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Abstract
Purpose of review Outdoor air pollution exposures used in
epidemiological studies are commonly predicted from spatio-
temporal models incorporating limited measurements, tempo-
ral factors, geographic information system variables, and/or
satellite data. Measurement error in these exposure estimates
leads to imprecise estimation of health effects and their stan-
dard errors. We reviewed methods for measurement error cor-
rection that have been applied in epidemiological studies that
use model-derived air pollution data.
Recent findings We identified seven cohort studies and one
panel study that have employed measurement error correction
methods. These methods included regression calibration, risk
set regression calibration, regression calibration with instru-
mental variables, the simulation extrapolation approach
(SIMEX), and methods under the non-parametric or parame-
ter bootstrap. Corrections resulted in small increases in the
absolute magnitude of the health effect estimate and its stan-
dard error under most scenarios.
Summary Limited application of measurement error correc-
tion methods in air pollution studies may be attributed to the

absence of exposure validation data and the methodological
complexity of the proposed methods. Future epidemiological
studies should consider in their design phase the requirements
for the measurement error correction method to be later ap-
plied, while methodological advances are needed under the
multi-pollutants setting.

Keywords Air pollution . Bootstrap . Health . Measurement
error . Regression calibration . SIMEX

Introduction

The health effects of air pollution have been widely investi-
gated during the last decades under different epidemiological
designs. Effects of air pollution related to short-term exposure
have used time series and panel study designs, while those
related to long-term exposure have been investigated through
the follow up of cohorts. Until 2000, the exposure indices
were typically derived from fixed monitoring stations measur-
ing regulated pollutants in metropolitan areas, but more re-
cently, this approach has been challenged due to the need to
investigate associations in areas where the monitoring net-
work is sparse or even absent as well as to investigate associ-
ations with non-regulated air pollutants that require study spe-
cific measuring campaigns. More importantly many re-
searchers have highlighted the need to provide better exposure
assessment in order to minimize measurement error. Although
the problem of measurement error has been widely investigat-
ed in other areas of epidemiological research, such as nutri-
tional epidemiology, it has only been addressed in environ-
mental epidemiology relatively recently. Zeger et al. were
among the first to discuss the effect of measurement error in
time-series [1], followed by Brauer et al. who investigated its
impact on the estimation of a threshold in the association [2].
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The need for improving the spatial resolution of exposure
estimates has been addressed by methods using modeling tech-
niques to estimate concentrations of pollutants in geographical
grids (dispersion modeling, use of satellite data) or at points in
space such as the residential address of cohort participants
(through spatial regression models such as land-use regression
(LUR) or universal kriging). The advent of geographic informa-
tion system (GIS)-based data that are used as predictors of expo-
sure have supported these attempts. Epidemiological research
has used the estimated exposures derived from the
abovementionedmethods as single “true” values not accounting
for the impacts of the uncertainty on the health effect estimates.

Gryparis et al. and Spirzo et al. proposed methods for mea-
surement error correction in the presence of spatially
misaligned modeled air pollution data [3, 4], while Sheppard
et al. reviewed these methods [5]. Since then, measurement
error correction techniques have been expanded, and new
ones proposed, although only a few of these have been applied
in air pollution studies.

In this paper, we briefly review the methods for measure-
ment error correction that have been applied in air pollution
epidemiological studies. The focus is not on the description of
the methodological proposals to assess or correct for measure-
ment error, but on the methods that have been applied in air
pollution epidemiological research to account for the uncer-
tainty in modeled exposure estimates in their health analyses.

Exposure Measurement Error in Air Pollution
Estimation

Although true exposures to air pollution reflect personal ex-
posures of the individual to local emission sources during
different activities, the exposure assessment methods pro-
posed so far are an approximation of the personal exposure
derived from outdoor sources. This is largely due to lack of
time-activity data, an ability to accurately predict or measure
concentrations in different microenvironments, and the fact
that exposure from outdoor sources is the most relevant for
policy makers. As such, the concept of measurement error in
air pollution epidemiology mainly addresses this part of the
exposure. The use of modeled pollutant concentrations to es-
timate exposure from outdoor sources induces a combination
of classical-type error linked to error in monitor measurements
and in the estimation of prediction model parameters, and
Berkson-type error due to the use of prediction models that
have elements common across individuals (use of GIS data).

Measurement Error Issues Relevant to Air Pollution
Epidemiology

There are two main types of measurement error: classical and
Berkson. In short, if X is the unobserved “true” exposure

which is approximated by an observed surrogate Z, Uc is the
classical error and Ub is the Berkson error, then under the
additive classical error model Z = X +Uc where E[Z| X] = X
and Var(Z) = Var(X) + Var(Uc) denoting that the observed
values are distributed at random around the true exposure;
and under the additive Berkson error model, X = Z +Ubwhere
E[X| Z] = Z and Var(X) = Var(Z) + Var(Ub) denoting that the
true exposures are distributed at random around the observed
surrogate. Berkson error arises where Z represents an average
exposure of a group with similar characteristics such as the
modeled exposures for all individuals living at a single resi-
dential address. Classical and Berkson errors have different
implications for effect estimates and their standard errors in
health models. In the simplest case (i.e., replacing X by Z as
the explanatory variable in a simple linear regression analy-
sis), the additive measurement error leads to attenuation in the
regression coefficient by (1 −C) × 100% where C = Cov(X,
Z)/Var(Z). If all the measurement error is classical, then C =
Var(X)/Var(Z). Under this scenario, the standard error of the
regression coefficient may be biased in either direction [5].
Berkson error typically leads to an unbiased estimate (C =
Var(Z)/Var(Z) = 1) but with inflated standard errors.
However the impact of either type of error depends on a num-
ber of assumptions including normality and linearity, but also
the hypothesis that the error distribution does not depend on
the health outcome (defined as non-differential error). The
latter implies that you only measure the surrogate because
the true exposure is unavailable and that the surrogate pro-
vides no additional information about the outcome (i.e., be-
yond that provided by the true exposure if observed).

Exposure Assessment Models and Impact
of Measurement Error in Air Pollution Epidemiology
Studies

A review of exposure assessment methods is presented in
Hoek [6]. Briefly, modeled approaches to estimate spatially
variable air pollution concentrations may be classified in three
broad classes: (1) Dispersion or chemical transport models are
based on atmospheric meteorology and chemistry, and model
dispersion and chemical transformations in the atmosphere
based on emissions data. They provide estimates of concen-
trations in spatial grids which may be downscaled to relatively
small dimensions (recent advances provide estimates down to
100 m × 100 m grids) taking into account atmospheric pro-
cesses. Dispersion models are based on our deterministic un-
derstanding of atmospheric processes. Errors in these models
primarily reflect imprecise or erroneous emissions data and
inabilities to capture the complexities of the multiple small
scale determinants either in the natural or built environment;
(2) LUR and other spatial regression models are based on
geographic covariates and are applied to expand in situ mea-
surements of pollutant concentrations to large areas [7]. These
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models can estimate exposure concentrations at any point in
space using coordinates and thus have the ability in principle
to approximate “personal” exposure better by providing esti-
mates at subjects’ residential addresses. Both dispersion and
spatial modeling approaches have been extended to incorpo-
rate temporal as well as spatial variability. Spatiotemporal
LUR models that combine large numbers of correlated geo-
graphic information system (GIS) variables (by incorporating
factors constructed using partially weighted least scores or
other dimension reduction techniques) and smooth surfaces
(using kriging approaches) have also been developed [8, 9].
As LUR models are based on measured concentrations, they
reflect errors related to instrumental errors in the measure-
ments, the number and location of monitoring sites, the limit-
ed monitoring period, and statistical uncertainty; and (3)
Models incorporating satellite measurements, as Aerosol
Optical Density (AOD) data are used in the estimation of
particulate pollution. Spatiotemporal resolved particulate mat-
ter with aerodynamic diameter less than 2.5 μm (PM2.5) ex-
posures byAOD calibration has been developed [10]. Satellite
data have the advantage of being widely available, and the
errors reflect the estimation of concentrations at heights rele-
vant for humans, the lack of spatial precision, and interference
by cloud cover, nearby water, etc.

Combining various approaches to exposure assessment is
believed to lead to optimizing their advantages and minimiz-
ing their respective disadvantages. More recently hybrid
models are being developed that use combinations of the main
modeling exposure methods outlined above. Dispersion mod-
el outputs have been used as input for LUR [11], while De
Hoogh et al. have developed LUR models incorporating both
estimates from dispersion models and AOD or NO2 satellite
measurements to estimate PM2.5 and NO2 concentrations at
100 m × 100 m spatial resolution [12]. Furthermore, machine
learning methods have been applied to incorporate a large
number of predictors for optimal estimation of pollution con-
centrations. Reid et al. estimated daily exposure to PM2.5

through data-adaptive machine learning methods [13], while
LUR and remote sensing data have been combined in the
USA using neural network methods [14].

Several simulation studies have addressed the amount of
bias introduced by different approaches to specific design
types: Kim et al. compared the use of nearest monitor data
to kriging estimates in a cohort study to show that the bias
in the health effect estimates are dependent on the amount of
spatial dependence in the underlying exposure distribution
[15]; Szpiro et al. used LUR predictions in a linear disease
model to conclude that more accurate exposure prediction at
subject’s location does not necessarily lead to improved health
effect estimation [16]; Basagaña et al. reported in a longitudi-
nal study that the bias in the health estimate from using LUR
predictions depends on the number of air pollution measure-
ment sites, the number of available predictors for model

selection, and the amount of explainable variability in the true
exposure [17]; and finally, Butland et al. evaluated dispersion
estimates vs monitor measurements in time-series concluding
that model data may lead to appreciable bias in health effect
estimates [18], while Dionisio et al. investigated the effect of
measurement error in Poisson models including multiple pol-
lutants warning that attenuation may be substantial [19, 20].
Comparison of health effects derived from different exposure
estimates have also been reported as in Sellier et al. who used
data from a cohort study to show that the use of monitor data,
dispersion estimates, or LUR estimates may lead to different
health effect estimates when a heterogeneous pollutant such as
NO2 is under investigation [21].

Measurement Error Correction in Air Pollution
Epidemiological Studies

We reviewed Pubmed from 2011 onwards to February 2017
using as keywords “measurement error,” “air pollution,” and
“health” to identify methods that have been applied in the last
years and present the associated results. From the 51 initially
identified papers, there were few methodological papers pro-
posingmethods for correcting the health estimates when using
modeled air pollution exposures, and even fewer epidemio-
logical studies have incorporated these methods in their pub-
lications. As modeled exposures are more widely applied in
prospective study designs, all measurement error correction
applications but one were in cohort studies [22•, 23•, 24•,
25•, 26•, 27•, 28•]. We included one air pollution panel study
with measurement error correction, though slightly outside the
remit of our review (pollution data not model-based), because
the authors apply a method not presented in any of the other
identified studies [29•]. We briefly present below the methods
applied in the identified papers and their results.

Regression Calibration and Extensions

Regression calibration (RC) is a well-established method of
correcting for measurement error in epidemiological regression
models [30]. In general, for a subset of study subjects, it requires
informationonboth thesurrogateandamoreaccuratemeasureof
exposure. It is the linear regression of the latter on the former
which facilitates thecorrectionofhealtheffect estimatesand their
95% confidence intervals. This correction can be applied post-
analysisbycalculatingandcorrecting for theattenuation factorC
or within the main analysis by re-calibration of the surrogate
variable [31]. In the Netherlands Cohort Study on Diet and
Cancer, Hart et al. used a traditional RC approach, informed by
data from a validation study comparing personal and ambient
measures of traffic related air pollution, to estimate
measurement-error-adjusted hazard ratios for lung cancer and
long-term exposure to each of PM2.5, black smoke (BS), and
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NO2 [22•].Asnotedby the authors, adjustment formeasurement
error, moved the hazard ratios (HR) for all incident lung cancer
and each of four subtypes (squamous, small-cell, large-cell, ade-
nocarcinoma) further from the null, with increases of 0.0–3.3%
for BS and 9.7–37.2% for PM2.5 (Table 1) [22•]. Themagnitude
of the percent increase in the width of the confidence intervals
was larger, with increases of 10.2–23.3% for BS and 108.0–
216.8% for PM2.5 [22•].

Risk set regression calibration (RRC) is an extension of RC
for use in survival analysis with time-varying exposures which
allows the re-calibration of the surrogate variable to be up-
dated over time and with changes in the risk set (i.e., those
subjects at risk). A sandwich variance estimator is used to
calculate Wald-type asymptotic confidence intervals and p-
values. First described by Liao et al. [32], this method of
measurement error correction was applied by Hart et al.
[23•], when investigating the long-term effects of modeled
PM2.5 exposure on all-cause mortality in the Nurses’ Health
Study. The authors noted that measurement error correction
increased the hazard ratio by 4.4% and doubled the width of
the 95% confidence interval (Table 1) [23•].

Another extension of RC involves the long-standing tech-
nique for measurement error correction of instrumental vari-
ables. Avariable is considered a good “instrument” if it is cor-
related with the true exposure, independent of the error term in
the surrogate, and provides nomore information about the out-
comethanthe trueexposure.Regressioncalibrationwith instru-
mental variables (RCIV) has been used to provide methods of
error correction which can be applied in epidemiological
models of increasing complexity. One approach involves a
post-analysis correction based on the assumption that both the
true and surrogate variables can be predicted using identical
linear combinations of the instrumental variables (RCIV1)
[29•]. In RCIV1, correction is based on parameter estimates
obtained from regressing each surrogate on its corresponding
instrumental variable or variables. Stand et al. also proposed an
extensionofRCIV1tofacilitate thepost-analysiscorrectionofa
two-pollutantmodelwith pollutant interaction terms plus inter-
actionswith error-free covariates. In that approach, theyobtain-
ed parameter estimates using multi-level models with random
intercepts for each subject and assuming a spatial power struc-
ture forwithin-subject error [29•].They illustrated theirmethod
using data from a panel study of asthmatic children investigat-
ing the relationshipbetweenLTE4,aninflammatorybiomarker,
and the short-term exposure to particulates and second-hand
smoke (SHS), and their interaction. They used fixed-site out-
door PM2.5 and urinary cotinine as observed instrumental var-
iables in place of the unobserved exposures of interest i.e., per-
sonal exposure toPM2.5 andSHS.The surrogate variableswere
error-pronemeasurements ofPM2.5 andSHS, based onperson-
al monitoring, which were only available for a limited number
of days. Change in effect estimates of interest before and after
correction were not reported.

Simulation Extrapolation (SIMEX)

If the classical measurement error variance (σ2
e ¼ Var Ucð Þ ) is

known or can be estimated based on an external validation
dataset, then SIMEX works by adding classical errors of in-
creasing magnitude of the form λσ2

e λ ¼ 0;…; 2ð Þ to the sur-
rogate exposure (Z) and calculating health effect estimates. A
regression of mean health effect versus error is then used to
identify the health effect estimate corresponding to zero mea-
surement error (i.e., λ = − 1) [33]. Recently, Alexeeff et al.
proposed an extension of this technique, which they refer to
as spatial SIMEX, to take account of the fact that classical
errors may be spatially correlated [24•]. To demonstrate this
technique, they used data from a Massachusetts birth cohort
and investigated the association between birthweight and
PM2.5 exposure in different trimesters of pregnancy.
However, they first needed to specify the percentage of spatial
measurement error that was classical and this value was not
identifiable. Assuming a value of 80% (the value at which
spatial SIMEX performed best in their simulation results),
the authors noted that post correction, the negative relation-
ship between PM2.5 and birthweight in the second and third
trimesters increased in absolute value by 57% and 41%, re-
spectively, but the width of 95% confidence intervals de-
creased markedly by 90% in both cases [24•].

Parameter and Non-parametric Bootstrap

Szpiro et al. noted that the parameter estimation and spatial
smoothing inherent in the statistical modeling of pollution data
(e.g., LUR) introduce classical-like and Berkson-like error, re-
spectively [4]. To correct for such error, bootstrapping methods
have been used [4, 25•, 26•, 27•, 28•]. In its simplest form,
bootstrapping builds up the sampling distribution of a sample
estimate (e.g., the hazard ratio) by taking multiple random sam-
ples with replacement from the observed dataset [34]. The non-
parametric bootstrap differs from the parameter bootstrap in that
the former assumes the pollution exposure surface is fixed and
aims to accurately reflect variation due to the sampling of
monitor-site locations and study subjects whereas the latter as-
sumes that monitor site locations and the study sample are fixed
and focuses instead on accurately reflecting random variation in
the pollution exposure surface [4, 28•].

Bergen et al. used the parameter bootstrap to correct for
measurement error when investigating the effects of long-
term exposure to various modeled PM2.5 components on
carotid-intima-media thickness within the Multi-Ethnic
Study of Atherosclerosis (MESA) [25•]. While there was no
obvious change in effect estimates, the width of confidence
intervals increased by 56% for silicon and 48% for sulfur after
accounting for errors in the exposure models (Table 1).
Results from using a simplified version of the parameter
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bootstrap (i.e., the “partial parametric bootstrap”) which only
adjusts for Berkson-like error, were identical (Table 1).

In a related study, Szpiro & Paciorek proposed both a one-
and two-stage process involving bootstrapping [26•]. In the
one-stage process, a non-parametric bootstrap was used to
obtain both bias-corrected effect estimates and adjusted stan-
dard errors. In the two-stage process, an asymptotic correction
factor was used to adjust for bias (caused by the classical-like
component) followed by a non-parametric bootstrap to adjust
standard errors for both error types. To illustrate their methods,
they used data from MESA and examined the relationship
between elevated left ventricular mass and long-term exposure
to NOx. The health regression coefficient, though unaffected
by measurement error correction under the one-stage process,
increased by 3% under the two-stage process (Table 1). Both
methods resulted in a widening of the 95% confidence interval
by 6% and 9%, respectively [26•].

Later, Bergen et al. demonstrated that for exposure data
predicted using penalized splines, this two-stage process can
be extended to correct for measurement error in a multi-
pollutant health effects model [27•]. With data from the
Sister Study of the National Institute of Environmental
Health Sciences, they investigated the mutually adjusted
long-term effects of exposure to NO2 and PM2.5 on systolic
blood pressure. Following measurement error correction, both
regression coefficients in the main analysis moved further
from the null (the coefficient for NO2 became more negative
and the coefficient for PM2.5 more positive) and 95% confi-
dence intervals widened substantially (Table 1, personal
communication). A secondary analysis restricted to the north
east region, however, showed little effect of measurement er-
ror corrections with, if anything, hazard ratios moving toward
rather than away from 1 [27•].

While the above methods focused on spatial measurement
error [4, 25•, 26•, 27•], Keller et al. [28•] used extensions of
both the non-parametric and parameter bootstrap to adjust for
spatiotemporal measurement error in a study of birthweight
and gestational trimester-specific PM2.5. They found that the
regression coefficient linking birthweight and PM2.5 exposure
in the third trimester was unchanged by the parameter boot-
strap but increased by 5.9% under the non-parameter boot-
strap, although under both methods confidence intervals wid-
ened by 16% and 10%, respectively (Table 1).

Discussion

Although measurement error correction approaches in epide-
miological models have been proposed for some time, they
have only recently received attention in their application in air
pollution studies. We reviewed recent relevant literature for
application of these methods and identified only eight publi-
cations that have applied a variety of methods. All but oneT
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identified studies were cohorts, six of which were from the
USA. The measurement error correction methods applied in-
cluded regression calibration, risk set regression calibration,
regression calibration with instrumental variables, SIMEX,
the parameter bootstrap, and the non-parametric bootstrap.
While our focus here has been on cohort studies, based on
what has been worked on in the literature, it is worth noting
that measurement error may be more of an issue in terms of
health effect estimation in time-series or panel studies, where
the temporal component of additive classical measurement
error is not reduced by averaging over time [18].

Findings both before and after measurement correction from
recent studies (2011 and later), when provided in the relevant
papers, are summarized in Table 1. Overall measurement error
correction tended to increase theabsolutemagnitudeof thehealth
effect estimate, illustrating the tendency for additive classical
error to bias effect estimates toward the null. However, this pat-
ternwasnot soobvious in those studiesusing thenon-parametric
or parameter bootstrap. Bergen et al. [25•] attributed this to the
absenceofclassical-likeerror in theirexposuredataaswasshown
bya comparisonof effect estimates corrected for both error types
with those corrected for Berkson-like error alone (Table 1).
Similarly, while Szpiro & Paciorek noted little difference be-
tween the one- and two-stage process in their data analysis, sim-
ulations provided evidence that their two-stage approach im-
proved estimation and inference [26•].

The effects of measurement error adjustment on standard
errors was more difficult to predict and ranged from the
narrowing of confidence intervals seen in the Alexeeff et al.
study under spatial SIMEX [24•] to the widening of confi-
dence intervals observed under RC, RRC, and bootstrapping
[22•, 23•, 25•, 26•, 27•, 28•]. There are various possible ex-
planations for these differences: classical error can bias stan-
dard errors in either direction [5], spatial correlation in
Berkson-like error can lead to underestimated standard errors
[4, 25•], and measurement error correction itself may intro-
duce additional variability [22•]. However, it is difficult to
draw conclusions from such comparisons as we are not com-
paring like with like, due to underlying framework differences
between methods.

Each correction method considered in this review has strong
assumptions that result in different advantages and disadvan-
tages. Spatial SIMEXisdependent upon theunderlyingdistribu-
tion of the true exposure surface and applied using different sce-
nariosas to theproportionof totalmeasurementerror that iseither
classical or Berkson-like and depending on these assumptions
provides a range of corrected effect estimates. The regression
calibration approach has strong assumptions on the normality
and linearity of the true and the “measured” part of exposure that
in principle may be overcome by appropriate transformations,
but in addition, it assumes that the measurement error variance
issmall.Althoughextensions toovercometheserestrictionshave
been proposed (such as semiparametric efficient estimator), they

have not been applied in air pollution epidemiological settings.
Finally,bootstrapmethodsrelyontheavailableexposuresurface,
assuming representativeness of the underlying true surface.

Our review findings illustrate that in a single-pollutant ep-
idemiological model, the presence of additive classical error
typically biases the health effect estimate toward the null.
However, in a multi-pollutant model, the direction of bias
due to multi-pollutant measurement error is far less predict-
able especially when the pollutants are highly correlated [35].
The biases themselves may also be more severe [27•]. In ad-
dition to the non-parametric bootstrap [27•], SIMEX can be
extended to provide measurement error adjustment in certain
multi-pollutant settings [24•]. Further novel methodological
research is needed that would also provide epidemiologists
with publically available computer codes for ease of imple-
mentation. Such extensions become important since as point-
ed out by Dominici et al. [36], the focus of health effect esti-
mation is moving away from a single-pollutant approach, and
recent epidemiological findings related to correlated particles’
physical and chemical characteristics need to be correctly
accounted for.

With the exception of the bootstrap approaches, the mea-
surement error correction methods presented in this paper re-
quire additional data in the form of a validation study or
dataset, and if that study/dataset is too small, it may compro-
mise the adequacy of adjustment. In the case of SIMEX, ex-
ternal data are required in order to estimate the total measure-
ment error variance in the surrogate variable. To overcome
this issue, the held-out monitors approach has been suggested,
under which a spatial model is fit to the difference between
predicted and measured values at the leave-out monitors. The
need for such information is therefore something that re-
searchers should consider when designing an epidemiological
study of air pollution and health. Finally, although computer
libraries for regression calibration and SIMEX are incorporat-
ed in standard statistical software, their underlying assump-
tions and complexity may have hindered their application. On
the other hand, the bootstrap methods add a degree of com-
plexity as they also require the simulation of the exposure
surface and not just the correction in the epidemiological anal-
ysis stage. Air pollution epidemiological research should
move forward by reporting effect estimates under a variety
of correction methods depending on the focus of the study,
its design and sample size (as for example, the size of admin-
istrative cohorts prohibits the application of bootstrap
methods), the availability of validation data, and the nature
of the exposure distribution.

Conclusions

In air pollution epidemiology, effect estimates tend to be small
but have important implications for population health, due to
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the fact that we are all exposed throughout our lifetimes.
Therefore, accurate estimation and the elimination of bias
due to measurement error is particularly important. Yet, per-
sonal air pollution exposures are very challenging to quantify
accurately, and few studies currently correct for measurement
error. Barriers for the adoption of these methods in the main-
stream literature may only get worse as measurement error
correction methods of increasing complexity may be required
as the focus moves to the multi-pollutant setting, and there is a
need to separate the effects of highly correlated pollutants.
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