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Abstract
Purpose of Review Therapeutics that harness the immune system to exert their effect may be more critically tested in immuno-
competent pet animals than mice or other model systems. This is because pet animals share their environment with humans and
spontaneously develop complex, heterogeneous cancers that exhibit similar immunosuppressive microenvironment features.
Furthermore, owners of companion animals are increasingly seeking more effective therapeutic options for their pets that go
beyond traditional chemotherapy. Microbial-based anticancer therapeutics exploit evolutionarily acquired host-pathogen inter-
actions to break host immune tolerance and/or induce tumor cell death. Therefore, this review summarizes recent studies
evaluating microbial-based therapeutics for naturally occurring cancers in veterinary species.
Recent Findings Adenovirus and poxvirus vectors and genetically modified bacteria expressing tumor-associated antigens are
the basis of promising therapeutics targeting an array of canine and feline cancers.
Summary Several well-funded multi-institutional clinical trials are currently underway evaluating microbial-based therapeutics
for naturally occurring veterinary cancers. Recent advancements in our ability to monitor immune responses in these species and
a growing appreciation for the similarities and differences in host-pathogen interactions between humans and animals will assist
in future comparative studies.

Keywords Canine cancer . Feline cancer . Comparative . Oncolytic virus . Oncolytic bacteria . Immunotherapy

Introduction

Despite significant advancements beyond traditional chemo-
therapy regimens for systemic cancer treatment, several road-
blocks still remain on the path toward prolonging long term

survival for the majority of patients. The clinical efficacy of
cytotoxic agents such as carboplatin and doxorubicin and
targeted therapeutics such as toceranib (Palladia), which are
commonly used in veterinary medicine, is often hindered by
their lack of tumor specificity and consequent normal tissue
toxicity. Meanwhile clinical applications of gene therapies are
limited by inefficiency of gene delivery and suboptimal tissue
selectivity. Additionally, peripheral and central immune toler-
ance, insufficient innate inflammatory signals required for im-
mune activation and induction of tolerance in primed tumor-
targeting effector T cells particularly within the tumor micro-
environment are key hurdles for cancer immunotherapeutics
to overcome. Oncolytic, genetically modified and immuno-
genic microbes exploit naturally occurring host microbe inter-
actions that break peripheral tolerance and promote tissue spe-
cific immunity. Therefore, use of microbial-based agents rep-
resents an attractive strategy for increasing the efficacy of
cancer immunotherapeutics.

While murine preclinical models have played a central role
in our understanding of the mechanisms and implications of
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specific host–tumor interactions and therapeutic interventions,
these models generally fail to predict safety and efficacy of
novel therapies, which is reflected in the unimpressive 3.4%
success rate of oncology clinical trials [90]. Furthermore, sem-
inal work by Beura et al. revealed the immune system of
specific pathogen free laboratory mice to be equivalent to that
of a child and therefore not reminiscent of most patients with
cancer [6]. More clinically relevant, immunocompetent
“models” are needed to bridge the gap between mice and
humans and to identify safe therapeutics with a greater likeli-
hood of efficacy in human clinical trials. Such models will
play a significant role in informing human clinical trial design.
To more accurately recapitulate human host–tumor interac-
tions, cancer researchers are endorsing companion animals
with naturally occurring cancers [57•, 68]. Companion ani-
mals are outbred, have intact immune systems, and important-
ly share their environment and, to some extent, their microbi-
ota with humans [81]. Furthermore, the human immune sys-
temmore closely resembles that of dogs thanmice, supporting
the likelihood that dog and human immune responses to
immunomodulating therapeutics are likely to be more similar
than mouse and human immune responses. Furthermore, nat-
urally occurring cancers in companion animals undergo sim-
ilar microenvironmental pressures to human cancers [13, 14,
72, 89]. This selection pressure during spontaneous tumor
development in companion animals and humans results in
genetically and immunologically heterogeneous tumors,
which are difficult to fully replicate experimentally.

In this review, we summarize results of studies evaluating
microbial anticancer therapies in companion animals. We will
focus on pivotal studies, particularly promising recent reports,
the utility of naturally occurring cancers in companion ani-
mals to investigate treatment safety and efficacy and also clin-
ically relevant therapeutic biomarkers. A summary of the stud-
ies discussed can be found in Table 1.

Bacteria as Immunomodulators

Reports dating back to the 1970s have evaluated the therapeu-
tic activity of attenuated bacteria and bacterial components in
companion animals with naturally occurring cancers, with
successes often paralleling those in human cancers. More re-
cently, genetic engineering of bacteria has enabled target an-
tigen and cytokine delivery, allowing for antigen-specific T
cell priming and orchestration of the incited immune response.
Pathogen-associated molecular patterns naturally expressed
by many bacteria stimulate pattern recognition receptors
(PRRs) on innate immune cells to mediate a myriad of NF-
kB mediated downstream effects that serve to initiate a coor-
dinated immune response. Thus PRR stimulation provides an
attractive strategy to break immune tolerance to cancer.

Of note, even nonspecific innate immune stimulation ap-
pears to have an anticancer effect for some canine tumor types
such as osteosarcoma (OSA), as evidenced by the survival
benefit associated with postoperative wound infections [47,
51]. Bacillus Calmette-Guerin (BCG), one of the most suc-
cessful nonspecific immunotherapeutics to date, improved
survival in dogs with osteosarcoma in the setting of micro-
scopic disease [4]. BCG, in combination with chemotherapy,
induced responses in dogs with mast cell tumors [26] and
transmissible venereal tumor (TVT) [61]. To enhance immu-
nologically potent effects of heat-killed mycobacteria in
Freund’s adjuvant, synthetic modifications led to the develop-
ment of liposomal muramyl tripeptide phosphatidylethanol-
amine (L-MTP-PE) [65]. Systemic administration of L-
MTP-PE increased proinflammatory cytokines including tu-
mor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in
cancer-bearing dogs. Furthermore, adherent mononuclear
cells exposed to L-MTP-PE in vitro and ex vivo displayed
increases in antitumor cytostatic activity [43, 45, 80, 86].
Consequently, repetitive dosing of L-MTP-PE has shown an-
titumor efficacy against both canine and human OSA when
administered in the setting of microscopic disease, along with
a possible schedule-dependent synergism detected between L-
MTP-PE and cisplatin in canine OSA [42, 44, 52, 60]. A
stage-dependent benefit of adjuvant L-MTP-PE after surgical
resection was also reported in prospective randomized clinical
trials of canine hemangiosarcoma and oral melanoma [53, 86].

Subsequently, a genetically engineered avirulent strain of
Salmonella enterica serovar typhimurium encoding IL-2
(SalpIL2) was evaluated in a phase I clinical trial in 19 dogs
with OSA [18•]. Salmonella species have natural selectivity
for the tumor microenvironment due to their inherent affinity
for hypoxic environments [18•, 75]. Furthermore, induced
expression of IL-2 stimulates T cell activation and enhances
natural killer cell cytotoxicity [25]. Dogs were treated with the
first dose of SalpIL2 10 days prior to amputation, and received
5 doses of adjuvant doxorubicin concurrently with 5 addition-
al doses of SalpIL2 from 2 weeks post-surgery. SalpIL2 was
well tolerated at all doses, and the study bacteria were not
cultured from the feces of any dog. An elevated total white
blood cell count was consistently observed after the first dose
of SalpIL2 and was not associated with disease-free interval.
SalpIL2-treated dogs exhibited a significantly longer median
disease-free interval compared with historical controls receiv-
ing adjuvant doxorubicin only [18•]. The lack of apparent
toxicity and potential therapeutic utility suggest that this ther-
apy may be clinically beneficial.

Most recently, genetically modified, attenuated Listeria
monocytogenes has shown promise as an antimetastatic treat-
ment for canine OSA. L. monocytogenes is a facultative, an-
aerobic, intracellular bacteria that is a potent stimulator of
innate and adaptive immunity [17]. Following intravenous
administration, bacteria are phagocytosed by mononuclear
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cells and processed in the phagolysosome where they secrete
the pore-forming lysin listeriolysin O (LLO), which enables
escape into the cytosol. Therefore, L. monocytogenes is sub-
ject to both cytosolic and endosomal antigen processing path-
ways, leading to antigen presentation by MHCI and MHCII
pathways, respectively. Accordingly, genetically modified
Listeria expressing tumor-associated antigens (TAA) is fused
to a truncated form of LLO, prime tumor antigen-specific
CD8+ and CD4+ T cells. This unusual biology coupled with
potent innate immune stimulation can break immune tolerance
and stimulate an antigen-specific cell-mediated attack on can-
cer [91]. A phase I clinical trial in dogs with HER2 positive
OSA recently evaluated the toxicity and immunological ef-
fects of HER2-targeting L. monocytogenes (ADXS31–164)
after primary tumor removal and adjuvant carboplatin chemo-
therapy [57•]. Interestingly, the magnitude of treatment-
induced increases in total white blood cells, neutrophils and
monocytes was greater for dogs that survived beyond
18 months post diagnosis suggesting that an early innate im-
mune response to L. monocytogenes might serve as a bio-
marker for immune fitness and therapeutic response. HER2-
specific interferon-γ (IFN-γ) responses occurred in 15 of 18
dogs within 6 months of treatment. Furthermore, ADXS31–
164 significantly increased the median survival time to
956 days compared with 423 days reported for historical con-
trols with HER2 positive OSA treated with amputation and
carboplatin alone [57•]. These results have prompted a large,
multi-institutional clinical trial to confirm the efficacy of
ADXS31–164 in preventing metastatic disease and identify
correlative biomarkers of clinical response in dogs with ap-
pendicular OSA.

Viral Vectors for Gene Therapy
and Immunomodulation

Many viruses have evolved to efficiently and often selectively
enter host cells and co-opt cellular machinery to replicate viral
components and alter gene expression. These characteristics
have been exploited to control gene expression for therapeutic
gain in certain disease states. However, highly publicized life-
threatening or fatal outcomes associated with oncogenic inser-
tions or potent immune stimulation were reported for clinical
trials with early generations of viral vectors [24, 49].
Therefore, considerable effort has been exerted into viral vec-
tor optimization and investigation of vector safety.

Gene therapywith recombinant poxviruses expressing IL-2
has been investigated as a strategy to reduce the high rate of
recurrence of feline injection-site sarcomas. In an initial study,
54 pet cats with injection-site fibrosarcoma treated with sur-
gical excision and postoperative iridium-based brachytherapy
were randomized to receive either no further therapy, feline
IL-2-expressing recombinant canarypox virus (ALVAC-fIL2

(vCP1338)), or human IL-2-expressing recombinant vaccinia
virus (NYVAC-hIL2 (vP1241)) injected subcutaneously into
the tumor bed [39]. Cats treated with either ALVAC-fIL2 or
NYVAC-hIL2 demonstrated a significantly lower recurrence
rate (28% and 39%, respectively) compared with cats that did
not receive adjuvant localized immunotherapy (61% recur-
rence rate) [39]. Furthermore, biodistribution of both viruses
in tumor-baring dogs revealed that viral particles remained
optimally localized along needle tracts [39]. This finding in-
dicates minimal vector dissemination and therefore reduced
risk of patient toxicity and environmental contamination with
these recombinant products. In a follow up study, 71 cats were
enrolled, and, again, all cats underwent surgical excision and
iridium-based brachytherapy [37]. Although a decreased fre-
quency of tumor relapses in ALVAC-fIL2-treated cats com-
pared with control cats did not quite reach significance, a
significant difference in median disease-free interval was de-
tected [37]. ALVAC-fIL2 is now marketed as Oncept IL-2 by
Merial and was approved by the European Medicines Agency
in 2013 and conditionally licensed by the USDA in 2015 [38].

Adenoviral vectors have also been used to deliver tumor-
associated antigens either with or without immune adjuvants
to promote tumor-specific T cell priming and activation. This
approach was used clinically by Peruzzi et al. to induce cellu-
lar immunity against telomerase reverse transcriptase (TERT)
in dogs with lymphoma. TERT is a universal tumor antigen
that is upregulated in most canine tumor cells where it acts to
prevent telomere shortening and thereby facilitates evasion of
cellular senescence [2, 94]. Peruzzi et al. utilized a vaccination
protocol that consisted of two components: two injections of
an adenovirus 6 (Ad6) vector expressing dog TERT (dTERT;
Ad6-dTERT) 2 weeks apart, followed by five DNA plasmid
electroporations at 2-week intervals [69]. The DNA plasmid
encoded catalytically inactive dTERT fused to human tissue
plasminogen activator (TPA) and theβ subunit of Escherichia
coli heat labile enterotoxin (LTB). This two-hit strategy was
found to be particularly immunogenic based on preliminary
studies in mice [59]. Fourteen dogs with high-grade,
multicentric lymphoma received combination COP (cyclo-
phosphamide, vincristine, and prednisone) chemotherapy to
induce clinical remission. Patients in remission then received
the vaccination regimen concurrently with maintenance che-
motherapy [69]. Induction of a dTERT-specific immune re-
sponse was detected by IFN-γ enzyme-linked immunosorbent
spot assay (ELISpot) in 13 out of 14 dogs that received the
vaccination protocol but was not detected in the eight control
dogs treated with chemotherapy alone [69]. No side effects
were reported, and a significant increase in overall survival
was detected in the 14 dogs receiving chemotherapy and
dTERT vaccination compared with the eight control dogs
[69]. Similar immunological and clinical results were obtained
in a larger study consisting of 21 dogs treated with COP che-
motherapy alone and 21 dogs treated with COP plus a similar
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dTERT vaccination schedule [20]. Additionally, a correlation
between lymphoma dTERT expression (mRNA) and survival
time was detected in six of the vaccinated dogs that were
evaluated [20]. Subsequently, this strategy also prolonged sur-
vival in dogs with diffuse large-B cell lymphoma treated con-
currently treated with CHOP (COP with doxorubicin) com-
pared with survival times previously reported for CHOP alone
[36•, 88]. dTERT-specific antibodies were developed in treat-
ed dogs [36•]. These results not only highlight the potential
utility of adenoviral vectors to break tolerance to tumor-
associated antigens but also suggest that tumor antigen expres-
sion may serve as a predictive factor for clinical response to
this type of immunotherapy.

Similar strategies have been used for therapeutic gene
transfer in canine intracranial tumors where therapeutic op-
tions are often limited, and tumor selectivity is imperative
for maintenance of normal brain functions [66]. A group from
the University of Minnesota described the treatment of a dog
with naturally occurring grade II diffuse astrocytoma treated
with surgical debulking, human-IFN-γ-expressing adenovirus
(Ad-IFNγ) injected into the tumor bed immediately post re-
section, and postoperative tumor lysate combined with CpG
vaccinations [71]. Interestingly, this dog developed periodic
transient neurological signs that occurred within 3–4 days of
tumor lysate-CpG vaccinations. Vaccination also induced
tumor-reactive IgG antibodies and augmented preexisting
antigen-specific cytotoxic T cell responses, suggesting this
approach can induce and promote antitumor immune re-
sponses [71]. The results of this case study justified pursuing
a clinical trial testing surgical debulking plus tumor lysate-
CpG vaccinat ions alone or in combinat ion with
intraparenchymal Ad-IFNγ [66]. In this small study of 23
dogs, no additional benefit of Ad-IFNγ injections was detect-
ed [66]. This group has conducted additional clinical trials
evaluating the safety and efficacy of intratumoral delivery of
genetically modified adenovirus conditionally expressing
Flt3L and Herpes simplex virus type I thymidine kinase
(HSV-tk), although details of this study are not published
[66]. These investigations have provided a foundation for on-
going clinical trials evaluating microbial-based therapeutics as
much-needed treatment options for canine intra-cranial tu-
mors, which represent spontaneous and immunocompetent
models of analogous human tumors [1].

Oncolytic Viruses

Many inherent properties of cancer cells, such as overexpres-
sion of Ras pathways components, aberrant miRNA expres-
sion, upregulation of cell surface receptors, and downregula-
tion of type I interferon responses, facilitate viral entry and
replication in tumor cells compared with normal host cells
[27]. These and other differences in transformed cells can be

further exploited by genetically modified oncolytic viruses to
increase selectivity for tumor cells. Oncolytic viruses induce
immunologic cell death of tumor cells, which promotes anti-
gen presentation and tumor-specific T cell priming to induce
and augment antitumor immunity. A thorough review of
oncolytic virus strategies studied in dogs was recently pub-
lished by Sanchez et al. [77]; therefore, we will focus on the
most prevalent strategies and recent publications in dogs and
other veterinary species.

Viruses in the single-stranded RNA virus family
Paramyxoviridae, including Morbilliviruses canine distemper
virus (CDV) and measles virus (MV), Newcastle’s disease
virus (NDV), and Sendai virus, have been popular choices
for oncolytic virotherapy due in part to their simple two-
protein entry system. Here, the proteins responsible for recep-
tor attachment and cell fusion are separated, which has sim-
plified retargeting strategies [7]. Certain paramyxoviruses se-
lectively infect cancer cells based on defects in the cells’ type-
1 IFN response [16], a propensity for apoptosis-resistant cells
[56], and a preference for dividing cells [11]. For example,
CDV demonstrated infectivity and apoptotic activity in malig-
nant canine lymphocyte, histiocytic, andmammary cancer cell
lines [50, 70, 73, 82]. CDV’s oncolytic effects in canine his-
tiocytic sarcoma could involve decreased matrix metallopro-
teinase expression and downregulation of genes involved in
angiogenesis, while selectivity for canine mammary tumor
cells coincided with activation of NFκB and apoptosis path-
ways [50, 70, 73]. Although MV does not infect canine cells
[82], one study reported the ability of a recombinant MV
(rMV-SLAMblind) to infect canine mammary cancer cell
lines by selectively using the polio virus receptor related 4
receptor (PVRL4/Netin-4), which is expressed in approxi-
mately 45% of canine mammary carcinomas [79]. rMV-
SLAMblind elicited antitumor effects in vitro in murine
xenographs of canine mammary cancer and also in ex vivo
experiments [79]. An attenuated strain of NDV (NDV-MLS)
also demonstrated in vitro cytotoxic activity against canine
and human lymphoma cells but did not affect the viability of
normal peripheral blood mononuclear cells (PBMCs) [76]. A
phase I clinical trial evaluating the safety of the avirulent
LaSota strain of NDV (rLAS) genetically engineered to ex-
press urokinase plasminogen activator (rLAS-uPA) was re-
cently completed [41]. Virus expressing uPAwas able to target
cells, including meningioma cells that overexpress the uPA
receptor (uPAR) [74]. In four dogs with presumptive menin-
gioma based on MRI findings, rLAS-uPA was administered
intravenously and found to be safe, although no overt tumor
responses were detected [41]. All dogs developed antiviral
antibodies and increased concentrations of circulating
TNF-α, IFN-γ, and TRAIL, which support previous studies
showing that NDV-infected macrophages induce apoptosis in
target cells mediated by TNF/TRAIL [87]. Finally, in a small
pilot study of six dogs with mast cell tumors treated with an
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attenuated Sendai virus showing a selective cytotoxicity for
malignant cells, three out of four dogs completely cleared
recurrent or residual tumor after surgical debulking.
Furthermore, two out of two dogs that received virus only
without debulking surgery achieved a complete response
[35•]. Together, these data suggest that oncolytic paramyxo-
viruses are safe and deserve further investigation into their
utility in the treatment of canine cancers.

In addition to the utility of adenoviruses in gene delivery and
vaccination, various strategies for increasing tissue selectivity of
oncolytic adenoviruses have been evaluated in pets. Most recent-
ly, a genetically modified canine adenovirus-2 (CAV-2) called
ICOCAV17 was created [46]. These modifications made
ICOCAV17 selective for retinoblastoma (Rb)-deficient cells by
placing viral E1A under the control of host E2F and deleting the
phospho-Rb (pRb) binding site of E1A [23, 46]. Furthermore,
insertion of an RGD integrin-bindingmotif improved viral infec-
tivity, and hyaluronidase improved intratumoral spread and
oncolytic activity [23, 46]. In Laborda et al. intralesional
ICOCAV17 displayed activity against canine OSA and melano-
ma in murine xenografts, and two of six pet dogs with various
tumor types experienced a partial response [46]. Subsequently,
ICOCAV17-infected canine mesenchymal stem cells (MSCs;
dCelyvir) were investigated as a “Trojan horse”-like strategy to
covertly deliver oncolytic ICOCAV17 systemically while
avoiding neutralization by preexisting antibodies [8••].
Adenovirus-positive tumor cells were detected in four of 15 dogs
treated with intravenous dCelyvir, and stromal degeneration and
lymphocyte infiltration were significantly more pronounced in
posttreatment compared with pretreatment biopsies. Twelve of
16 dogs receiving dCelyvir alone for a variety of tumor types
(predominantly sarcomas) displayed a clinical benefit, including
two complete responses, three partial responses, and seven stable
diseases. No significant adverse effects were observed.
Importantly, the presence of preexisting anti-adenovirus antibod-
ies due to routine vaccination did not affect response to treatment
[8••].

Wild type vesicular stomatitis virus (VSV) can cause sig-
nificant disease, predominantly in cattle, horses, and pigs, and
is zoonotic, being associated with flu-like symptoms in
humans. Like the paramyxoviruses, the rhabdovirus VSV
has natural tumor-selective oncolytic activity afforded by its
preferential infection and replication within type-1 IFN-defi-
cient malignant cells [3]. Another attractive property of VSV
is its genetic simplicity and ease with which it can bemodified
to attain desirable characteristics. For example, VSV has been
modified to increase its therapeutic index by enforced expres-
sion of both human IFN-β to protect healthy tissue from in-
fection and the sodium-iodide symporter (NIS) to enable non-
invasive nuclear medicine imaging (VSV-hIFNβ-NIS) [48].
The toxicity and efficacy of VSV expressing either human
IFN-β or canine IFN-β and NIS were evaluated in nine
client-owned dogs and one research dog at the MTD

established in a prior study [48, 62••]. No dogs experienced
clinical signs of toxicity, although one dog each developed
transient alanine aminotransferase (ALT) elevations of two-
fold and tenfold the upper limit of normal, and all dogs devel-
oped mild fevers that resolved within 24 h of treatment. Dogs
experiencing the most severe liver enzyme (ALT) elevations
also demonstrated the highest circulating virus copy load and
were the only two dogs to experience an objective response to
treatment [62••]. Both dogs were diagnosed with T cell lym-
phoma. Another oncolytic vesiculovirus, Maraba virus, with a
marked tropism for cells with defective IFN signaling, was
recently evaluated for its safety in a group of healthy cats
[28]. In this study, cats were primed with an adenovirus ex-
pressing a humanmelanoma antigen and boosted withMaraba
virus engineered to express the same melanoma antigen.
Treatments were typically well tolerated, although side effects
such as transient pyrexia, weight loss, and leukopenia were
observed [28]. While Maraba virus genomes were evident in
some bodily fluids and post mortem tissues, no infectious viral
particle could be isolated from these samples [28].

Reoviridae represent a family of segmented double-
stranded RNA viruses that are not consistently pathogenic in
mammalian species. Their selective lytic activity in cancer
cells is at least in part due to the propensity of transformed
cells to overexpress Ras pathway constituents [21, 40]. In
dogs, only the Dearing strain of reovirus serotype 3
(Reolysin®) has been evaluated. Canine mast cell tumor cell
lines appear to be highly permissive to reovirus replication
and consequential cell death, while canine mammary gland
tumor, histiocytic, and melanoma cell lines display variable
sensitivity, and canine lymphoma and OSA cell lines appear to
be more resistant [29, 30, 32, 34]. Furthermore, synergism
between several chemotherapeutics and reovirus exposure
was detected for a canine mammary tumor cell line in vitro
[33]. Most recently, Reolysin® was administered to 19 client-
owned dogs with a variety of different naturally occurring
cancers [31•]. Delivery of drug was either intralesional (10
dogs) or intravenous (9 dogs) for inaccessible tumors.
Treatment was well tolerated and shedding of infectious virus
was not detected. While tumor response was not the primary
objective, a reduction in tumor size was observed in 5 dogs,
supporting further study of potential clinical efficacy as a sin-
gle agent and in combination protocols [31•].

The oncolytic poxvirus, myxoma virus, is particularly at-
tractive as a therapeutic due to a restricted pathogenicity for
European rabbits only [9]. In vitro, myxoma virus lacking the
antiapoptotic gene serp2 (MXYVΔserp2), induced cytopathic
effects in a variety of different primary and immortalized ca-
nine cell lines derived from hemangiosarcoma, soft tissue sar-
coma, osteosarcoma, and mammary tumors, while normal fi-
broblasts appeared to resist infection [85]. MXYVΔserp2 was
administered intralesionally to ten dogs with soft tissue sarco-
ma, including five dogs with gross disease that received a
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single dose and five dogs undergoing subsequent surgical re-
section that received two doses separated by at least 14 days
[55]. No clinically relevant adverse events were observed.
Dissemination of MXYVΔserp2 was not observed, and neu-
tralizing antibodies were detected in only two of the five dogs
that received 2 doses [55]. Inflammatory infiltrates were infre-
quent in posttreatment tumor biopsies, and no significant re-
ductions in target lesion size were noted. Intratumoral viral
DNA could not be detected 4 days after a single treatment,
suggesting rapid clearance of MXYVΔserp2 and a need to
further characterize MXYVΔserp2 distribution and clearance
in the host [55]. Finally, in one of the few studies evaluating
oncolytic viral therapy for feline cancers, myxoma virus was
found to infect, replicate within, and induce apoptosis of feline
squamous cell carcinoma and mammary carcinoma cell lines
[54]. The restricted pathogenicity of myxoma virus makes it a
particularly attractive candidate for future oncolytic antitumor
strategies. Together, these studies highlight the feasibility and
therapeutic potential of oncolytic viruses in cancer therapy.
Furthermore, they underscore the importance of evaluating
such treatments in clinically relevant, immunocompetent large
animal models to assess safety and efficacy and possibly un-
cover predictive biomarkers that can be readily translated
amongst species.

Veterinary Perspective on Immune System
Responses to Microbial Anticancer Therapy

The predominant mechanism of action for most microbial
anticancer therapeutics is thought to be induction of a robust
antitumor response. This response may be achieved through
multiple mechanisms including potent innate immune system
activation, enhanced antigen-presentation, TAA delivery, and/
or induction of immunogenic cell death. These immunomod-
ulatory strategies are not specific to veterinary studies and
have been reviewed in detail elsewhere [10, 63].

Species-specific variations in immune responses exist how-
ever, and their appreciation is necessary for designing and
interpreting comparative immunotherapy studies. For example,
intravenous bacteria are predominantly cleared from the blood
by resident macrophages in the liver (Kupffer cells) in dogs,
rodents, and humans, whereas in ruminants, pigs, horses, and
cats, this task is predominantly performed by pulmonary intra-
vascular macrophages [83]. These differences have obvious
implications on the pharmacokinetics of microbial therapeutics
and potentially on their toxicity profiles determined in different
species. Furthermore, while many genes within MHC class II
and III regions share obvious similarities between species, class
I genes vary greatly between species [84]. As such, evaluation
of antigen-specific T lymphocyte responses is presently limited
to measuring lymphocyte activation and cytokine production
after exposure to peptide pools; in humans and mice, frequency

and function of antigen-specific T cells may be readily identi-
fied with tetramers.

There is presently much to learn about the antiviral immune
response in both normal and malignant cells in veterinary
species. It will be critical to show that canine and feline anti-
viral cellular responses are comparable with human cells and
to therefore confirm that companion animal patients will ac-
curately reflect safety and efficacy of these approaches in the
human clinic. For example in humans, dysregulation of cyto-
plasmic RNA detection via downregulation of RIG-1,MDA5,
OAS2, and RNase L, amongst others, is known to enhance
RNA virus replication and cytotoxicity in cancer cells [58].
Meanwhile, the gatekeeper protein responsible for linking cy-
toplasmic DNA sensingwith type I IFN expression, stimulator
of IFN genes (STING), is expressed at varying levels in hu-
man colon and ovarian carcinoma and melanoma, and down-
regulation is associated with enhanced susceptibility to
oncolytic DNA viruses such as HSV1 and vaccinia virus
[12, 92, 93]. Defects in IFN signaling pathways, as well as
RNA and DNA sensing, also commonly predispose cancer
cells to differential cell killing compared with normal host
cells [58]. To the authors’ knowledge, RNA and DNA sensing
and the associated type I IFN response has not been examined
in veterinary cancers to date.

Limitations and Special Considerations

Compared with experimental lab animals, client-owned pets
are typically housed with their human owners throughout the
duration of clinical trials requiring a reasonable expectation of
safety and absence of transmission potential of the microbial-
based therapy under evaluation. In addition, consideration of
the species most at risk for pathogenic effects specific to that
microbe is warranted. For example, the most recent VSV clin-
ical trial stated exclusion of dogs in contact with livestock,
while MXYV clinical trials excluded dogs that were exposed
to pet rabbits [55]. Furthermore, while client-owned pets offer
the ability to study novel therapeutics in an immunocompetent
host, there is a diminished opportunity to obtain biologic sam-
ples due to ethical considerations and owner tolerance of re-
peat office visits and sample collections. Added to that is the
limited availability of standardized reagents, particularly for
evaluating protein expression in domestic veterinary species.
These limitations ensure experimental murine studies will re-
main a mainstay for mechanistic studies that require genetic
manipulations or invasive sample collections.

Future Directions

At the time of writing, there are two ongoing fully funded
clinical trials exploring the efficacy of microbial-based
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immunotherapeutics against canine gliomas. The University
of Alabama at Birmingham is leading a multi-institutional
clinical trial exploring the utility of M032, an attenuated her-
pes simplex virus-1 genetically engineered to express human
IL-12 [78], while the University of Minnesota is investigating
the addition of adenoviral-mediated Flt3/TK gene therapy to a
combination immunotherapy protocol consisting of a novel
checkpoint inhibitor and tumor lysate vaccine. Both trials
are funded by the NIH/NCI underscoring the value of com-
parative oncology in informing human immunotherapy clini-
cal trials. The Comparative Oncology Trials Consortium, a
network of academic comparative oncology centers across
North America under the National Cancer Institute’s Center
for Cancer Research, is also recruiting dogs with OSA to
determine efficacy of the HER2/neu-expressing attenuated
L. monocytogenes in the adjuvant setting in an extended pa-
tient cohort that builds on the findings of the related pilot study
[64].

A detailed list of all veterinary clinical trials currently un-
derway or recently completed is available at https://ebusiness.
avma.org/aahsd/study_search.aspx. Several other microbial-
based therapeutics are being evaluated in veterinary species
across North America. Researchers at the University of
Pennsylvania are evaluating a Listeria-based vaccine targeting
the V600E B-Raf mutation commonly found in canine blad-
der cancer in an ongoing clinical trial. At Iowa State
University, the benefit of adding Immunocidin, an emulsion
of mycobacterial cell wall fractions to standard of care treat-
ment with surgical resection and doxorubicin chemotherapy
for canine hemangiosarcoma is being investigated.
Meanwhile, Veterinary Oncology Services are evaluating a
HER2/neu-targeting adenovirus for its efficacy in feline mam-
mary carcinoma, canine transitional cell carcinoma, and OSA.
Furthermore, a vaccine series including the Ad6-dTERT is
undergoing further evaluation for various cancers in dogs
and cats, and ALVAC-fIL2 is continuing to be assessed for
its efficacy in delaying or preventing feline sarcoma regrowth.
Clinical trials have also recently concluded to further evaluate
treatment with VSV-hIFNβ-NIS in dogs with OSA.

Conclusion

In conclusion, similarities in tumor biology and immunology
between naturally occurring veterinary and human cancers
underscore the value of comparative studies of microbial an-
ticancer therapeutics for the benefit of all species. Importantly,
understanding the necessary considerations for undertaking
comparative studies will ensure the best chance for successful
collaborations and research outcomes between veterinary and
human researchers. The potential of such collaborative efforts
is readily apparent by several federally funded clinical trials
currently underway to evaluate microbial-based therapeutics

in veterinary species with naturally occurring cancers.
Ultimately, immunocompetent client-owned pets with cancers
can offer a way to bridge the gap between experimental mu-
rine studies and human clinical trials.
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