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Abstract
Purpose of Review The purpose of this review is to describe
the most recent statistical approaches to estimate the effect of
multi-pollutant mixtures or multiple correlated exposures on
human health.
Recent Findings The health effects of environmental
chemicals or air pollutants have been widely described.
Often, there exists a complex mixture of different substances,
potentially highly correlated with each other and with other
(environmental) stressors. Single-exposure approaches do not
allow disentangling effects of individual factors and fail to
detect potential interactions between exposures. In the last
years, sophisticated methods have been developed to investi-
gate the joint or independent health effects of multi-pollutant
mixtures or multiple environmental exposures.
Summary A classification of the most recent methods is pro-
posed. A non-technical description of each method is

provided, together with epidemiological applications and op-
erational details for implementation with standard software.
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Introduction

Associations between environmental chemicals or air pollu-
tion and adverse health outcomes have been reported world-
wide [1–4]. However, the population is exposed simulta-
neously to a large number of air pollutants or chemical con-
taminants. The exposome paradigm is an attempt to focus the
attention to the multiple environmental factors affecting
health. The exposome was defined as the totality of environ-
mental (non-genetic) exposures from conception onwards [5].
Thus, in its broad sense, it includes air pollutants and other
contaminants, but also behavioral and socioeconomic charac-
teristics. Environmental epidemiology studies are collecting
data on an increasing number of exposures to try to capture
parts of the exposome, which poses the challenge of analyzing
the effects of mixtures of exposures. For example, in single-
pollutant models, it is not clear if an observed association
reflects the effect of the analyzed pollutant or if it acts as a
surrogate for another pollutant possibly originating from the
same source. Furthermore, single-pollutant models cannot
capture the mixture and interplay of different exposures.
Analyzing health effects of several pollutants by including
them together in a regression model is in many cases not
meaningful because of the usually high correlation between
these air pollutants. This “naive” multi-pollutant model can
result in unstable parameter estimates with large standard er-
rors. Therefore, more sophisticated methods are needed to
investigate the health effects of mixtures of exposures or
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simultaneous effects of multiple exposures. The National
Institute of Environmental Health Sciences (NIEHS), the
Health Effects Institute (HEI), the U.S. Environmental
Protection Agency (EPA), and other experts in the field iden-
tified statistical approaches to address multi-pollutant mix-
tures and multiple exposures as an important area of ongoing
research, also for regulatory purposes [6•, 7–11].

Several statistical approaches have been proposed in the
last few years to correctly estimate the independent and joint
effects of multiple correlated exposures on human health [12].
Most of the methods were borrowed from other disciplines
(such as epigenetics) and transferred to the multi-pollutant
case; however, they can be easily adapted to the general set-
ting of multiple correlated exposures. The purpose of this
review is to present the latest advancements in this field and
to describe the main statistical approaches to the broader au-
dience of environmental epidemiologists in a non-technical
way, focusing on the pros and cons of each method and pro-
viding software details for their implementation.

A Classification of Methods for the Analysis
of Multiple Correlated Exposures

Broadly speaking, nearly all of the proposed methods can be
classified into three groups: dimension reduction, variable se-
lection, and grouping of observations.

The aim of the first group of methods is to transform a large
number of correlated variables (pollutants, exposures, etc.)
into a smaller set of independent factors to be related with
the health outcome. Dimensionality reduction can be done in
an unsupervised way, i.e., only taking into account the asso-
ciations between exposures, or in a supervised way, which
additionally takes into account the correlation between the
exposures and the outcome. The disadvantage of unsuper-
vised methods is that they may give a strong weight to pollut-
ants that have no influence on the outcome or vice versa. The
disadvantage of supervised methods is that they lead to
outcome-specific independent variables, which makes compa-
rability of results across outcomes difficult.

Methods belonging to the second group called variable
selection methods aim to identify the “best” subset of expo-
sure variables, either based on their mutual correlation
(unsupervised) or on their relation with the study outcome
(supervised). Compared with the methods in the first group,
those in the second one do not produce transformations of
variables but retain subsets of the original ones. The main
advantage is that the estimated coefficients are directly inter-
pretable as they are on the same scale as the original
exposures.

The methods in the third group aim to group observations
(rather than variables) with similar exposure profiles and use
this grouping in the analysis on the health outcome. Grouping

is generally achieved by simultaneously maximizing the intra-
class and minimizing the inter-class similarity. Again, unsu-
pervised and supervised methods to derive those groups have
been proposed.

Figure 1 schematically displays the multi-pollutant/multi-
ple exposure setting and the three groups of statistical ap-
proaches. Details of the methods, including references of the
most relevant applications and R packages for their implemen-
tation, are displayed in Table 1.

Methods for Dimension Reduction

These methods aim at reducing the number of exposures to be
used in a regression model for the health outcome by creating
combinations of the original exposures. Unsupervised
methods include principal component analysis (PCA) and
positive matrix factorization (PMF). Supervised methods in-
clude supervised principal component analysis (SPCA), par-
tial least squares (PLS) regression, sparse partial least squares
(SPLS) regression, and weighted quantile sum regression
(WQSR).

Principal Component Analysis

A common method for dimension reduction is principal com-
ponent analysis (PCA). PCA searches for independent (i.e.,
not correlated with each other) linear combinations of the
exposure variables which capture most of the variance of the
initial exposure data [13]. Briefly, a decomposition of the co-
variance matrix is performed. Based on the resulting eigen-
vectors and eigenvalues, independent linear combinations of
the exposure variables, so-called principal components (PCs),
are identified. A component represents a mixture of pollutants,
each contributing with different weights. By estimating the
effect of such component on a health outcome, one obtains
the effect of a pollution mixture on health. There are several
approaches to choose the optimal number of PCs. A graphical
possibility to choose the number of PCs is given by the scree
plot which reports the fraction of the total variance in the data
explained by each PC. In general, the first one or two PCs
capture most of the variability in the data. The main advan-
tages of PCA are the ease of application and the efficiency
(most of the variability in the original exposures retained by
few factors). The major limitations include the difficulty to
interpret the results, as the components are not on the same
units as the original exposure variables, and the potential lack
of relationship of the derived components with the study out-
come, as they were derived in an unsupervised way.

PCA analysis has been applied, among others, by Yang
et al. to investigate the association between ambient air pollu-
tion and daily mortality in Beijing after the 2008 Olympics.
The authors applied conventional single-pollutant models
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first, and then they replaced individual pollutants with latent
variables identified through PCA, which resulted in signifi-
cant effects on mortality and hospital admissions, though
smaller than those found with single-pollutant analysis [14].

Positive Matrix Factorization

Positive matrix factorization (PMF) is a variant of PCA ap-
plied in the context of multi-pollutant profiles to derive air
pollution sources from PM individual chemical components
[15]. Specifically, PMF decomposes a matrix of PM-speciated
data into two matrices—source contributions and source pro-
files: source contributions represent the amounts of PM mass
contributed by each source to the measurement, while source
profiles reflect the types of emissions that originate from a
given source. Source contributions are constrained to be
non-negative and the method can incorporate measures of
uncertainty associated with the data to weight individual
points. Algorithms such as multilinear engine (ME-2) allow
incorporating any a priori knowledge, such as chemical ratios
or profiles of involved sources, into the model [16]. Thus, this
technique is particularly suitable for source apportionment
studies. Several epidemiological studies have been conducted
in the last years using source apportionment estimates based
on PMF [17•, 18–23].

Supervised Principal Component Analysis

In unsupervised analyses like PCA, some pollutants might
receive a (strong) weight even if they are not associated with
the outcome of interest. Supervised principal component anal-
ysis (SPCA)—a modified version of PCA—overcomes this
problem by excluding pollutants which do not provide infor-
mation directly related to the outcome [24]. After the selection
of influential exposure variables, a PCA is performed using
the reduced number of exposure variables. Roberts andMartin
[25] adapted this method for air pollution analysis, suggesting
a recursive algorithm which identifies the best predictors of
the study outcome (variable selection), and combined them
into a few relevant PCs. The procedure has been implemented
for Poisson regression but can easily be adapted for other
models.

Partial Least Squares Regression

Partial least squares (PLS) regression takes the correlation
between the outcome and exposure variables into account by
combining PCA andmultiple regression analysis [26]. Briefly,
PLS regression searches for a linear decomposition of the
exposure matrix which maximizes the covariance between
the exposure and the outcome; the stronger the correlation
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Fig. 1 A schematic representation of the statistical methods used for the analysis of the health effects of multiple correlated exposures
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between an exposure variable and the outcome, the larger the
weight for this exposure variable in the linear combination. In
PLS regression, it is also possible to include several outcome
variables. The mean squared error of prediction using cross-
validation is used in order to choose the optimal number of
components [27].

In a recent study, Sun and colleagues compared the perfor-
mance of five statistical methods, among which SPCA and
PLS, under two different simulated settings: continuous out-
come from a cross-sectional study and daily event counts from
a time-series study. They simulated data on different number
of pollutants, from four to 20, and different degrees of
multicollinearity and designed “true” multivariate models
with main effects of individual pollutants plus some pairwise
interactions. All models displayed varying degrees of
goodness-of-fit depending on the simulated scenario, with
no clear superiority of one model over the others [28].

Sparse Partial Least Squares Regression

The disadvantage of PLS regression is the difficult interpret-
ability of the linear combinations, especially in the case of a

large number of original exposure variables. Chun and Keleş
therefore introduced a method which incorporates variable
selection and dimension reduction simultaneously [29]. This
approach leads to linear combinations of a reduced number of
exposure variables. Sparsity is introduced by a penalty term to
the loadings of the exposure variables. The optimal number of
components and the parameter for sparsity are chosen based
on cross-validation.

The method has been recently applied in a simulation study
on exposome-health association with 237 generated exposure
covariates and realistic correlation structures [30•].

Weighted Quantile Sum Regression (WQSR)

InWQSR, all exposures are first categorized, e.g., using quar-
tiles. Then, one finds a single index to summarize all expo-
sures, obtained as a weighted average of the categorized ex-
posures. The weights for each exposure are between zero and
one, and they are chosen to maximize the likelihood of the
regressionmodel of the outcome variable against the exposure
index, adjusted for covariates, using bootstrap samples [31].
This technique assumes that all exposures contribute in the

Table 1 Overview of statistical methods, with details, applications, and R packages for implementation

Method Supervised Theory Application in environmental epidemiology R package

Dimension reduction

PCA No Anderson [13] Yang et al. [14] stats

PMF No Paatero and Tapper [15] Krall and Strickland [17•] ad-hoc software
(example: EPA PMF 5.0)

SPCA Yes Bair et al. [24] Roberts and Martin [25] superpc

PLS Yes Wold [26] Sun et al. [28] stats, pls

SPLS Yes Chun and Keleş [29] Agier et al. [30•] spls

WQSR Yes Carrico et al. [31] Czarnota et al. [32] wqs

Variable selection

Cluster prototypes No Reid and Tibshirani [33] – protoclust and prototest

D/S/A algorithm Yes Sinisi and van der Laan [36] Beckerman et al. [37] modelUtils, DSA

BMA Yes Amini and Parmeter [38] Bobb et al. [40] bms

LASSO Yes Tibshirani [41] Sun et al. [28] glmnet

ENET Yes Zou and Hastie [42] Lenters et al. [44] glmnet

GLINTERNET Yes Lim and Hastie [46] Agier et al. [30•] glinternet

R2GUESS Yes Liquet et al. [48] Agier et al. [30•] R2GUESS

BKMR Yes Bobb et al. [51•] Bobb et al. [51•] bkmr

Grouping of observations

k-means No Steinley [53] Ljungman et al. [55] stats

Groups based on score No Lee et al. [58] Lee et al. [58] –

BPR Yes Molitor et al. [59] Papathomas et al. [61] PReMiuM

CART Yes Strobl et al. [64] Gass et al. [65] party

PCA principal component analysis, PMF positive matrix factorization, SPCA supervised principal component analysis, PLS partial least squares, SPLS
sparse partial least squares, WQSR weighted quantile sum regression, D/S/A deletion/substitution/addition, BMA Bayesian model averaging, LASSO
least absolute shrinkage and selection operator, ENET elastic net, GLINTERNET group-lasso INTERaction-NET, BKMR Bayesian kernel machine
regression, CART classification and regression trees
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same direction to the outcome, and therefore, it should be used
only with exposures that are hypothesized to act in the same
direction on the investigated health outcome. The WQSR
method was used in a study of the relationship between expo-
sure to 27 chemicals and non-Hodgkin lymphoma [32].

Methods for Variable Selection

Methods for variable selection aim to identify the “best” sub-
set of exposure variables either based on their mutual correla-
tion (unsupervised) as is used in the cluster prototypes ap-
proach or on their relation with the study outcome (supervised
approach; examples include the deletion/substitution/addition
(D/S/A) algorithm, Bayesian model averaging (BMA), penal-
ized methods, and Bayesian variable selection methods).

Cluster Prototypes

The use of cluster prototypes is a novel approach for data with
correlated variables [33]. The procedure first clusters the var-
iables; clustering can be thereby done using any particular
clustering method, e.g., hierarchical clustering methods using
the minimax linkage [34]. Having identified several clusters,
the next step is to choose a single representative—so-called
prototype—for each cluster. A key feature of the approach is
its use of post-selection inference theory provided by
Tibshirani et al. [35] to compute exact p values and confidence
intervals that properly account for the selection of prototypes.

Deletion/Substitution/Addition Algorithm

The deletion/substitution/addition (D/S/A) algorithm is an it-
erative selection approach [36]. It builds a model space of
candidate models based on the following three steps: (1) a
deletion step which removes a term from the model, (2) a
substitution step which replaces one term with another, and
(3) an addition step which adds a term to the model. The
choice of a move is based on a loss function-based estimation
procedure (with the aim of minimizing a specific loss func-
tion). In the case of linear regression, the move which mini-
mizes the sum of squared residuals is selected. The final mod-
el returned is identified via cross-validation. The algorithm
also provides the possibility to include interaction terms.
Compared to stepwise model selection procedures, D/S/A
has the advantages of being less sensitive to outliers and of
allowing the search to move between statistical models that
are not nested.

Among other approaches, the D/S/A algorithmwas applied
in the context of cross-sectional analysis using data from the
National Health and Nutrition Examination Survey
(NHANES) [28]. In this application, several environmental
contaminants (e.g., phthalates) were found to be associated

with systemic markers of oxidative stress. Further, the D/S/A
algorithm has been used to select predictor variables for land
use regression (LUR) models [37].

Bayesian Model Averaging

Bayesian model averaging (BMA) is a method which takes
model uncertainty into account. BMA judges the importance
of single-exposure variables by estimating all possible models
(i.e., all possible exposure combinations) and constructs a
weight for each model [38]. For each possible model, a prior
probability has to be selected. A simple choice is the use of
uniform prior probabilities reflecting a lack of prior knowl-
edge. The final weights for the exposure variables are derived
from posterior model probabilities and reflect the impact of
this variable. BMA automatically shrinks the number of ex-
posure variables by giving weights of zero for some variables.
The final exposure effect is calculated as a weighted average
of the exposure effects from each of the models. The impor-
tance of a specific exposure variable can be judged by the
posterior inclusion probability. A low value indicates that the
exposure effect was zero for many models. As the number of
possible models increases quickly in case of many exposure
variables, it is not feasible to perform all models. Two main
approaches have been proposed to overcome this problem—
dimensionality reductions of the model space and stochastic
searches through Markov chain Monte Carlo (MCMC) [39].
The R package BMS uses MCMC samplers, applying the
Metropolis-Hastings algorithm, to identify the most important
part of the posterior distribution.

BMA has been applied in several environmental studies,
for example, in a study using time-series data from 105 US
cities to estimate the relative risk of mortality associated with
heat waves [40].

Penalized Methods

The LASSO (least absolute shrinkage and selection operator)
is very similar to ordinary least squares, except that the coef-
ficients are estimated by minimizing a slightly different quan-
tity—it imposes a shrinkage penalty on the size of coefficients
[41]. It penalizes the absolute size of the regression coeffi-
cients based on the value of a tuning parameter λ. In doing
so, the LASSO can drive the coefficients of irrelevant vari-
ables to zero, thus performing automatic variable selection.
When the tuning parameter λ is small, the result is essentially
the least squares estimates.

Elastic net (ENET) combines the LASSO method and
Ridge regression [42]. This model includes penalty terms of
both first and second degree for the regression coefficients.
Thus, not only the best subset of variables is selected by
shrinking some effect estimates exactly to zero (LASSO) but
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groups of (highly) correlated variables are kept in the model
with similar effect estimates (ridge regression).

Using a later version of the LASSO, an example from the
Veterans Affairs Normative Aging Study was able to select
PM2.5 components associated with blood pressure [43]. Based
on elastic net penalty regression, a recent study found that,
among others, two phthalate metabolites were most consis-
tently associated with impaired fetal growth [44].

There are many developments around the LASSO with
potential relevance for environmental epidemiology studies
[45]. For example, the GLINTERNET method extends the
LASSO to select two-way interaction terms [46], and a recent
development allows using the LASSO while controlling for
the false discovery rate [47].

Bayesian Variable Selection Methods

Several Bayesian variable selection methods have been pro-
posed. These approaches incorporate a vector with the proba-
bility of each exposure having a zero (or non-zero) effect.
Then, one assigns prior probabilities and lets the data
inform on the value of such probabilities. One of such
implementations is the GUESS method, available in the R
package R2GUESS [48].MacLehose et al. proposed amethod
that performed variable selection and also clustered regression
coefficients into groups having similar effects based on prior
knowledge and information in the data [49]. Hill et al. pro-
posed one method to incorporate biological knowledge in the
prior distributions, using available information from pathway
maps [50].

Bayesian kernel machine regression (BKMR) is a recent
approach based on a popular tool in the machine learning
literature—kernel machine regression or Gaussian process re-
gression [51•]. The idea behind BKMR is to flexibly model
the relationship between a large number of exposure variables/
mixture components and a particular health outcome. This is
done by using a smooth function of the exposure variables/
mixture components represented using a Gaussian kernel
function. The kernel machine representation allows the incor-
poration of non-linear effects and/or interaction among mix-
ture components. To systematically handle highly correlated
exposures, a hierarchical variable selection approach within
BKMR is used which can incorporate prior knowledge on
the structure of how the exposure variables/mixture compo-
nents are related. The hierarchical variable selection approach
allows estimating the posterior inclusion probability for each
exposure.

BKMR has been applied to a dataset on metal exposures
and neurodevelopment in children in Bangladesh suggesting a
non-additive and non-linear exposure-response function be-
tween the metals and a summary measure of psychomotor
development [51•].

Methods for Grouping of Observations

The techniques described in this third group attempt to cluster
observations (i.e., rows in a dataset) so that each of the
resulting groups has a distinctive profile in terms of the expo-
sures. The outcome obtained from this clustering or grouping
is a categorical variable indicating cluster membership. The
clusters or groups of observations can then be compared in
terms of the health outcome. Note the differences between this
procedure and the techniques described in the first group,
which grouped exposures (i.e., columns in the dataset) and
synthesized the information of each group by creating a new
set of continuous variables.

As in the first group of methods, the grouping of observa-
tions can be done in an unsupervised or a supervised way,
depending on whether the health outcome is used to form
the clusters. The unsupervised option involves a two-step pro-
cess. First, the groups of observations are formed using only
exposure data. Second, the categorical variable that identifies
the groups is used as predictor in a regression model for the
health outcome. Examples of unsupervised analyses include
cluster analysis or building groups based on an exposure
score. In a supervised analysis, the grouping of observations
is done taking the health outcome into account, favoring
groupings that result in marked differences between the
groups in terms of the outcome of interest. Examples of su-
pervised techniques include Bayesian profile regression or
recursive partitioning techniques.

Cluster Analysis

This approach first fits a cluster analysis technique to the ex-
posure data in order to define the groups and then includes the
indicators of group membership as predictors in a regression
model for the health outcome. There are hundreds of cluster-
ing techniques and none of them can be considered to outper-
form the others in all situations [52]. Clustering techniques
can be classified into different groups. The most widely used
fall into the partitioning-based, of which k-means [53] or
partitioning around medoids (PAM) are two of the most pop-
ular; the hierarchical-based, in which observations are sequen-
tially grouped (agglomerative clustering) or separated (divi-
sive clustering) according to a proximity measure; and the
model-based, which assumes that the data were generated by
a model and it estimates its parameters (this category includes
finite mixture model, latent class model, or probabilistic self-
organizing maps) [54].

Clustering has been used in several papers assessing the
effects of multiple pollutants. For example, in the context of
time-series analyses of air pollution, one study used k-means
to classify days into five clusters, indicating days of low pol-
lution levels, days with high concentrations of crustal parti-
cles, days with high levels of particles from traffic and oil
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combustion, days affected by regional sources, and days with
high levels of particles from wood burning or combustion of
heating oil [55]. Some of the clusters were associated with
pulse amplitude.

Groups Obtained Through a Cumulative Score

Another analysis option is to derive the groups of observations
based on a score that accumulates the levels of all the expo-
sures under study. This could be done through creating a prin-
cipal component from PCA, in which case each exposure will
contribute to the score with a different weight, or through
other options. For example, some studies have summed the
ranks of each exposure [56] or the number of exposures with
values in the top decile [57]. By categorizing the resulting
score, the different groups represent participants exposed to
a large or small number of exposures simultaneously. Using
one of these approaches, one study found that the group ex-
posed simultaneously to high levels of six PCBs had a much
higher prevalence of diabetes than those with lowest levels for
all PCBs [58]. This type of analysis can be useful in situations
in which populations are exposed to low levels of a large
number of exposures, and even if exposure to low levels of
one of the compounds can be considered safe, simultaneous
exposure to many of them can result in some health effects.

Bayesian Profile Regression

Bayesian profile regression (BPR) is a model-based technique
that aims at finding clusters of subjects sharing similar expo-
sure profiles that at the same time show differences in the
health outcome [59]. Unlike the clustering techniques de-
scribed above, the clustering part and the regression of the
outcome on the clusters are done in a single step. BPR is quite
flexible, as it allows continuous and categorical exposures, it
automatically handles missing data, and it calculates the opti-
mal number of clusters, and the assignment to clusters is done
probabilistically, i.e., it takes into account uncertainty in clus-
ter assignment. In addition, one can incorporate variable se-
lection into the algorithm, which can facilitate the interpreta-
tion of the clusters and can lead to better performance in stud-
ies with a large number of exposures relative to sample size
[60]. BPR has been used in several studies. One of them iden-
tified a cluster of participants characterized by living close to a
main road, having high exposure to PM10 and nitrogen diox-
ide, and carrying out manual work as being at high risk for
lung cancer [61]. It has also been used in the context of time-
series analysis in a study that identified days with high con-
centrations of nitrate and sulfate as having higher risk of re-
spiratory mortality [62•].

A regression profile analysis can capture complex interac-
tive effects of several exposures while producing an output
that is more interpretable than the output of a regular

regression model with several high-order interaction terms
[63]. In addition, it has the advantage that it directly directs
attention to patterns of values that are most characteristic of
the data and that it does not assume a pre-specified form for
the association.

Recursive Partitioning Techniques

The most basic techniques of recursive partitioning are classi-
fication and regression trees (CART). CART is a supervised
technique in which a sequence of binary splits based on a
subset of exposures creates groups of observations in a way
that—within each group—observations have similar values of
the outcome. The sequence of binary splits creates a tree struc-
ture. At each node of the tree, the observations are split into
two groups based on one exposure, i, and a statement of the
form exposurei < c vs. exposurei ≥ c, for a value of c chosen by
the CARTalgorithm [64]. The tree structure, usually based on
a small set of exposures, facilitates the interpretation of the
clusters. CART can easily capture complex interactions and
may facilitate their interpretation. In particular, any
asymmetries in the tree encompass underlying interactions.
In a time-series setting, a study used CART to characterize
the joint effects of CO, NO2, O3, and PM2.5 on asthma admis-
sions [65].

There are other techniques closely related to CART which
create trees based on “and” and “or” statements, such as logic
regression or part DSA [66]. Cross-validated CARTs usually
include a few terminal nodes, with limited explanatory power.
Random forests and boosting are two techniques that have
been used to combine the results of several CARTs in order
to achieve better predictive performance [64, 67]. The draw-
back of those techniques is that the easy interpretability of
single CARTs is lost and one has to rely on measures of var-
iable importance that do not directly link the exposure with the
outcome. Lampa et al. offer some tools on how to assess if
interactions are present and how to visualize them within
boosted regression trees [67].

Conclusion

Humans are exposed to multiple environmental stressors si-
multaneously. Especially in urban settings, where most of the
population lives, air pollution, environmental chemicals,
noise, temperature extremes, lack of green space, but also
social inequality and detrimental lifestyle habits are likely to
negatively affect health and quality of life. A better under-
standing of the independent and synergistic/antagonistic ef-
fects of these risk factors is mandatory for: (a) designing ef-
fective public health prevention strategies especially targeted
on vulnerable population subgroups and (b) promoting urban
policies aimed at reducing air pollution and environmental
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chemical concentrations as well as noise and heat levels at the
same time.

In this review, we proposed a classification of the statistical
methods recently applied to jointly estimate the effects of
multiple correlated exposures on human health or to disentan-
gle the effects of the components to the multi-pollutant mix-
ture. While the list is not presumed to be exhaustive, it cate-
gorizes all methods into one of three different groups (some of
the methods overlapping more groups): dimension reduction,
variable selection, and grouping of observations. Each class is
characterized by different pros and cons and its applicability
depends on the available data and the degree of
multicollinearity among exposures. For each of the proposed
methods, specific R packages have been developed and stud-
ies have been conducted in the last years with environmental
epidemiology applications, especially in the multi-pollutant
case.

The existing literature, despite being limited up to now,
shows the high potential of these approaches for disentangling
individual and joint effects, often non-linear, of multiple cor-
related exposures on human health. Further studies are need-
ed, especially in the context of multiple exposures other than
air pollution, to improve our understanding of the complex
interrelationship among environmental, socio-economic, and
lifestyle risk factors on human health.
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