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Abstract
Purpose of Review The design of novel herpes simplex type I (HSV-1)–derived oncolytic virotherapies is a balancing act
between safety, immunogenicity, and replicative potential. We have undertaken this review to better understand how these
considerations can be incorporated into rational approaches to the design of novel herpesvirus oncolytic virotherapies.
Recent Findings Several recent papers have demonstrated that enhancing the potential of HSV-1 oncolytic viruses to combat anti-
viral mechanisms present in the tumor microenvironment leads to greater efficacy than their parental viruses.
Summary It is not entirely clear how the immunosuppressive tumor microenvironment affects oncolytic viral replication and
spread within tumors. Recent work has shown that the manipulation of specific cellular and molecular mechanisms of immu-
nosuppression operating within the tumor microenvironment can enhance the efficacy of oncolytic virotherapy. We anticipate
that future work will integrate greater knowledge of immunosuppression in tumor microenvironments with design of oncolytic
virotherapies.
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Introduction

The utility of genetically engineered HSV as “antineoplastic
agents” was first demonstrated in 1991 [1] and led to the first
FDA approval of a herpesvirus oncolytic agent in 2015. This
first report used a virus created in the Knipe laboratory that
possessed a small deletion in the middle one third of the HSV-
1 thymidine kinase (tk) gene [2]. The tk mutation rendered the
virus significantly impaired for replication in non-dividing
cells such as neurons and was proposed to attenuate its
neurovirulence potential. Since then, there have been many

approaches to the development of HSV-derived viruses for
oncolytic virotherapy [3–6].

T-VEC™ is the first FDA-approved oncolytic virus [4]. T-
VEC™ is an attenuated herpes simplex virus-1 (HSV-1) de-
rived from the JS-1 viral strain and engineered to have dele-
tions in the genes encoding the infected cell protein (ICP)
γ34.5 and ICP47 protein [7]. T-VEC™ also encodes the hu-
man cytokine granulocyte-macrophage colony-stimulating
factor (GM-CSF). GM-CSF functions as a potent stimulator
of anti-tumor immunity by promoting the recruitment and
maturation of macrophages and dendritic cells (DCs) [7].
The GM-CSF gene is inserted in place of the two deleted
γ34.5genes. The γ34.5 protein, a major viral neurovirulence
factor, is required for efficient viral replication in normal tis-
sues [8]. γ34.5 reverses a cellular block to protein synthesis in
infected cells [9]. HSV-1 infection leads to activation of
double-stranded RNA-dependent protein kinase R (PKR)
and activated PKR then phosphorylates eukaryotic initiation
factor 2 alpha (eIF2α), significantly reducing viral and host
protein synthesis in infected cells [10]. The γ34.5 protein
reverses phosphorylation of eIF2α restoring protein synthesis
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[11]. Additionally, γ34.5 has been reported to have several
other functions including blocking IFN-I responses and au-
tophagy [10, 12–14]. The γ34.5 gene deletion has been in-
cluded in T-VEC™ and the majority of HSV-1 oncolytic
virotherapy (OVT) candidates [15]. The ICP47 gene functions
to inhibit the transporter associated with antigen presentation
(TAP) in HSV-1 infected cells [16] and blocks CD8+ T cell
responses [17]. Inactivation of ICP47 was proposed to induce
a more effective anti-tumor immune response [7].
Furthermore, the deletion of the ICP47 gene upregulates the
expression of the unique short (US) 11 gene that, due to some
functional redundancy, compensates γ34.5-deleted HSV-1
replication in tumor cells [7, 18, 19].

Mechanisms for increasing the safety of HSV-oncolytic
vectors mainly include the selective replication/infection in
cancer cells. Approaches to accomplish this include the fol-
lowing: (1) deletion or mutation of genes that facilitate repli-
cation in normal cells, while allowing replication in cancer
cells [2, 20] which can compensate for the missing function;
(2) targeting virus infection to specific cancer cell receptors
[21–23]; (3) miRNA target sites engineered into HSV genes
[24, 25]; and (4) transcriptional and translational control of
essential viral gene expression [26, 27]. Many of these ap-
proaches also enhance safety by attenuating neurovirulence,
a key aspect of herpes simplex pathogenesis [28]. More re-
cently, novel determinants of neurovirulence including defects
in entry into neurons [29•, 30–33], as well as retrograde and
anterograde transport [34•] in neurons, are being incorporated
into novel HSV-1-derived oncolytic viruses.

Many characteristics of herpesviruses inform their use as
oncolytic virotherapy agents. These include the incredible
amount of knowledge regarding the molecular biology of
these viruses, the large coding capacity facilitating transgene
expression, relative safety, and ease of genetic manipulation.
With the approval of T-VEC in 2015, there has been an ex-
plosion of next-generation approaches to herpesvirus OVT.
These next-generation candidates seek to address perceived
shortcomings in the viral vector, and focus tropism, as well
as use hypothesis-driven approaches to address the unique
aspects of tumor microenvironments by arming viruses with
additional transgenes that can modulate and enhance anti-
tumor immune responses [5, 35, 36•].

The ease with which recombinant HSV can be created has
led to a significant increase in the generation and testing of
novel recombinant HSV for OVT [21, 35, 37, 38]. A critical
aspect of the design of OVT vectors is balancing between viral
attenuation for safety reasons and enhanced replication and
immunogenicity [39]. T-VEC was derived from a clinical
HSV-1 isolate and chosen for its superior ability to replicate
and lyse in a number of cancer cell lines [7]. The parental JS1
strain was then attenuated with the γ34.5 and ICP47 deletions.
As described above, these viral gene products play an exten-
sive role in subverting anti-viral immunity. It is not entirely

clear how these mutations affect the overall efficacy of HSV-1
OVT. Additionally, γ34.5 protein is a structural component of
the virion particle, functions in assembly and egress, and its
deletion reduces overall production of infectious virions [40,
41].

Interestingly, recent approaches have chosen to revert or
more precisely engineer some of the mutations in T-VEC™
to achieve greater therapeutic efficacy [15, 42•]. This brief
review will focus on recent work suggesting that, contrary to
the past direction of HSV-oncolytic vector design, it may best
serve this promising therapy to enable evasion of anti-viral
immunity to boost their efficacy.

Anti-viral Responses and HSV-1 OVT Efficacy

Several recent reports support the argument that perhaps more
attenuation is not better and that more effective oncolytic
virotherapy agents will be those with greater replicative po-
tential. To facilitate their replication and spread as well as
lifelong infection of hosts, herpesviruses are prolific modula-
tors of host immunity [43]. Restoration of TAP function in T-
VEC™-infected cells was hypothesized to enhance its immu-
nogenicity. However, this hypothesis was never formally test-
ed. Contrarily, Pourchet et al. [42•] hypothesized that gener-
ating viruses that were better able to evade CD8+ anti-viral T
cells may lead to greater anti-cancer benefit. To test this hy-
pothesis, this group created an HSV-1-derived oncolytic virus
that replaced γ34.5 genes with the bovine herpesvirus (BHV)
UL49.5 and US11 genes under the control of an immediate
early promoter (BV49.5, for a list of HSV OVT viruses
discussed in this text, please refer to Table 1). UL49.5 and
HSV ICP47 are functional homologs [47]. Both BHV
UL49.5 and HSV ICP47 disrupt MHCI antigen processing
and presentation via TAP disruption. However, while ICP47
competes for peptide binding, UL49.5 function leads to
proteasomal degradation of TAP [47] and subsequent down-
regulation of MHCI [48]. Mutations in the BHV UL49.5 do-
main required for TAP binding and degradation have been
incorporated into a BHV vaccine reported to possess superior
efficacy [49]. While HSV ICP47 does not inhibit murine TAP,
BHV UL49.5 is capable of binding both murine and human
TAP. Thus, using the BHV UL49.5 allowed them to test
whether ICP47 makes a positive or negative contribution to
the efficacy of the OVT in murine models. In a murine model
of bladder cancer (MBT2), BV49.5 was compared to a virus
that possessed a point mutation precluding expression of
UL49.5 (BV49.5-FS) [42•]. BV49.5 reached higher titers in
tumors and demonstrated greater reduction of tumor growth in
injected and non-injected tumors than BV49.5-FS.
Importantly, this greater efficacy was shown to be character-
ized by greater numbers of activated tumor-specific T cells
and the benefit was abolished in mice in which CD8+ T cells
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were depleted. Interestingly, when these viruses were altered
to express murine GM-CSF, the GM-CSF expression did not
result in detectable improvement. Further, in the 4T1 murine
model of breast cancer, BV49.5 was more effective in reduc-
ing the number ofmetastases in the lungs, which was similarly
dependent on UL49.5 expression and CD8+ T cells [42•].

It is not clear how exactly disruption of TAP by this virus
endows it with greater ability to shrink tumors and facilitate
the generation of anti-tumor T cells. Beyond better replication
and spread in tumors which is expected to liberate greater
numbers of tumor associated antigens (TAAs), the authors
speculate that, based on what is known about antigen process-
ing and presentation in tumors that are TAP deficient [50, 51],
perhaps there is generation of unique anti-tumor T cells rec-
ognizing new T cell epitopes. Indeed, novel epitopes generat-
ed via immunotherapies including OVT has been shown to be
correlated with efficacy [52, 53]. The authors note that it is
also important to consider the high seroprevalence of HSV-1
in the human population [54]. It is expected that the majority
of individuals receiving HSV-1-derived oncolytic virotherapy
will be HSV-1 seropositive. While Pourchet et al. [42•] and
others [7, 55] have demonstrated that there is no difference in
OVT efficacy between mice that were pre-exposed to HSV-1,
the maximum benefit of HSV-1-derived OVTmay require the
full complement of immune evasion gene products, such as
ICP47, in seropositive individuals.

While the previous study analyzed the contribution of eva-
sion of adaptive anti-viral immune responses via disruption of
TAP, most studies have focused on innate immunity in the
tumor microenvironment. A recent study used a novel
oncolytic virus to evade NK cell immune responses in the
tumor microenvironment and enhance the efficacy of HSV-1
OVT [36•]. The authors overexpressed E-cadherin using the
HSV-1 pIE4/5 promoter in an HSV-1 backbone with deletions
in γ34.5 and ICP6, the viral ribonucleotide reductase. E-
cadherin is a cellular protein involved in cellular adherence,
as well as acting as a ligand for the inhibitory NK cell receptor
KLRG1+ [56]. Overexpression of E-cadherin on infected cells
was hypothesized to fulfill two functions: (1) inhibit NK cell
activity and (2) facilitate cell-to-cell spread by concentrating
nectin-1, the HSV-1 entry receptor [57], and a cofactor in E-
cadherin cell-cell adherence [58]. Glioblastoma cells (Gli36,
U251, U87, GBM30) infected with the resulting virus, OV-

CDH1, were less susceptible to lysis by KLRG1+ NK cells
compared to cells infected with control virus. However, when
KLRG1− cells were used, no differences in cell killing were
detected [36•]. In vitro, OV-CDH1 exhibited enhanced plaque
sizes in monolayers of human glioblastoma cell lines, GLi36
or U251, compared to control virus plaque sizes. Additionally,
the expression of E-cadherin was shown to lead to improve-
ment of viral entry and maximum viral titers. The in vivo
efficacy of OV-CDH1 was evaluated using both xenograft
(GBM30, U87dEGFR) and immunocompetent (Gl261N4)
mouse models of glioblastoma. OV-CDH1 was superior to
control viruses at reducing tumor rates of growth and provid-
ing significant survival benefit in all models tested. Further, in
the immunocompetent model, viral titers of OV-CDH1 virus
were one log greater than the control virus. Interestingly, while
depletion of NK cells resulted in greater efficacy for both OV-
CDH1 and control viruses, a significant difference between
virus treatments remained suggesting that perhaps the ability
of OV-CDH1 to achieve greater spread was a more important
contributor to the efficacy of OV-CDH1 than NK cell evasion.

Several other recent reports in glioblastoma support the
idea that early suppression of, at least, innate responses can
positively affect the outcome of OVT. A single dose of
TGFβ1 (intravenous) prior to OVT of nude mice bearing ag-
gressive U87dEGFR tumors was shown to increase oncolytic
HSV viral titers in tumors [59]. TGFβ is a pleiotropic, secret-
ed cytokine that has been shown to be a significant contributor
to immunosuppression in the tumor microenvironment [60].
In both xenograft (GB30) and syngeneic (4C8) glioblastoma
mouse models, TGFβ1 treatment was found to decrease NK
cell, macrophage, and microglia infiltration into tumors [59].
This reduction was correlated with reduced tumor growth
rates and a significant increase in median survival time after
OVT.While TGFβ1 is a broad spectrum suppressor involving
multiple cell types, the group was able to replicate these find-
ings with targeted depletion of NK cells using anti-asialo-
GM1 antibody [59]. These findings suggest that the cell pop-
ulation targeted with TGFβ1 is NK cell.

In another recent study, in both a xenograft (U87dEGFR)
and syngeneic (KR158dEGFR) models of glioblastoma, infil-
tration of activated NK cells began at two hours post treatment
with HSV OVT (rQNestin34.5) [44]. Specific NK cell subsets
expressing the activating NK cell receptors NKp30 and

Table 1 HSV-1 oncolytic vectors
discussed in this review Oncolytic HSV-1 Strain Mutations Transgene inserted Reference

T-VEC JS-1 γ34.5Δ, ICP47Δ Human GM-CSF [7]

BV49.5 Patton γ34.5Δ BHV-1 UL49.5, IEUS11 [42•]

OV-CDH1 Q1 γ34.5Δ, ICP6Δ Human CDH1 [36•]

rQNestin34.5 F γ34.5Δ, ICP6Δ Nestin-Hsp68promoter-γ34.5 [44]

RAMBO F γ34.5Δ, ICP6Δ Human Vstat120 [45]

rRp450 KOS ICP6Δ Rat CYP2B1 gene [46]
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NKp46 were identified as responsible for killing of HSV
OVT-infected cells. This group showed that OVT efficacy
and viral titers were significantly enhanced with antibody de-
pletion of NK cells. Interestingly, it was further shown that
NK cells orchestrate macrophage activation in this model,
evidenced by attenuation of macrophage activation in NK-
depleted animals.

A role for macrophage and microglia cells in anti-viral
responses limiting viral replication and OVTefficacy has been
reported in a number of studies. Addition of microglia to
in vitro culture of U87 glioblastoma cells reduced viral growth
and oncolytic potential [61]. This reduction was demonstrated
to be the result of phagocytosis of virus by microglia and
subsequent blocking of viral gene expression in these cells.
The authors found that inhibition of viral replication after
phagocytosis by microglia was dependent on STAT1 and
STAT3 activities. Importantly, the treatment of mice with
STAT inhibitors in the U87 GBM xenograft model led to
increased viral replication and decreased tumor growth rates.
Another recent study has identified a role for macrophage and
microglia cells in limiting OVT efficacy in GBM [62]. In this
study, inhibition of viral replication was shown to be mediated
by TNFα secreted by macrophage or microglial cells in vitro.
Importantly, this group demonstrated that inhibition of TNFα
in an athymic U87dEGFR human GBMmodel increased viral
replication which correlated with an increased survival benefit
[62].

An interesting approach by Thorne et al., using The Cancer
Genome Atlas (TCGA), reported that low levels of CCN1
mRNA were positively associated with better survival out-
come in glioblastomas [63]. CCN1 is a secreted protein found
in the tumor microenvironment and involved in upregulation
of IFN-I responses and inflammation [64]. This group hypoth-
esized that neutralization of CCN1may have some therapeutic
value during HSV-1 oncolytic virotherapy. Anti-CCN1 treat-
ment of subcutaneous tumors led to decreased macrophage
and NK cell tumor infiltration. Mechanistically, the group
demonstrated that binding of CCN1 to integrins on the cell
surface of macrophages upregulated the expression of pro-
inflammatory genes. Anti-CCN1 treatment reversed much of
the macrophage-mediated viral clearance in vitro. In subcuta-
neous glioblastoma tumors treated with anti-CCN1 prior to
OVT, all mice demonstrated partial response or stable disease
before progression as compared to two mice showing partial
response in control groups.

A similar approach was taken with BAI1, a G protein–
coupled receptor involved in adhesion, which was found to
have reduced expression in many solid tumors [45]. BAI1 is
expressed on macrophages and microglia, and is a pattern
recognition receptor, and the extracellular portion modulates
phagocytosis [65, 66]. This group hypothesized that express-
ing the extracellular fragment of BAI1 (Vstat120) using an
oncolytic herpesvirus vector (RAMBO) could interfere with

the anti-viral activity of BAI1 [45]. In an athymic model of
glioblastoma (U87dEGFR) treated with RAMBO, they re-
ported decreased numbers and activation of infiltrating mac-
rophages compared to those treated with control virus
rHSVQ1. Further, the presence of Vstat120 rescued the sup-
pression of viral replication in macrophages in vitro. In intra-
cranial tumors, RAMBO demonstrated significantly more vi-
ral gene expression than rHSVQ. Corroborating the study of
Meisen et al., this group found a similar contribution of TNFα
expression to OVT efficacy. Specifically in the presence of
anti-TNFα antibody, rHSVQ1 replicated to levels similar to
RAMBO in glioma cells co-cultured with macrophage, indi-
cating that TNFα plays a large contribution in limiting the
replication of rHSVQ1 in this system.

In a xenograft sarcoma model (A673) where the immuno-
suppressive TME is characterized by the infiltration and activa-
tion ofM2macrophage, Denton et al., [46] found that removing
these cells via clodrosome or trabectedin resulted in greater
efficacy of OVT (rRp450) with no accompanying increase in
viral replication. M2 macrophages are major mediators of im-
munosuppression in this model [67]. While trabectedin did not
reduce A673 growth as a monotherapy, in combination with
OVT, trabectedin greatly reduced tumor growth and enhanced
survival. Interestingly, the authors report that trabectedin re-
duced MDSCs and NK cells in addition to macrophages.
These results suggest that OVT in combination with pharma-
ceuticals that modulate the cellular constituents of the tumor
microenvironment, specifically macrophage polarization, may
enhance the therapeutic potential of HSV-1 OVT.

Conclusions

Herpesviruses establish latent infection for the life of the host as
part of their life cycle and therefore are expected to promote
quantitatively and qualitatively different immune responses
than acute pathogens such as adenoviruses or poxviruses.
With their armament of immune modulatory gene products,
herpesviruses orchestrate innate and adaptive immune re-
sponses to suit the establishment and maintenance of latent
infection and subsequent reactivation to maintain the latent res-
ervoir. Indeed, as lack of effective anti-viral T cell responses
lead to unchecked virus replication, the development of anti-
viral T cell responses can be seen as part of the life cycle of the
herpes virus. In this sense, using herpesviruses as vectors for
generating immune responses against infectious disease agents
and tumors is a rational application of their unique biology. To
take advantage of the biology of herpesvirus infection for such
applications, a growing number of studies support the retention
or even enhancement of immune evasion function to promote
greater replication and spread in tumors.

It is a bit of a paradox that an immunosuppressed tumor
microenvironment may be hostile to efficient viral replication.
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However, suppression of anti-tumor immunity does not nec-
essarily equal suppression of anti-viral immunity. A complex
interplay of viral and host factors will need to be understood in
order to generate more efficacious HSV-1 OVT. In the many
cases of NK cell and macrophage depletion presented above,
it is fair to ask—are we removing a population of cells that
participates in mediating immunosuppression in the tumor
microenvironment, or are we allowing the virus to better rep-
licate and spread through the tumor? Likely both make con-
tributions. Many of the depletion experiments described
above reported an increase in viral replication in tumors and
we can presume that this mediates, in part, the enhanced effi-
cacy of treatment. However, Denton et al. did not report an
increase in viral replication after depletion of macrophages or
NK cells in their sarcoma model. In this case, perhaps reduc-
tion of immunosuppression in the tumor microenvironment in
addition to enhanced immunogenicity is the more important
factor contributing to the development of anti-tumor
responses.

Interestingly, most of the studies of the kind reported
here involve the subversion of innate immune responses
to restore or enhance efficacy of HSV-1 OVT. In the cases
of glioblastoma xenografts in athymic mice, the enhance-
ment of efficacy can only be due to innate immunity rath-
er than the development of an anti-tumor T cell response.
However, the efficacy of most immunotherapies is CD8+
T cell mediated. Therefore, a focus on mechanisms that
facilitate the development of cell-mediated anti-tumor im-
munity is expected to make an outsized contribution to
the translational potential of this work. In this respect, it
has been reported that NK cells can impair the develop-
ment of anti-viral T cell responses including both effector
and memory T cells [68]. Perhaps in some cancers, sub-
version of NK cell immunity in combination with OVT
will improve the development of anti-tumor T cell
responses.

We anticipate that next-generation HSV-1 oncolytic
virotherapies will focus on maintaining much of the replica-
tive potential of HSV-1 while limiting its ability to spread to
neurons where they can establish latency, potentially recom-
bine with wild-type virus strains, and subsequently reactivate
to cause disease. As mentioned above, our lab has identified
mutations that block entry of HSV-1 into neurons [29•]. This
virus, VC2, has shown promise as an anti-HSV-1 and HSV-2
live-attenuated vaccine [30, 31, 69, 70]. VC2 maintains its
replicative potential and in a mouse model of melanoma dem-
onstrates significant efficacy as well as a potent ability to
disrupt the tumor microenvironment (Rider et al. manuscript
in preparation). Others have included mutations that disrupt
transport in neurons [34•] in combination with miRNA target
sites inserted into essential genes which precludes their ex-
pression in healthy tissues [71]. This virus has been reported
to demonstrate potent anti-tumor activity in vivo [71].

It is becoming increasingly clear that understanding mech-
anisms of immunosuppression in the tumor microenviron-
ment and the ways in which oncolytic herpesviruses affect
and are affected by this environment will be important to
informing the rational design of next-generation oncolytic vi-
ruses. Adding complexity, it is important to recognize that the
diversity of cancers and the mechanisms of immunosuppres-
sion within those cancers makes generalization difficult. As
such, there is likely not a “one size fits all” solution with
oncolytic virotherapy. The support of studies detailing mech-
anisms of immunosuppression for individual malignancy
types will be critical for aiding in the selection and design of
HSV OVT vectors.
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