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Abstract
Purpose of Review We present a review of emerging technol-
ogies and how these can transform personal air pollution ex-
posure assessment and subsequent health research.
Recent Findings Estimating personal air pollution exposures
is currently split broadly into methods for modeling exposures
for large populations versus measuring exposures for small
populations. Air pollution sensors, smartphones, and air pol-
lution models capitalizing on big/new data sources offer tre-
mendous opportunity for unifying these approaches and im-
proving long-term personal exposure prediction at scales
needed for population-based research. A multi-disciplinary
approach is needed to combine these technologies to not only
estimate personal exposures for epidemiological research but
also determine drivers of these exposures and new prevention
opportunities. While available technologies can revolutionize
air pollution exposure research, ethical, privacy, logistical, and
data science challenges must be met before widespread
implementations occur.
Summary Available technologies and related advances in data
science can improve long-term personal air pollution exposure
estimates at scales needed for population-based research. This

will advance our ability to evaluate the impacts of air pollution
on human health and develop effective prevention strategies.

Keywords Air pollution . Sensors . Smartphones . Big data .

Exposure assessment . Epidemiology

Introduction

The human health burden from air pollution is extremely
large. In 2015, long-term exposure to ambient fine particle
matter air pollution (PM2.5) was associated with 4.2 million
deaths and 103.1 million years of healthy life lost
(representing 7.6% of global mortality) [1]. While our under-
standing of the complex relationships between air pollution
and human health has markedly improved over the last several
decades, knowledge gaps and consequent uncertainties re-
main that limit our ability to mitigate the adverse impacts of
air pollution.

Exposure assessment is one, if not the greatest, challenge to
further understanding and reducing air pollution health im-
pacts. Estimating personal air pollution exposures for large
populations remains an elusive goal, but central to determin-
ing health impacts, evaluating exposure sources and path-
ways, detecting susceptible populations, and identifying inter-
vention opportunities. Recently, the concept of the exposome
“the totality of environmental exposures from conception on-
wards” [2] has catalyzed exposure scientists to develop new
methods to assess a range of personal exposures, using both
internal biomarkers and external exposure measures. While
there is rapidly growing potential for internal biomarkers of
environmental exposures [3], these remain limited for the air
pollutants of greatest concern. Exposure scientists must there-
fore leverage new data sources, methods, and technologies to
better assess external personal air pollution exposures.
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The current state of air pollution exposure science can be
split broadly into methods for modeling exposures for large
populations versus measuring exposures for small popula-
tions. These approaches are not mutually exclusive, as indi-
vidual measurements are used to build and evaluate models,
but they differ in their respective study designs, applications,
strengths, and limitations. Geographic information systems
(GIS), deterministic models (e.g., AIRMOD, RLINE,
SHEDS), and remotely sensed data have been the foundation
of most air pollution modeling efforts to date [4], leveraging
spatiotemporal estimates of ambient air pollution concentra-
tions to derive exposure estimates from residential locations,
typically for large populations. Personal measures of air pol-
lution concentrations have been restricted to small sample
sizes and short durations of time [5•], due primarily to sensor
limitations and the logistical and cost constraints of sampling
large numbers of individuals for long periods of time. Both
paradigms (modeling and measuring) are rapidly evolving
with new technologies and large-scale data analytics to pro-
vide new opportunities for personal exposure assessment
methods.

Here we present a high-level review of available technolo-
gies and related advances in data science, and how together
they can transform air pollution exposure assessment and
health research. Several reviews exist focusing on air pollution
exposure assessment for epidemiological studies [4, 6, 7], cur-
rent methods for assessing the exposome [5•, 8•], and personal
sensor technologies [5•, 9•, 10–12]. We therefore focus our
review broadly on technological advances that fall under air
pollution sensors (for personal measurements), smartphones
(mHealth and GPS applications), and air pollution models
using “big data” (i.e., large volumes of poly-dimensional data
collected from traditional and novel data sources). We provide
an example of an ongoing study (PURE-Air) that is
attempting to combine new technologies and methods to ex-
amine air pollution impacts on cardiopulmonary disease in a
global cohort. Together, these technologies will push the
boundary of what is feasible in personal air pollution exposure
science, epidemiology, and prevention. Ultimately, this review
will provide some guidance for how the field can move for-
ward to capitalize on these exciting opportunities.

Framework

Figure 1 illustrates the conceptual framework of this review
and how available technologies and related data science can
contribute to long-term, large-scale, personal exposure assess-
ments. Technologies covered here belong to one or more of
the following three domains: air pollution sensors, smartphone
applications, and air pollution models. All three domains pro-
vide relevant and unique information to personal air pollution
exposure, and interact to provide novel exposure information

that cannot be derived from each domain alone. For example,
air pollution models alone cannot capture personal exposures
without detailed time-activity pattern information and, even
then, models applied to smartphone-based GPS location data
remain models (and not measures) of air pollution concentra-
tions. Personal measurements are also unlikely to capture
long-term (i.e., years to decades) exposures and therefore re-
quire integration with air pollution models and time-activity
patterns. In addition, “contextual characteristics” (i.e., eco-
nomic, social, environmental, cultural, institutional, and polit-
ical attributes) influence all three domains and the relationship
between air pollution exposures, health effects, and prevention
opportunities. Increasing the accuracy of comprehensive long-
term personal exposure estimates for large populations will
therefore depend on the integration of these domains through
cross-disciplinary collaboration. We provide an example from
the ongoing PURE-Air study that is attempting to integrate
these technologies and methods to better estimate air pollution
exposures and health effects in a global cohort study. We also
summarize challenges and opportunities that are presented by
these technologies.

Air Pollution Sensors

The gold standard of air pollution exposure assessments is
personal measurements (with high-quality validated instru-
ments ideally over long periods of time). To date, collecting
such measures for large populations remains a major

Fig. 1 Conceptual framing of technologies and related advances in data
science and how together these can improve long-term personal air
pollution exposure estimates at scales needed for population-based
research
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challenge due to cost and logistical constraints. As such, most
personal measurement studies have included relatively small
sample sizes and/or short time periods [13–16]. For example,
in a birth cohort in Sao Paulo, Brazil, NO2 and O3 were mea-
sured for 366 pregnant women in each trimester for 7–18 days
using passive personal samplers [17], and in Barcelona, 122
adults were monitored over a 3-week period for black carbon
using the micro-aethalometer AE51 [15]. These studies, while
large for today’s standards, are a long way from our target of
personal measurements for large study populations (i.e., suf-
ficient sample sizes needed to capture the chronic impacts of
air pollution) and time periods relevant to the disease process
being studied (i.e., years to decades for most chronic
diseases).

While the paradigm of air pollution monitoring is chang-
ing—from large regulatory fixed-site stations to smaller mo-
bile sensors [11]—there are still few inexpensive and accessi-
ble sensors that can measure personal air pollution concentra-
tions accurately [10]. Wearable sensors are being developing
rapidly as start-up companies attempt to produce inexpensive
sensors, which cost a fraction of traditional scientific moni-
tors. Available inexpensive sensors have been summarized
elsewhere [9•], and while most are not yet suitable as wearable
monitors, some are in development. Examples of personal air
sensors include the TZOA (http://www.tzoa.com) particle
monitor (the consumer version costing ~ US$140);
AIRBEAM (http: / /a i rcast ing.org) PM2.5 monitor
(~ US$250); Flow (https://plumelabs.com/en/products/flow)
PM2.5, NOx, O3, and VOCs monitor (price tbd); ATMOtube
(https://atmotube.com/) VOCs and CO monitor (price tbd);
and the CleanSpace Tag (https://store.clean.space/) CO
monitor (~ US$55). These types of monitors can be easily
worn and connect to a smartphone via Bluetooth to stream
data online as well as provide warnings based on
concentration levels.

Given the rapid pace of low-cost air pollution sensor de-
velopment, there is an immediate need to ensure the accuracy
of new sensors. A current search for “air pollution monitor” in
crowdsourcing websites such as Indiegogo, Kickstarter, or
GoFundMe reveals hundreds of new air pollution monitors
under development. The issue of un-validated air pollution
sensors has been highlighted in other commentaries [9•, 18,
19] and toolkits proposed for evaluating new monitors [20].
Determining the capabilities of new sensors to accurately cap-
ture pollutant concentrations is essential for ensuring individ-
ual measurements are valid and can be used for scientific
research. The Air Quality Sensor Performance Evaluation
Center (AQ-SPEC) (http://www.aqmd.gov/aq-spec) was
created for this purpose and to inform the public about
monitor performance. They have tested 19 “low”-cost
particle monitors and 10 gaseous sensors against federal
reference standards and report extremely variable
correspondence (with R2 values ranging from 0 to 0.99). The

EPA has also developed an Air Sensor Toolbox for Citizen
Scientists (https://www.epa.gov/air-sensor-toolbox) to
provide information on how to select and use low-cost porta-
ble air sensors.

Once sensors are validated, and the price and ease of use
are reduced, they are likely to be used widely by individuals
outside of research studies, supplementing the existing mea-
surements available in the quantified self-movement and in-
creasing citizen science air pollution monitoring activities [9•,
21]. For example, CitiSense is a participatory air quality mon-
itoring project that is developing a sensor-based citizens’ ob-
servatory in several cities across Europe [22]. The CleanSpace
Community (https://our.clean.space/cleanspace-movement/)
is another initiative that leverages a smartphone app to view
local air quality data, interfaced with the CleanSpace Tag air
monitor, and offers “CleanMiles” for making changes to travel
behaviors. iSPEX is another citizen science measurement
strategy that uses a low-cost optical attachment for
smartphones to measure aerosol optical thickness and contrib-
ute these measurements through an app to create fine-scale
spatial and temporal maps [23]. These studies suggest how
the collection of personal air pollution measures might even-
tually be used for large epidemiological analyses once high-
quality personal air pollution sensors reach the consumer
market.

Smartphones

Smartphones will allow for personal air pollution exposure
assessments at scales needed for population-based research
by facilitating personal air pollution sensors and GPS time-
activity collection as well as providing a platform for new
types of air pollution health studies. There are currently 3.8
billion global smartphone users, projected to nearly double to
6.8 billion users by 2022 [24]. Seventy-seven percent of adult
smartphone users in the USA have downloaded an app, with
29% downloading an app that tracks or manages health [25].
The quantified-self movement [26], where individuals use
sensors to measure and improve their own health and behav-
ior, has also dramatically increased. Smartphones and
mHealth (defined as all mobile health technologies that can
contribute to health research, including smartphones, monitors
(e.g., Fitbit), electronic health records, etc.) are becoming
commonplace in all aspects of health research, offering nu-
merous opportunities for advancing air pollution exposure as-
sessment and epidemiology.

The most direct application of smartphones to enhancing
air pollution exposure estimates (beyond facilitating personal
exposure measures) is the collection of time-activity patterns
using GPS. Most users (71%) continuously carry and sleep
within arm’s reach of their smartphones [27]. The collection
and application of GPS data and time-activity patterns for air
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pollution exposure prediction have been documented exten-
sively elsewhere [28]. The key distinction to stress here is that
the prevalence of smartphones in the general population (and
growing acceptance of health and research apps) allows for
collection of time-activity patterns on potentially hundreds of
thousands of individuals for long periods of time (i.e., months
to years). Glasgow et al. [29] demonstrated this utility by
collecting GPS locations every 5 min for 3 months for 42
participants using the smartphone application “Apolus (Air,
Pollution, Exposure).” While there are challenges to cleaning
and analyzing the volume of data collected by GPS [30],
Gonzalez et al. [31] examined 100,000 anonymized mobile
phone users tracked for 6 months and observed a high degree
of temporal and spatial regularity in time-activity patterns.
This suggests that continuous GPS monitoring may not be
required to assess long-term activity patterns in health studies
and that, for example, seasonal measurements of a week in
duration may capture much of the time-activity variation im-
portant for air pollution exposures.

Smartphones can also serve as the primary platform for
new air pollution health studies, including recruiting partici-
pants, obtaining electronic consent, collecting survey and bio-
metric data, assessing outcomes, and transmitting data for
linkage to other databases, such as medical health records.
As an example, one of the key components of the NIH preci-
sion medicine cohort initiative [32], which aims to recruit one
million participants, is a patient technology systems center,
which “…taps into converging trends of increased connectiv-
ity, through social media and mobile devices, and Americans’
growing desire to be active partners in medical research”
([32], p. 793). New open-source platforms for creating
smartphone apps and mHealth applications are being devel-
oped to ease access to these technologies. For example, the
open-source Apple ResearchKit (https://www.apple.com/
researchkit/) allows individual researchers to create a
research app, use code from previous apps, and leverage the
awareness and reputation of the Apple ResearchKit
community for recruiting participants.

In the air pollution field, the Asthma Mobile Health Study
(AMHS) (http://apps.icahn.mssm.edu/asthma/) was created
using this platform to examine asthma triggers (including
local air pollution concentrations) and treatment. The AMHS
appwas downloaded nearly 50,000 times in the 6months after
its launch. The study was able to demonstrate the utility of
conducting research entirely through a smartphone app,
successfully linking asthma symptoms to changes in heat,
pollen, and air pollution, including the 2015 wildfires in
Washington State [33]. However, this study also
documented several challenges that can inform future air
pollution studies using smartphones for epidemiology. These
included selection bias, retention, reporting bias, and privacy
concerns. Of the 50,000 downloads of the AMHS app, 8524
individuals completed the consent process and only 2317

individuals were classified as robust users [33]. Not
surprisingly, these individuals tended to be younger, whiter,
wealthier, and more educated when compared to the CDC
asthma registry [33]. Based on their experience with the
AMHS app, Chan et al. [33] concluded that studies
conducted entirely through smartphone applications are best
suited for studies requiring rapid enrollment, pose minimal
risks, examine hypothesis with short time frames, require
frequent data collecting, use passive data collection (e.g.,
GPS), do not seek representative samples, and use an
analysis plan that accounts for attrition and missing data.
Several of these fit well within an air pollution context,
while several others do not.

Air Pollution Models

It is unlikely that personal air measurements and individual
GPS data will be collected continuously over the time periods
needed to capture chronic (i.e., decade-long) air pollution ex-
posures. As a result, environmental models of air pollution
concentrations are needed to predict long-term exposures.
The current modeling approaches for air pollution exposure
assessment have been covered thoroughly in other reviews [4,
6, 7]. Briefly, one of the greatest strengths of the air pollution
modeling domain is the ability to leverage multiple sources of
data, and with the advent of “big data,” there are numerous
opportunities to advance air pollution modeling.

One particular data source that is changing rapidly with
new technological developments is remote-sensed air pollu-
tion data. The availability and resolution of remotely sensed
data have grown exponentially in the last decade and have
expanded the geographic coverage of many spatial models
by providing estimates of air pollution where there have pre-
viously been no or very sparse ground-level data. Satellite-
based estimates of PM2.5 that have been calibrated to
ground-based monitored data are now available for every lo-
cation on earth at a ~ 1 × 1 km resolution [34]. These satellite-
derived measures of air pollution can also be combined with
detailed land use characteristics, such as emissions sources
(e.g., roads, population density, land use), to model fine-
scale spatiotemporal air pollution patterns. For example, we
developed a global model of NO2 concentrations at a
100 m × 100 m resolution (using satellite estimates and land
use variables) that predicts 54% of the NO2 variation from
5220 air monitors in 58 countries [35]. Satellite-based air pol-
lution exposure estimates are likely to continue to improve for
the foreseeable future, as new technologies are increasing the
spatial and temporal resolution of new satellites, including the
European Space Agency Sentinel-5 and Sentinel-5P, sched-
uled to launch in September 2017.

With the availability of big data sources, such as satellite air
pollution estimates, new data integration and modeling
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methods are needed. Machine learning is one such method
that is being used, for example, to combine remote-sensed
data, meteorology, and ground-based observations to predict
daily PM2.5 from 1997 to 2015 globally [36]. Such nonlinear
and nonparametric modeling approaches present numerous
advantages over traditional linear regression-based methods
for resolving the spatial and temporal variability of air pollu-
tion concentrations. Deep learning approaches are also being
developed for air pollution predictions [37], and applications
of deep learning to high-resolution satellite imagery, com-
bined with other ground-based images, will likely enhance
our ability to predict air pollution [38] and ease the ongoing
refinements of these predictions. Similar approaches have al-
ready been developed to predict poverty from satellite imag-
ery [39]. Ultimately, new data mining techniques are provid-
ing newer, larger, more varied, and more highly resolved
datasets of ambient air pollution, as well as the characteristics
that predict these exposures, to inform the advanced modeling
of spatiotemporal air pollution concentrations.

The amount of ground-level air monitoring data
available to calibrate ambient air pollution exposure
models is also expanding rapidly. For example, hourly
air quality index data can now be viewed from regula-
tory monitoring data from 9000 stations in 800 major
cities from 70 countries (http://aqicn.org/map/world/).
Nontraditional measurement sources are also contributing
new measurement data that can improve the accuracy of air
pollution models. Citizen science initiatives like the
CitiSense, CleanSpace Community, and the iSPEX
monitoring initiative summarized above are examples of
community-sourced air quality data. Air monitors have al-
so been attached to multiple mobile agents in the environ-
ment, including Google Street View cars [40]. These mea-
surements provide information on local sources that are
often missed by regulatory monitoring stations, which tend
to capture regional population exposures. In the future,
these types of community-sourced and mobile measure-
ments can further reduce error in spatiotemporal models
by targeting measurement collection to high-priority
space-time locations, increasing representation during
model building and contributing to more robust model
evaluations.

Contextual Characteristics

Contextual characteristics (i.e., economic, social, environmental,
cultural, institutional, and political attributes of a place) are es-
sential to consider when evaluating the relationship between air
pollution and health, as well as for translating research into policy
and prevention. Technological changes have transformed our
ability to look upstream at the contextual conditions that influ-
ence individual behaviors, air pollution concentrations and

exposures, health impacts (and health disparities), and prevention
opportunities.

Smart cities/communities can be viewed as the contextual
equivalent of the quantified self-concept [41•], where cities
use sensors and big data to quantify community characteris-
tics, many of which are important to air pollution [42, 43].
New data streams include those from connected infrastructure,
autonomous vehicles, street view imagery, citizen science
monitoring networks, and cellular data, to name a few. For
example, geo-referenced Google Street View imagery ana-
lyzed with machine learning or deep learning algorithms can
be used to derive a wealth of contextual characteristics impor-
tant to air pollution exposures, such as vehicle congestion,
vehicle fleet mix, street canyons, street vegetation buffers,
pedestrian traffic, and other important modifiers of air pollu-
tion exposures. Cellular network data can also be used to
quantify population time-activity patterns and population mo-
bility to improve air pollution exposure estimates [44, 45]. In
addition, the amount of data now available for cities provides
opportunities to evaluate multiple environmental and social
exposures together (rather than in isolation). Quantifying ex-
posures that are spatially correlated with air pollution (e.g.,
noise, green space, poverty, exercise) is an important step
towards understanding cumulative exposures and new pre-
vention opportunities.

The Internet and social media are additional data streams that
can further capture the complex social and political contextual
characteristics of communities that may influence air pollution
exposure and control. For example, from January toMarch 2017,
we have collected more than 15 million tweets (text messages
posted on the social media platform Twitter) related to air pollu-
tion in more than 30 languages. Tweets can be linked to air
quality concentrations from regulatory monitors to examine per-
sonal views and sentiment about air quality, self-described
change in physical and mental state, and changes in behaviors
attributed to air quality conditions. More than one third of these
tweets also contained images that can be evaluated for pollution-
related characteristics as described for Google Street View imag-
ery above. Although not widely utilized in air pollution research,
the Internet and social media have been successfully used to
capture context in other health studies [58, 59]. Such measures
of societal context are rarely included in air pollution research,
despite air pollution risk awareness, regulations, air pollution
forecasts/notifications, and support for clean air and pollution
mitigation directly [46] or indirectly [47, 48] influencing the
physical and psychological impacts of air pollution on human
health.

Case Example: the PURE-Air Study

An example of integrating the three domains highlighted
above (smartphones, sensors, and air models) to estimate
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personal air pollution exposures is occurring in the ongoing
Prospective Urban and Rural Epidemiology (PURE) study
(http://health.oregonstate.edu/labs/spatial-health/research/
pure-air). The PURE cohort includes ~ 225,000 adults aged
35–70 years at recruitment living in 850 communities in 25
countries. The PURE-Air study is funded to examine the as-
sociations between air pollution and cardiopulmonary disease.

To measure household and personal exposures, we are
using a new filter-based PM2.5 monitor, the ultrasonic per-
sonal air sampler (UPAS) [49]. Forty-eight-hour measure-
ments are being collected for 4000 households and personal
PM2.5 for 1200 individuals living in 10 countries with over
10% of PURE households using solid fuel use for cooking.
The UPAS is small, easy to use, and relatively inexpensive
compared to existing monitors, allowing for large numbers
of monitors to be shipped to existing field teams for data
collection. A smartphone interface allows field staff to pro-
gram monitors, download run-log and GPS data, and auto-
matically send these data to our secure servers where they
are checked for errors. Individuals also wear a passive sil-
icone wristband sampler that measures exposure to 1200
organic chemicals [50]. Even this initiative, however, is
designed primarily for building exposure models for the
entire cohort of ~ 225,000 individuals to examine cardio-
vascular events and mortality, although direct analysis of
measured PM2.5 will be conducted for blood pressure and
lung function.

Figure 2 illustrates the PURE study communities and
the global distribution of PM2.5 (estimated from satellite
data fused with ground-based monitoring data [34]) and
NO2 (estimated from a global LUR model [35]). The
PM2.5 and NO2 concentrations in Beijing and 48-h
GPS data (collected from the UPAS air pollution mon-
itor) for one participant are shown. Three other individ-
uals’ time-activity spaces are also illustrated. All of
these time-activity patterns are from the same PURE
study community, highlighting the variability in time-
activity patterns (and resulting exposure differences)
for individuals l iving in the same community.
Household and personal PM2.5 measurements and GPS
data will be integrated with models of ambient PM2.5

and NO2 concentrations and with baseline and follow-up
questionnaire data on household characteristics and fuel
cooking types to predict long-term air pollution expo-
sures. The geographic scale, sample size, and types of
measurements being collected in the PURE-Air study
are only possible through the rapid technological chang-
es occurring in our field and would not have been pos-
sible even 5 years ago. Nevertheless, this study is only
a step in the right direction towards what we have pro-
posed here—that technology can facilitate long-term
personal air pollution exposure estimates at scales need-
ed for population-based research.

Challenges and Opportunities

The greatest barrier to estimating long-term personal air pol-
lution exposures remains data science approaches for dealing
with large, dynamic, multi-level data. Technological advances
are driving the big data revolution as well as the accompany-
ing advancements in data sciences that are needed to process
these data. Estimating personal air pollution exposures
through the integration of smartphone and air monitoring data
streams, modeling of air pollution concentrations, and charac-
terization of the contextual characteristics relevant to air pol-
lution and health research will require complex and powerful
data processing approaches. Recent advances in general-
purpose computing on graphics processing units (GPGPU)
hardware and software have dramatically reduced the time
required for terabyte-level data processing. In addition, online
platforms are reducing the barriers to accessing and process-
ing huge amounts of data, such as the Google Earth Engine,
which provides a platform for petabyte-scale analysis of glob-
al satellite data (https://earthengine.google.com/).

The fields of health care and personalized medicine were
early adopters of large-scale data analytics [51]. It is very
likely that personal exposure assessment and environmental
epidemiology will similarly benefit from large-scale data sci-
ence developments. We can reduce barriers to new data sci-
ence approaches by sharing data processing scripts as open-
source code in creative common communities such as GitHub
(see the authors’ GitHub page at https://github.com/
larkinandy/LUR-NO2-Model, for example, code from the
global NO2 model development), which will help identify,
evaluate, reproduce, and validate successful methods. The
rapid adoption of open-source code sharing by the data sci-
ence community will increase transparency and reproducibil-
ity [52], reducing barriers to more complex (and integrated)
exposure assessment approaches.

The technological advances we highlighted here also have
important implications for precision medicine/health. The
convergence of epidemiology and personal medicine/health
is occurring rapidly [53], but how air pollution exposure as-
sessment (and environmental exposures more generally) will
fit into this equation has not been adequately explored. Most
precision medicine/health initiatives do not include environ-
mental components beyond common biomarkers (e.g., lead),
but delivery of these initiatives through apps makes GPS data
collection possible (to inform modeled air pollution exposure
estimates), as well as the inclusion of low-cost air pollution
sensors. Clearly, however, robust methods (e.g., air pollution
sensors, exposure algorithms) will be needed to ensure reli-
able information is used to characterize and communicate the
exposures to individuals.

Within both mHealth and precision medicine/health
paradigms, individuals as passive participants in envi-
ronment health studies (having information drawn from
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them) will change to individuals being active suppliers
of information, choosing how and with whom to share
their data. This will require providing valuable (and
actionable) knowledge back to participants to ensure
they stay engaged and interested in a research study.
This will demand more personal environmental exposure
assessments that can inform risk communication and
behavioral changes to reduce exposures. Providing par-
ticipants with their air pollution exposures, comparisons
to their cohort or local community, and advice to reduce
exposures will therefore be an important component to
any mHealth or precision environmental health-based
initiative. This will present methodological challenges
for etiology research, given that the research study itself
may promote behavioral changes and air pollution re-
ductions. This, however, offers exciting opportunities
to evaluate prevention opportunities, which to date have
been limited primarily to air quality advisories.

Ethical and privacy issues remain major concerns that de-
mand thorough examination. Several reviews and

commentaries address these issues in detail [54–57]. In terms
of the domains reviewed here, there are specific ethical and
privacy concerns that should be highlighted. Concerns sur-
rounding GPS data collection, storage, and analyses present
obvious privacy issues that need to be addressed. Equity is-
sues surrounding smartphone, personal sensor, and personal-
ized health availability will also present ethical issues, consid-
ering that low socio-economic groups experience the largest
burden from air pollution, but have the least resources to cap-
italize on these new technologies. This will also present a
major issue in the generalizability of results derived from
these types of technologies and under certain circumstances
could even jeopardize the findings of the study due to selec-
tion bias. As air pollution exposure science moves further
towards personal measures, differentiating between public
versus commercial usage of the data will become imperative,
as such differences have important ethical implications.
Finally, there are concerns that personalized exposure science
may distract from population health approaches to reducing
air pollution health impacts.

Fig. 2 Global maps of PM2.5

(estimated from satellite data
fused with ground-based
monitoring data [34]) and NO2

(estimated from a global LUR
model [32]) concentrations and
the location of PURE study
community. Beijing is highlighted
with an example of a 48-h GPS
time-activity pattern from one
PURE participant. Time-activity
patterns for three additional
PURE participants are shown (all
from the same PURE
community), highlighting
potential differences in exposures
for individuals based on mobility.
Personal PM2.5 exposures were
measured with the UPAS air
pollution monitor, and individuals
wore a passive silicone wristband
sampler to measure exposure to
organic chemicals. A total of
4000 households and 1200
individuals living in 10 countries
will participate in air monitoring
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Conclusions

Estimating personal air pollution exposures is currently split
broadly into methods for modeling exposures for large popu-
lations versus measuring exposures for small populations. Air
pollution sensors, smartphones, and modeling air pollution
concentrations using big/new data offer tremendous opportu-
nities for unifying these approaches and improving long-term
personal air pollution exposure prediction at scales needed for
population-based research. A multi-disciplinary approach is
needed to not only estimate personal exposures for epidemio-
logical research but also determine drivers of these exposures
and new prevention opportunities. While available technolo-
gies can revolutionize air pollution research, ethical, privacy,
logistical, and data science challenges need to be met before
widespread applications occur.
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