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Abstract

Purpose of review Drug hypersensitivity represents an important problem for health care
and patient’s management, as they limit therapeutic decisions, hampering treatment and
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being a frequent cause of complications during hospitalization, and, in some instances,
being life threatening. The risk of developing drug hypersensitivity reactions depends not
only on some specific individual characteristics but it seems to be also influenced by
genetic factors. The identification of such factors could conceivably help to their diagnosis
and prevention, avoiding therapeutic failure and leading to the development of precision
medicine.
Recent findings Despite latest research on this issue confirming the participation of certain
HLA alleles in T cell–mediated reactions, there is a lack of reliable genetic markers for most
types of reactions. Nevertheless, recently developed technologies, including both DNA and
RNA sequencing, are providing promising results to decipher underlying mechanisms and
to identify prognostic and diagnostic biomarkers.
Summary We summarize current data on the genetics of drug hypersensitivity reactions
and include information concerning pharmacogenomic testing and new available techno-
logical approaches that could be applied for their study. Although their use on this area of
research is still in its infancy, they are expected to provide crucial data that could be used
in translational and precision medicine.

Introduction

Adverse drug reactions are noxious and unintended re-
sponses to drugs, which occur at doses normally used in
man for the prophylaxis, diagnosis, or therapy of dis-
ease, or for modifications of physiological function [1].
They include drug hypersensitivity reactions (DHRs),
which are unpredictable and dose-independent [2],
and mediated by both immunological and non-
immunological mechanisms (allergic and non-allergic
hypersensitivity, respectively) [3]. DHRs constitute an
important problem for health care systems and the
management of patients, as they limit therapeutic deci-
sions, consequently hampering treatment, and represent
a frequent cause of complications during hospitalization
[4].

According to the interval elapsed between last drug
intake and the onset of clinical symptoms, DHRs are
generally classified into immediate (IRs), occurring
within the first 6 h after drug intake, and non-
immediate reactions (NIRs), appearing later, frequently
between 24 and 72 h [5–7].

Both betalactam antibiotics (BLs) and non-steroidal
anti-inflammatory drugs (NSAIDs) can induce IRs. IRs
to BLs are triggered by specific IgE antibodies (immuno-
logical mechanism), with clinical entities including ur-
ticaria and/or angioedema, and anaphylaxis/
anaphylactic shock [8, 9]. The most frequent type of IR
to NSAIDs is represented by cross-hypersensitivity reac-
tions (CRs), which are triggered by a pharmacological

(non-immunological) mechanism linked to
cyclooxygenase-1 (COX-1) inhibition. Such inhibition
shunts the arachidonic acid metabolism from prosta-
glandin (PG) biosynthesis towards the cysteinil-
leukotriene (CysLT) pathway [10•]. Three main clinical
phenotypes of CRs to NSAIDs are currently recognized:
NSAID-exacerbated respiratory disease (NERD), in pa-
tients with underlying rhinitis and/or asthma with or
without nasal polyposis; NSAID-exacerbated cutaneous
disease (NECD), in patients with underlying chronic
spontaneous urticaria; and NSAID-induced acute
urticaria/angioedema (NIUA), in otherwise healthy in-
dividuals [10•, 11•]. In addition to CRs, NSAIDs can
also induce selective reactions, thought to be induced by
specific IgE antibodies [10•, 11•].

NIRs are mediated by different populations of T cells
and encompass a heterogeneous ensemble of clinical
conditions, including mild reactions such as urticaria
and maculopapular exanthema (MPE), and severe and
potentially life-threatening entities such as Stevens-
Johnson syndrome/toxic epidermal necrolysis (SJS/
TEN) and drug reaction with eosinophilia and systemic
symptoms (DRESS) [5, 6].

The risk of developing unintended responses to
drugs, including DHRs, depends not only on some spe-
cific individual characteristics such as age and sex [12],
but it seems to be also under the influence of genetic
factors [13••, 14, 15]. Therefore, the identification of
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variants in genes involved in drug-associated processes
could conceivably help to their diagnosis and preven-
tion, avoiding therapeutic failure and leading to the
development of precision medicine.

Here, we will provide definitions and possibilities of
personalized/precision medicine and present the differ-
ent approaches used to characterize genetic variants. We

will include also an updated analysis of the state or the
art on the pharmacogenomics of most common DHRs,
and some information concerning current recommen-
dations for genetic testing. We think this manuscript will
be of interest not only for allergists and for other clini-
cians who deal with DHRs in their daily clinical practice
but also for general practitioners and basic researchers.

Personalized versus precision medicine

Over recent years, an increasing use of the concept “personalized medicine” in
scientific literature, health care institutions, and social media has been ob-
served. The advent of recently developed high-throughput technologies and
intensive data from biomedical assays, which include genomic, proteomics,
and other omics, has highlighted a great inter-individual variability in how
subjects react to a pathological situation and respond to drug treatment. Con-
sequently, it is feasible that such variability could have some impact on the
treatment and/or the prevention of a particular disease in a particular individ-
ual. Thus, clinical decision could be tailored or personalized taking into account
the specific biochemical, physiological, and environmental characteristics of
such individual.

The term “personalized” medicine has been commonly interchanged with
the terms “individualized” and “precision” medicine; however, some differ-
ences between them exist [16•]. In fact, the concept of “personalized”medicine
may be misinterpreted as it could suggest the design of unique disease treat-
ment for each individual to maximize drug efficacy and to minimize adverse
drug reactions, including DHRs. Thus, the term “precision” medicine is pre-
ferred. Precision medicine tries to classify individuals into different subpopu-
lations according to their susceptibility to a particular disease, the biology and/
or prognosis of the diseases they may develop, or to their response to a specific
treatment [16•].

Pharmacogenomics, the study of how genes affect a person’s response to
particular drugs, is a key player in precision medicine. This discipline combines
pharmacology (the science of drugs) and genomics (the study of genes and their
functions) to develop effective, safe medications and doses that are tailored to
variations in a person’s genes [16•]. Precision medicine has long been the great
promise of pharmacogenomics; however, it is not currently in clinical use for
most diseases. Nevertheless, it has demonstrated to be of utility for someDHRs,
specifically for NIRs to allopurinol, anticonvulsants, and antiretrovirals, as it
will be described in other section.

Approaches for the identification of genetic variants

The seminal method to disentangle the genetic basis underlying human dis-
eases used polymorphic markers such as variable number of tandem repeats
and restriction fragment length polymorphisms through linkage analysis [17].
However, as complex diseases do not follow a simple Mendelian inheritance,
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pattern linkage-based approach has a limited capacity to capture associated
genetic variants [18]. Other frequent approaches were candidate genes studies,
based on biological plausibility criteria, which evaluated common single-
nucleotide polymorphisms (SNPs) in genes where an association with a partic-
ular pathology was proven or expected according to the biological underlying
mechanisms [15].

The development of high-throughput genotyping platforms in the early
2000s allowed the performance of genome-wide association studies (GWAS)
that explore millions of common SNPs representing the whole genome in case-
control studies (common disease-common variants hypothesis) [19••]. In spite
of their difficulties to explain disease heritability, around 4700 publications
have been registered until September 2020 in the National Human Genome
Research Institute Catalog of published GWAS, with 197,708 unique SNP-trait
associations (http://www.ebi.ac.uk/gwas). Notwithstanding the success of
GWAS in identifying genomic regions modulating risk of human diseases
[20], they only explore the involvement of common variants. However, it is
widely assumed that the etiology of complex diseases is also affected by rare
variants (common disease-rare variants hypothesis) [21]. In addition, GWAS
require large-size samples to capture disease-associated SNPs, which represents
an important drawback [22, 23].

Sanger dideoxy or chain-termination method (first generation sequencing)
has been the prevailing technology for DNA sequencing for more than 20 years
andmade the identification of the complete human genome sequence possible
[24, 25•]. However, it only allows the analysis of one single small fragment and
shows also limitations related to high cost and low throughput [26]. The need
of high-throughput, faster, and cheaper sequencingmethods initiated a funding
program by the National Human Genome Research Institute to reduce human
genome sequencing costs, which finally led to the development of massive
parallel sequencing or next-generation sequencing (NGS) technologies
(second-generation sequencing) [26]. Two key applications of NGS are
whole-exome and whole-genome sequencing (WES and WGS, respectively).
WES targets approximately 22,000 human-coding protein genes (exons), which
represent 1–2% of the genome, whereasWGS explores the entire genome. Thus,
while WES allows the identification of SNPs, indels, structural, and copy
number variants in coding regions, WGS is a non-targeted strategy that also
covers intergenic regions.

Although a third-generation sequencing method using nanopores and a
fourth generation using in situ sequencing have been developed to solve the
problem of short reads in NGS, this issue goes beyond our purposes [27••, 28].

As WES identifies a fewer number of genetic variants, the need of storage
resources is smaller than for WGS. Nevertheless, WGS provides complete infor-
mation concerning genetic variability of each DNA sample, its performance is
not influenced by capturing or amplification protocol, and as PCR is not
required there is a limitation of potential GC bias [29, 30]. Although it has
been reported thatWGS ismore powerful for detecting exome variants [31], it is
also more expensive than WES and its use in clinical routine diagnostic is still
limited.

A recently published study mapping 208 genes using data from the Exome
Aggregation Consortium [32••] supports that rare variants play a key role in the
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unexplained inter-individual differences in drug metabolism and disease phe-
notypes [33•].

The genetics of immediate DHRs
Betalactam antibiotics

There are not many studies focusing on the genetics of IRs to BLs. In fact, only
19 have been reported in a recent systematic review, and only 4 of them have
used a second population and replicated initial findings [13••]. Different
associations have been found with atopy-related genes. Thus, the non-
synonymous polymorphism rs11125 in the LGALS3 gene, which encodes an
IgE β-galactoside-binding, predicted BL allergy in a Spanish population, being
this association replicated in an Italian population [34]. Previously, the variants
Q551R and I50V in the alpha-chain of IL4 receptor gene (IL4RA) were associ-
atedwith total and specific IgE levels to prevalent allergens in Spain, respectively
[35]. Another study in Italy also found a statistically significant association
between immediate allergy to BLs and -1055C9T and R130Q SNPs in IL13,
and I50V and Q551R [36]. Carriers of the major allele of the rs2066845
polymorphism in nucleotide-binding oligomerization domain containing 2
gene (NOD2) showed higher total IgE levels [37], which were also found in
carriers of theminor allele of the -308G9A TNFA variant [38]. In addition to the
IL4RA gene [39], other associations with polymorphisms in pro-inflammatory
cytokines and related genes (IL4, IL13, IL10, IL18, IFNγ, and STAT6) have been
reported in different populations [40–46]. Recently, a strong association has
been found between the HLA-B*48:01 allele and IRs to BLs in Thai children
[47].

Concerning the GWAS approach, only one of such studies has been already
published in patients suffering from IRs to BLs, with the most important
associations found in HLA-DRA variants (rs7192 and rs8084) [48•].

Non-steroidal anti-inflammatory drugs
To the best of our knowledge, only a genetic association study has been
performed in patients with IRs to NSAIDs triggered by an IgE-dependent
mechanism [49]. Such study found these reactions to be associated with two
intronic variants (rs2241160 and rs2241161) in the centrosomal protein of 68
kDa gene (CEP68) [49]. Variants in this gene were also associated with CRs in
two ethnically different populations [50, 51].

Most candidate genetic association studies on CRs to NSAIDs, which have
been performed mainly in NERD, have focused on eicosanoids related genes
[15], as COX-1 inhibition is widely accepted to play a crucial role in the
underlying mechanism [10•, 11, 52]. However, as before, most of these studies
have not considered an independent population to validate their findings [15].
Variants in the COX-1 coding gene have been associated with NERD [53], and
expression levels of eosinophil leukotriene C4 synthase gene have been linked
to the upstream rs730012 variant (-444A9C) in this phenotype [54]. However,
the latter was not further validated neither in other NERD groups [55–58] nor in
NIUA patients [59]. Associations for arachidonic acid–associated genes and CRs
to NSAIDs have been also found between arachidonate 5-lipoxygenase activat-
ing protein and arachidonate 5-lipoxygenase genes in NIUA [59]; nevertheless,
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these associations were not found in NERD patients [57]. Other associations
have been described for PG and CysLT receptors [59–62], as well as for throm-
boxane receptors [63, 64]. Beyond the arachidonic acid pathway, additional
associations have been described for variants in diamine oxidase [65, 66], TNF
receptor [67], gasdermin B [68], and the HLA system [69, 70].

As for IRs to BLs, the GWAS approach has not been extensively used in CRs
to NSAIDs; however; some data are available from the four of such studies
already performed. The first GWASwas carried out in Korea and found the non-
synonymous polymorphism Gly74Ser (rs7572857) to be associated with a
decrease in the expiratory volume in NERD [50], whereas the second one, also
performed in a Korean population of NERDpatients, found a similar functional
association with the missense Met105Val variant (rs1042151) [71]. Genetic
links between HLA alleles and CRs to NSAIDs are intriguing and further studies
are needed, as an immunological mechanism has not been demonstrated to
take part. Finally, the two remaining GWAS have been performed in NIUA. One
of such studies included two independent populations from Spain and Taiwan,
and suggestive associations were found mainly for signaling pathways associ-
ated with Ca2+, cAMP, and/or P53 [51]. In the other study, performed in two
non-related Spanish populations, three variants in the guanine nucleotide-
binding protein (G protein), alpha inhibiting activity polypeptide 2 (GLNAI2),
were found [72]. The GNAI2 protein is a member of the family of G proteins, a
group of molecular switches that control downstream effector molecules acti-
vated by G protein–coupled receptors in both innate and adaptive immune
responses. PGs and CysLTs perform their biological functions by binding to
cognate receptor belonging to the G protein–coupled receptor superfamily [73].
The association between NIUA and GNAI2 variants is consistent with this
mechanism.

Despite of only two studies applying NGS to the assessment of IRs being
currently available [74, 75•], their results do support its applicability for these
reactions. In fact, a recent WES study in four families with a member suffering
from NSAID-induced isolated angioedema allowed the identification of loss of
function variants in different genes, mostly consisting in a frameshift deletion
[75•]. Interestingly, three different variants in the mucin 5B, oligomeric mucus/
gel-forming gene were found in three families, all of them inducing a frameshift
change in protein sequence and being associated with pulmonary fibrosis [75•].
Nevertheless, this gene is one of themostmutation-tolerant genes in the human
genome, and the participation of the mucin family of proteins in the patho-
physiology of this entity needs further analysis.

Non-immediate reactions

The most frequent drugs involved in NIRs are the anti-hyperuricemic xanthine
oxidase inhibitor allopurinol, anticonvulsants, and antiretrovirals, with most
genetic associations described with alleles from the HLA system (34). However,
genetic differences at population level lead to diverse common pharmacoge-
netic markers between populations. For example, carbamazepine (CBZ)-in-
duced severe cutaneous reactions have been linked to HLA-A*31:01 in Europe-
an and Japanese populations whereas in Taiwanese and Southeast Asian, it has
been to theHLA-B*15:02 allele [76]. Such differences in the genetic background
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represent a great challenge for the prevention of DHRs and for the efficient
translation of pharmacogenomics into clinical practice. Extensive information
on the genetics of NIRs is available from a PRISMA-compliant systematic review
recently published [77••].

Allopurinol
Allopurinol-induced SJS/TEN has been linked to the HLA-B*58:01 marker in
Asian [78] and in some European populations [79, 80], with different hypoth-
esis trying to explain how the interactions T cell receptor/HLA allele/protein and
drugs lead to a severe immune response [81–84]. In addition, this allele has
been also considered as a potential predisposing factor to develop other phe-
notypes triggered by NIRs to this drug [85].

Anticonvulsants
Information on the genetics of anticonvulsant-inducedNIRs is available mainly
for CBZ, lamotrigine (LTG), and phenytoin (PHT). These drugs are responsible
not only of mild reactions such as MPE but they also trigger severe reactions
such as SJS/TEN and DRESS.

The HLA-B*15:02 allele has been consistently associated with CBZ-induced
SJS/TEN in most Asian populations [86–91], with the exception of Japanese
[92, 93]. It has been proposed that the interaction of CBZ/T cell receptor and
three specific amino-acid residues on the peptide-binding groove of this allele
directly plays a crucial role in the pathogenicmechanism [82, 84]. In addition to
CBZ-induced SJS/TEN, HLA-B*15:02 has also been associated with MPE, and
HLA-B*58:01 with CBZ-induced MPE and DRESS in Thailand [94]. In a recent
meta-analysis of two GWAS carried out in European patients, theHLA-A*31:01
allele was identified as the strongest genetic predisposing factor for both CBZ-
induced severe cutaneous reactions and drug-induced liver injury [95]. Interest-
ingly, two independent GWAS also associated the HLA-A*31:01 allele with
CBZ-induced NIRs in both European [96] and Japanese patients [97].

The alleleHLA-B*15:02 has been also associated with LTG-induced SJS/TEN
in Chinese populations as described in a recently published meta-analysis [98],
although two other previous studies failed to associate this allele with both SJS/
TEN and MPE [99, 100]. The allele HLA-B*33:03 has been associated with an
increased risk of MPE in a Thai population [101], whereas it was protective in
Chinese and Korean populations [98].

PHT-induced SJS/TEN has also been associated with theHLA-B*15:02 allele
in Han Chinese [102] andMalaysians [103]. In a recent study, theHLA-B*51:01
and HLA-C*14:02 alleles have been significantly associated with PHT-induced
DRESS in Thai children [104]. In addition, the allele HLA-B*38:02 was shown
to be associated with PHT-induced SJS/TEN in this population [104]. Another
study found the HLA-B*13:01, HLA-B*56:02/04, and CYP2C19*3 alleles to be
strong risk factors for PHT-induced DRESS, with Chinese ancestry carriers of the
last allele being also at risk of developing SJS/TEN [105]. Finally, concurrent
testing of the CYP2C9*3/HLA-B*13:01/HLA-B*15:02/HLA-B*51:01 has been
shown to provide sufficient sensitivity and specificity to be used in PHT-
induced DHR prevention in East Asian populations [106].

The participation of HLA-A*31:01 allele in LTG or PHT-induced NIRs has
been also suggested through imputation of data from a GWAS including
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European-ancestry subjects; however, no genetic marker reached the genome-
wide significance [107].

Antiretrovirals
Around 5–7% of patients develop a NIR within the first 6 weeks after abacavir
(ABC) treatment initiation [108]. Two seminal independent studies linked
ABC-triggered NIRs to the HLA-B*57:01 allele in Australia and North America
[109, 110]. Such findings have been consistently replicated in other [111–114]
but not in all populations [112]. In fact, this allele is not frequent in some
African [115] and American [116] populations. Recently, ABC tolerance in
positive HLA-B*57:01 individuals has been associated with particular endoplas-
mic reticulum aminopeptidase 1 allotypes [117]. These data support an altered self-
peptide repertoire model by which ABC may activate T cells and favor efficient
peptide trimming in ABC-hypersensitive patients compared to those who tol-
erate the drug [117].

Nevirapine (NVP), another commonly reverse transcriptase inhibitor used
in HIV-1 treatment, also induces SJS/TEN. The CYP2B6 c.983T9C variant has
been associated with NVP-induced SJS/TEN in Malawian and Ugandan popu-
lations [118], as well as the intronic variant rs76228616 in the TRAF3 interacting
protein 2 gene in Mozambican patients [119].

The most significant association found in a recent GWAS on NVP-induced
SJS/TEN was reported for the rs5010528 variant, which is a strong proxy for
HLA-C*04:01 carriage [120].

As for IRs, the information on the application of new genetic technologies in
the study of NIRs is scarce. However, NGS HLA typing appears to be superior to
other techniques such as sequence-specific oligonucleotide probe genotyping
and real-time PCR with melting curve analysis [121••]. A recent WGS study on
NIRs-induced by the sulphonamide antibiotic co-trimoxazole revealed a strong
association with the rs41554616 stop-gained polymorphism in theMHC class I
polypeptide-related sequence A gene [122]. The replication study also revealed a
strong association with theHLA-B*13:01 allele in patients showing most severe
reactions [122].

Pharmacogenomics of DHRs and personalized medicine

One of the main drawbacks for the implementation of pharmacogenomic
testing in clinical practice is to translate genetic laboratory test results into
medical algorithm decisions. To address this difficulty, the Clinical Pharmaco-
genetics Implementation Consortium (CPIC) elaborates peer-reviewed, evi-
dence-based, and detailed gene/drug clinical practice guidelines (https://
cpicpgx.org/). These guidelines follow standardized formats and terminology,
include systematic grading of evidence and clinical recommendations, and are
regularly updated [123, 124••, 125].

The screening of theHLA-B*58:01 has been proposed to reduce the frequen-
cy of severe cutaneous NIRs-induced by allopurinol [126–128]. The positive
predictive value for HLA-B*58:01 testing, according to data from Han Chinese
and Thai populations, is around 1.5% whereas the negative predictive value is
100% [129]. Thus, a remarkable number of subjects will not develop a reaction
after allopurinol intake, andmore effort is needed to differentiateHLA-B*58:01
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carriers that will develop a reaction from those that will not. Differently from
Taiwan data [130], routine testing in Europeans being prescribed allopurinol
does not seem to be cost-effective [131•]. The CIPC guideline on HLA-B
genotyping and allopurinol dosing, updated in 2015, provides substantial
information concerning NIR-underlying mechanisms, genetic testing interpre-
tation, available genetic test options, data from association studies of HLA-
B*5801 with allopurinol-induced severe reactions, and, finally, therapeutic
recommendations [132].

Genetic testing for the HLA-B*15:02 is recommended by the US Food and
Drug (FDA) before initiating CBZ treatment in Asian origin subjects (54, 55).
The body of evidence linking HLA-B*15:02 with the risk of CBZ- and OxCBZ-
induced SJS/TEN and HLA-A*31:01 with the risk of CBZ-induced SJS/TEN,
DRESS, and MPE [87, 96, 97, 133–136] has provided the CIPC the basis for
the recommendations reported in its guideline [137]. Similar information is
also available for PHT-triggered NIRs from de CIPC website [138].

In 2008, the FDA proposed HLA-B*57:01 screening for all patients prior
ABC treatment [139] as it was previously published that testing for this allele
could be cost-effective [111]. The association between ABC-hypersensitivity and
HLA-B*57:01 has been described in different populations [114, 140–143];
however, the low prevalence of this variant in other populations should be
taken into account [144]. A CIPC guideline on HLA-B genotyping and ABC is
also available [145]. A recently published Cochrane Review suggests that pro-
spective HLA-B*57:01 testing could probably reduce ABC severe cutaneous
reactions in HIV-1-positive patients; however, the authors stated that these
results were based only in one trial and, consequently, attrition and detection
bias should be considered [146•].

In addition to genotyping and classical pharmacogenetics, another approach
that shows promising results in precision-based medicine for DHRs [147] and
human skin research [148] is single-cell transcriptomic analysis. In fact, a
recently published case report has followed this analysis using both skin and
blood samples from a patient with corticosteroid-therapy refractory DRESS
[149••]. The transcriptomic profile of T cells from the skin of this patient
showed a pattern indicative of activation, proliferation, and enhanced JAK-
STAT signaling. In addition, an enrichment of CCR10, JAK3, and STAT1 expres-
sion was detected when compared with the skin of unaffected controls [149••].
Moreover, they found a selective expansion of the CCR4+CCR10+CD4+ T cell
subpopulation also displaying a central memory phenotype [149••]. As both
CCR4 andCCR10 are tissue-homing receptors, andCCR4 is responsible for skin
tropism, their results give crucial information for explaining the primary cuta-
neous manifestation of DRESS.

Conclusion

Although the genetic mechanisms underlying DHRs remain elusive,
pharmacogenomics have shown to be useful for some phenotypes, mainly for
those mediated by a T cell response. However, more studies and, specifically,
clinical trials, are required for the implementation of pharmacogenomics in
routine clinical practice. The development of new methodological approaches,
including WES, WGS, and single-cell transcriptomics, will be of great utility to
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decipher the pathogenic mechanisms triggering clinical entities induced by
DHRs; however, their use in these reactions is still in its infancy. It is expected
that they will shed light to prevent and/or to improve the onset of these
pathologies, especially when considering that there are not animal models
available and that these reactions can be severe, and, potentially, life
threatening.
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