0.83 ± 0.02
GPT-3.5 0.71 ± 0.03 0.72 ± 0.02 0.79 ± 0.02 0.85 ± 0.01 0.90 ± 0.00 0.94 ± 0.01

Fig. 2  Task 1 single-label classification accuracy
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characteristics such as sequential reasoning, the use of symbolic notations, and 
abstract concepts, which are not as prevalent in other disciplines. In addition, fur-
ther delving into the pre-training process, Zhang and Wallace (2015) observed that 
most educational datasets used for pre-training are relatively small, which restricts 
the models’ ability to capture and understand nuanced semantic details, particularly 
within mathematical contexts.

To address these challenges and better serve K-12 mathematics education, our 
strategy involves pre-training on vast authentic K-12 mathematical dialogue data-
sets. This approach aims to enhance the models’ comprehension of mathematics by 
exposing them to realistic educational interactions. We have structured our assess-
ment regimen around three distinct tasks, each utilizing different evaluation met-
rics. This approach ensures a thorough evaluation of the models’ capabilities, allow-
ing us to assess their performance in mathematical reasoning, problem-solving and 

Table 7  Task 3 Text generation outcomes

Bolded values represent the best results in the respective columns

Evaluation Metrics BLEURT BERTSCORE Readability Coherence

Llama 0.33 0.421 79.327 0.441
Pre-trained-Llama 0.388 0.511 79.147 0.432
Llama-2 0.343 0.457 76.642 0.470
Pre-trained-Llama-2 0.394 0.609 76.646 0.480
GPT-J 0.320 0.427 77.621 0.381
Pre-trained-GPT-J 0.355 0.475 78.595 0.439
GPT-3.5 0.354 0.366 69.627 0.502

Fig. 3  Task 3 text generation evaluation metrics distribution
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conversation. By doing so, we aim to bridge the gap in LLM applications within 
the field of mathematics education, providing more robust tools for educators and 
learners.

RQ1: To What Extent does Fine‑tuning Data Size Influence LLMs Performance 
in Text Classification in Math Learning Settings?

The findings from Task 1 and Task 2 provide insightful evidence regarding the 
impact of dataset size on the performance of Large Language Models (LLMs) in 
various natural language processing (NLP) downstream tasks. Specifically, we 
observed that as the dataset size increased, the performance of both pre-trained and 
non-pre-trained models such as GPT-J, Llama, Llama-2, and GPT-3.5 consistently 
improved. This improvement across models suggests that larger datasets enable the 
models to learn from a broader range of examples, enhancing their ability to gener-
alize across different tasks and scenarios.

Contrary to the phenomenon of ’Diminishing Returns’ reported in previous stud-
ies like that by Wang et al. (2020), where increases in data size eventually lead to 
smaller incremental improvements in model performance, our results did not align 
with this pattern. Instead, we found no clear point at which adding more data ceased 
to contribute significantly to model improvement. This divergence could be due to 
the specific cap we set on the dataset size—5,000 examples—which might not have 
been large enough to reach the threshold where diminishing returns typically set in. 
It is possible that with LLMs, especially the newer iterations such as GPT-3.5, the 
threshold for diminishing returns is much higher, suggesting that these models have 
a greater capacity for learning from larger volumes of data without experiencing 
saturation.

In addition to these findings, we also discovered that dataset size has a substan-
tial impact on the stability of LLMs in performing NLP downstream tasks. Analysis 
of the data from Task 2 revealed a noteworthy trend: as the dataset size increased, 
the variability in model performance, as indicated by the standard deviation of per-
formance metrics, tended to decrease. This suggests that larger datasets not only 
enhance model performance but also contribute to more consistent and reliable 
outputs. Such stability is crucial for practical applications where predictability and 
dependability are key. This observation aligns with findings from recent research by 
Naveed et al. (2023), which also underscored the importance of robust training data-
sets for achieving performance consistency.

In Task 1, while the trend of improved performance with larger datasets was evi-
dent in models like GPT-3.5 and GPT-J, Llama and Llama-2 did not consistently 
show this behavior. This inconsistency could potentially be attributed to insufficient 
training iterations for these particular models, suggesting that they may require more 
extensive training to fully exploit larger datasets. This insight points to the need for 
tailored training strategies that consider the specific characteristics and requirements 
of different LLMs to optimize their learning from expanded datasets effectively.
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RQ2: To What Extent does Pre‑training Influence LLMs Performance in Text 
Classification in Math Learning Settings?

From the experimental data gathered in Task 1 and Task 2, it was evident that nearly 
all pre-trained versions of the models demonstrated superior performance compared 
to their non-pre-trained counterparts across various training scenarios. This marked 
difference clearly illustrates the crucial role that pre-training plays in enhancing 
the capabilities of Large Language Models (LLMs) for tackling NLP downstream 
tasks, which aligns with findings in the field, such as those presented by Ladhak 
et al. (2023) and Liu et al. (2023a). Both studies affirm the pivotal importance of 
pre-training in preparing LLMs for successful deployment in NLP downstream 
tasks. According to these researchers, pre-training not only enhances model perfor-
mance but also contributes to a more stable and reliable adaptation to task-specific 
demands. This body of research supports the conclusion that pre-training is not 
merely beneficial but rather essential for achieving optimal performance in complex 
NLP downstream tasks, providing a compelling case for its continued and expanded 
use in developing state-of-the-art language models.

In addition, building on the robust findings from our experiments, we can confi-
dently assert that with sufficient data, pre-training utilizing forum discussion data-
sets within a mathematical context could enhance a model’s ability to comprehend 
math- ematics concepts and improve its performance on downstream mathematics 
tasks to some extent. Same with Feng et al. (2021), we believe that the enhanced 
performance of models that underwent pre-training underscores the value of incor-
porating extensive prior knowledge and a robust base of general language under-
standing. This preparatory step seems to effectively prime the models, equipping 
them with a depth of mathematics linguistic insight that is lacking in models without 
such a foundation. When these pre-trained models are subsequently fine-tuned for 
specific tasks, they are not starting from scratch but are instead refining and adapt-
ing an already rich linguistic framework to meet particular requirements. This dual 
approach of broad initial training followed by targeted refinement ensures that the 
models not only grasp the nuances of specific tasks more effectively but also apply 
their pre-acquired language skills in a focused manner.

Finally, When pre-training large language models (LLMs) using grade-level spe-
cific datasets, it is crucial to ensure that the training data is diverse and representative 
of the various educational stages within K-12. Grade-specific datasets may contain 
nuanced language, context, and knowledge that vary significantly across different edu-
cational levels. Ensuring that these datasets capture a wide range of topics, linguis-
tic structures, and contextual variations is essential for the model to generalize well 
across all K-12 grades. For example, in our experiment, we used a dataset of over 3 
million entries that effectively covered all K-12 grade levels. This extensive dataset 
ensures that the model can perform well across various K-12 math tasks, providing a 
strong foundation for its generalization capabilities. Also, the alignment of pre-training 
objectives with downstream tasks is essential. We believe that through pre-training, 
the model can enhance its understanding of mathematical concepts, including for-
mulas and problem-solving methods. Consequently, the trained model is expected to 
achieve better performance on related math tasks. Finally, continuous evaluation and 
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iterative refinement are necessary to ensure that the model performs robustly across all 
grade levels. Regular assessments on diverse and representative datasets from different 
grades can help identify potential biases or gaps in the model’s knowledge, enabling 
targeted improvements. By addressing these considerations, we can develop LLMs 
that not only excel in specific grade-level tasks but also provide consistent and reliable 
performance across the entire K-12 educational spectrum.

RQ3: To What Extent does Pre‑training Influence LLMs Performance in NLP Text 
Generation Tasks

The experimental results from Task 3 provide significant insights into the performance 
enhancement of pre-trained models compared to their non-pre-trained counterparts 
across various evaluation metrics such as BLEURT, BERTScore, readability, and 
coherence. Focusing on benchmark model GPT-3.5, its lower scores in BLEURT and 
BERTScore suggest a notable deviation between the generated texts and the reference 
texts. This trend is consistent across all models evaluated, including GPT-J and Llama 
variants, and aligns with our expectations. The nature of the datasets used—predomi-
nantly student dialogues in mathematics settings—likely contributes to this outcome. 
Unlike straightforward answer generation, these dialogues encompass a richer, more 
human-like interaction, which poses a greater challenge for text generation models. 
These interactions often require the models to grasp subtler nuances of conversa-
tional language, which are crucial for generating responses that are not only correct 
but also contextually rich and engaging. In addition, the comparison of models before 
and after pre-training revealed that while there was no significant change in readability 
and coherence, suggesting that the basic understanding and structure of the text were 
maintained, there was a certain degree of improvement in BLEURT and BERTScore. 
This indicates that the pre-training has indeed enhanced the models’ ability to gener-
ate more human-like responses. This phase of our research, is still preliminary, we 
do not expect the models to fully mimic human conversational abilities at this point. 
However, it provides encouraging evidence that our pre-training approach is valid 
and effective. Looking ahead, we plan to refine our strategies further by incorporat-
ing actual teacher responses into the training process. By doing so, we hope to lever-
age the nuanced, pedagogical insights that experienced educators bring to discussions, 
thereby enriching the models’ ability to generate not just correct, but pedagogically 
sound and engaging mathematics discussions.

Implication

The exploration into mathematics discussions, as opposed to traditional methods, 
has profound implications for the field of NLP and education. By emphasizing con-
textual discussions and guided problem-solving, models can be trained to generate 
responses that are not only accurate but also pedagogically beneficial. This approach 
can revolutionize online learning platforms, where the emphasis is often on rote learn-
ing and direct answers. In traditional online learning platforms, students are often pro-
vided with direct solutions without much context or guidance on the problem-solving 
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process. This can lead to superficial understanding and reliance on memorization. 
However, with models trained on mathematics discussions and guided problem-solv-
ing, learners can be taken through a step-by-step process, mirroring the guidance a 
human tutor might provide. This not only aids in understanding the current problem 
but also equips learners with the skills and strategies to tackle similar problems in 
the future. Meanwhile, the findings of this research emphasize the pivotal role of the 
dataset’s nature in determining the behavior and performance of NLP models. It’s not 
just about the sheer volume of data but the quality, context, and structure that matter. 
The content of the training data, its organization, and the nuances it carries can sig-
nificantly influence the model’s understanding and subsequent outputs. For instance, 
a model trained on data that emphasizes contextual discussions and guided problem- 
solving will likely generate responses that mirror such guidance, as opposed to one 
trained on direct answers. In light of these insights, it becomes evident that the cura-
tion and selection of training data are not merely preliminary steps but are central to 
achieving desired model outcomes and behaviors. It underscores the need for meticu-
lous attention to the content, structure, and quality of datasets used in training NLP 
models.

Limitations and Future Work

While our findings offer a promising outlook, certain limitations warrant attention. 
First and foremost, our exploration of Task 3 might not have been exhaustive enough. 
Generating larger volumes of text could potentially lead to more rigorous generaliza- 
tions. Moreover, our reliance on computational evaluation metrics in Task 3, while 
valuable, might not capture the full spectrum of the model’s capabilities. Introduc-
ing human expert evaluations could offer a more nuanced and persuasive assessment 
of the model’s performance. The other significant area of focus is the quality and 
structure of the pre-training dataset. While the depth and integrity of the dataset are 
undeniably crucial for model performance, our current pre-training dataset, though 
vast, offers room for expansion. There’s potential to bolster the fine-tuning samples, 
either by sourcing from a broader range or by employing grammatical augmentation 
techniques. Enhancing the dataset’s quality is equally vital, and tools like error detec-
tion and data filtering could be invaluable in this regard. Our future research endeav-
ors will prioritize both the volume and quality of data, ensuring optimal pre-training 
and fine-tuning. Moreover, we plan to introduce a rigorous manual inspection and 
enhancement process for the pre-training dataset, aiming to guarantee not just data 
quality but also its relevance to the tasks in focus. Lastly, the presence of inherent 
biases in the dataset, particularly those stemming from personal opinions, raises ethi-
cal concerns (Zhang et al., 2023; Li et al., 2024; Song et al., 2024). It becomes para-
mount for subsequent studies to employ interpretable machine learning techniques to 
assess model fairness. Additionally, the development of text preprocessing method-
ologies to mitigate potential ethical challenges will be crucial.
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Data Availability The data that support the findings of this study are available from the corresponding 
author, WX, upon reasonable request.
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