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Abstract

Purpose of review Drug hypersensitivity reactions constitute an unpredictable, serious
problem for health care systems as they interfere with drug treatment, limit therapeutic
options, and may be life-threatening. In addition to specific patient factors, they are also
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influenced by a genetic component. Indeed, a considerable body of knowledge supports
the participation of genetic variants in their underlying mechanisms.
Recent findings Latest research on this topic confirms the involvement of specific HLA
alleles in non-immediate reactions. Two well-known examples are the HLA-B*58:01 allele
in severe allopurinol-triggered reactions, and the HLA-B*15:02 allele in carbamazepine-
induced Stevens-Johnson syndrome/toxic epidermal necrolysis. However, there is a lack of
reliable genetic markers for immediate reactions and for hypersensitivity to NSAIDs.
Summary We summarize available information on the genetics of drug hypersensitivity
reactions, highlighting regulatory agencies recommendations when available. We include
some comments about new technological tools that should be implemented in the study of
these reactions.

Introduction

TheWHOdefined an adverse drug reaction as “a response
to a drug which is noxious and unintended, and which
occurs at doses normally used inman for the prophylaxis,
diagnosis, or therapy of disease, or for the modifications
of physiological function” [1]. Edwards and Aronson
further classified these reactions in several categories,
which include predictable and dose-dependent (type A,
augmented) reactions, and unpredictable, not dose-
dependent (type B, bizarre) reactions [2]. Drug hypersen-
sitivity reactions (DHRs) belong to the second group, and
encompass a set of pathologies triggered by immunolog-
ical (allergic reactions) or non-immunological mecha-
nisms (non-allergic reactions) [3, 4].

DHRs also may be labeled as immediate (IRs) and
non-immediate reactions (NIRs) when considering the
interval elapsed between last drug intake and the elici-
tation of clinically observable symptoms [5, 6].

IRs can be triggered by immunological or non-
immunological (pharmacological) mechanisms. The
prototype of immunological IRs is represented by spe-
cific IgE antibody-mediated reactions to betalactam
(BLs) antibiotics [7], which appear within the first hour,
and with clinical entities including urticaria and/or an-
gioedema, and anaphylaxis/anaphylactic shock. Non-
immunological IRs are represented by cross-reactive hy-
persensitivity (CRH) to nonsteroidal anti-inflammatory
drugs (NSAIDs), in which the underlying mechanism
has been linked to inflammatory mediators release sub-
sequent to cyclooxygenase (COX)-1 inhibition without
immunological recognition (pharmacological mecha-
nism) [8]. However, NSAIDs are also responsible for
IgE-mediated IRs (selective reactions) [8].

NIRs, which are mediated by T cells, appear
more than 1 h after last drug intake and comprise
a clinically heterogeneous set of conditions that, in
addition to mild reactions, include severe and po-
tentially life-threatening entities such as Stevens-
Johnson syndrome/toxic epidermal necrolysis (SJS/
TEN), and drug reaction with eosinophilia and
systemic symptoms (DRESS) [5, 6].

DHRs represent a serious problem in health care
practice as they may difficult drug treatment, limit ther-
apeutic options, and cause complications during hospi-
tal stay [9, 10]. In addition to specific patient factors
such as sex, age, ethnicity, concomitant drug treatments,
and environmental factors [11], the risk of developing
DHRs is also modulated by individual genetic back-
ground [12, 13]. Consequently, the identification of
genetic variants associated with drug response could be
used in genetic testing to prevent DHRs and to avoid its
potential effects on therapy, leading to a personalized
treatment. In fact, personalized medicine has become
the great promise of pharmacogenomics.

Here we will summarize the main aspects of the
pharmacogenomics of most frequent types of DHRs,
including CRH to NSAIDs. We will also include some
recommendations for genetic testing, and comments on
new technological approaches that may shed light on
the underlying mechanisms or have a potential role in
prevention/diagnosis. We think this manuscript will be
of interest not only for professionals in the allergy field
who deal daily with these reactions, but also for those
who develop their activity in related settings, and for
general practitioners.
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Immediate reactions

Due to their lowmolecular weight, drugs or drugmetabolites need to conjugate
with proteins to trigger an immunological reaction mediated by specific IgE
antibodies (immune-mediated IRs) or T cells (NIRs), a process which requires a
previous exposition to the culprit drug (sensitization). During sensitization,
dendritic cells process drug-protein adducts, which are presented to a Th2
phenotype lymphocytes. Th2 cells induce the production of drug-specific IgE
antibodies (sIgE) by plasma cells, which are finally bind to basophils and mast
cells specific receptors. In a subsequent contact, the drug-protein complex may
be recognized by at least two adjacent sIgE, triggering an intracellular signaling
pathway that culminates with basophil/mast cell degranulation. Consequently,
these cells release a number of pro-inflammatory preformed (histamine,
chymase, and tryptase) and de novo synthesized mediators (prostaglandin D2
and cysteinyl leukotrienes) which are responsible of the clinical symptoms [14].

A recently published PRISMA-compliant systematic review identified a total of
19 studies dealing with the genetics of IRs to BLs, with only four of them
replicating the discovery findings in a different, independent population [15••].
Of particular interest is the association of IRs to BLs with atopy, as it has been
shownby the associations between IL4RAQ551R and I50V variants and total and
specific IgE to prevalent allergens, respectively [16]. In addition, the rs11125
variant in LGALS3, which encodes a β-galactoside-binding lectin that binds to
IgE, has been reported to predict IRs to BLs in two populations from Spain and
Italy [17•]. The major allele of the rs2066845 variant in nucleotide-binding
oligomerization domain containing 2 gene (NOD2) was associated with a higher
IgE level in an Italian population [18]. Another study found significant associa-
tions between variants in IL13 (-1055C9T and R130Q) and in the α-chain of the
IL4 receptor variants (IL4RA I50V andQ551R) with IRs to BLs [19]; and the same
group also described higher specific IgE levels in carriers of theminor allele of the
promotor TNFA polymorphism -308G9A [20]. Other associations with pro-
inflammatory cytokines and related genes (IL4, IL13, IL4RA, IL10, IL18, IFNγ,
and STAT6) have been described in different populations [21–28].

To the best of our knowledge, only one genome-wide association study
(GWAS) has been conducted on immediate BL allergy, which found an asso-
ciation with polymorphisms in the HLA-DRA (rs7192 and rs8084) and C5
(rs17612) genes in Spanish and Italian populations [29•].

There are few studies on the genetics of potentially IgE-mediated reactions to
NSAIDs. However, we have reported that two intronic variants (rs2241160 and
rs2241161) in centrosomal protein of 68 kDa (CEP68) were significantly associ-
ated with an increased risk of immediate selective reactions to these drugs [30].
Interestingly, variants in this gene were previously associated with two different
clinical entities induced by CRH to NSAIDs in Korea and Spain [31, 32]. However,
further research is needed to shed light on the reasons of this association.

Non-immediate reactions

In addition to T lymphocytes, other cells from the immune system are also
involved in NIRs. Thus, NIRs may be grouped at least into four categories: (1)
Type IVa, with T cells producing interferon (IFN)-γ-activated macrophages,
being eczema the typical clinical manifestation; (2) Type IVb, mediated by T
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cells producing Th2 cytokines (mainly IL 4 and IL 5), which in turn induce B
cells to produce antibodies, and mast cell and eosinophil responses, mainly in
DRESS, maculopapular exanthema (MPE), and bullous exanthema; (3) Type
IVc, induced by CD4+ and CD8+ T lymphocytes, which produce cytotoxic
mediators that lead to keratinocyte apoptosis in MPE and massive apoptosis
in SJS/TEN; and (4) Type IVd, characterized by neutrophil activation and
recruitment induced by T cells through the production of the chemokine
CXCL8, being AGEP the typical clinical entity [33].

Most genetic associations between NIRs have been found with HLA alleles
[34••]. In this sectionwewill focus onmain genetic findings inDHRs induced by
allopurinol, antiepileptics, and antiretrovirals, themost frequently involved drugs
in NIRs. The Clinical Pharmacogenetics Implementation Consortium (CPIC)
published several guidelines that are periodically updated and try to incorporate
pharmacogenetics information into clinical decisions (https://cpicpgx.org/).

Allopurinol
The anti-hyperuricemic xanthine oxidase inhibitor allopurinol is the most
frequent medicine triggering SJS/TEN [35]. The HLA-B*58:01 allele has been
consistently associated with SJS/TEN mostly in Asian populations [36], al-
though data on European patients are also available [37, 38]. In fact, in a recent
meta-analysis of 21 studies inHLA-B*58:01 carriers suffering from allopurinol-
induced severe cutaneous NIRs, a summary OR of 82 was found, rising to 100
in matched and population-based studies [39••].

The robustness of these associations supports that this marker takes a central
role in allopurinol-induced SSJ/TEN pathogenesis, with different hypothesis
aiming to explain how the T cell receptor and the HLA system interact with
peptides and drugs, and elicit an immunological reaction [40–42].

Several studies have proposed the screening of theHLA-B*58:01 allele to reduce
the incidence of severe cutaneous allopurinol-triggered NIRs [43•, 44•, 45, 46].
However, currently their routine testing in patients being prescribed allopurinol
does not appear to be cost-effective in Europe [47•], although different results have
been found in a retrospective, population-based cohort study in Taiwan [48]. In
fact, the authors found that HLA-B*58:01 genetic screening showed an adequate
cost-effectiveness ratio prior to therapy with urate-lowering which also included
lifetime saved and quality-adjusted life-years gained [48].

The CIPC guideline concerning HLA-B genotyping and allopurinol dosing,
initially published in 2013 [49], has been recently updated [50]. According to
Han Chinese and Thai populations data, the positive predictive value for HLA-
B*58:01 testing is around 1.5% and the negative predictive value is 100% [51],
which implies that a substantial number of individuals will not develop NIRs
subsequent to allopurinol treatment. More research is needed to improve the
positive predictive value in order to differentiate the carriers of theHLA-B*58:01
allele that will present a reaction from those that will not.

Finally, the HLA-B*58:01 allele has also been proposed as a risk factor for
other severe and mild NIRs in Han Chinese individuals [52].

Antiepileptics
Most NIRs to aromatic antiepileptic drugs have been reported for carbamaze-
pine (CBZ), phenytoin (PHT), and lamotrigine (LTG).
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Carbamazepine
NIRs to CBZ appear in up to 10%of patients, with skin being themost commonly
affected organ [53]. In addition to mild entities such as MPE, these reactions also
include SJS/TEN and DRESS [53]. The HLA-B*15:02 allele has been strongly
associatedwith CBZ-induced SJS/TEN in different Asian populations, inwhich this
allele is frequent. Thus, the US Food and Drug Administration (FDA) recommend
genetic testing for HLA-B*15:02 before initiating treatment in subjects with Asian
origin [54, 55]. It has been proposed that the interaction of the drug with T cell
receptors and three specific residues on the peptide-binding groove of HLA-
B*15:02 directly participates in the pathogenesis of CBZ-induced SJS/TEN [41, 56].

In the first study reporting the strong association betweenHLA-B*15:02 and
CBZ-triggered SJS/TEN, this allele was present in 100% of Han Chinese patients
suffering from the reaction, and only in 3% of CBZ-tolerant patients and in
8.6% of the general population [57]. This association has been further repli-
cated in the same ethnic group [58, 59] as well as in other Asian countries [60–
62], with the exception of Japan [63, 64]. However, this association has not
been found in two European studies [37, 65]. Recently, HLA-B*15:02 has been
also associated with CBZ-induced SJS/TEN and MPE (OR = 70.91 and OR=
7.27, respectively) in a Thai population [66]. Interestingly, the HLA-B*58:01
was significantly linked to CBZ-induced MPE and DRESS in this study [66].

In addition to HLA-B*15:02, it has been also proposed to test the HLA-
B*31:01 allele in patients at risk of developing DHRs to CBZ [67•]. In fact, this
allele has been associated with CBZ-induced MPE in Han Chinese patients from
Taiwan [58], with MPE and DRESS in Europeans [68], and with DRESS in
Japanese [69]. A recent meta-analysis concluded that the HLA-B*31:01 allele is a
specific predictor for CBZ-induced DRESS but not for CBZ-induced SJS/TEN [70].
This allele has been recently linked to oxcarbamazepine-induced DRESS [71].

Phenytoin
HLA-B*15:02 has also been associated with PHT-induced SJS/TEN in Han
Chinese [72] and in a Malay population [73], and in a lesser extent with LTG-
induced SJS/TEN in Han Chinese [72]. The missense rs1057910 variant in
CYP2C19*3 has been linked to an accumulation of PHT in patients suffering
from severe cutaneous DHRs to this drug in a study comprising patients from
Taiwan, Japan, and Malaysia [74].

A recent manuscript has found a strong association between the intronic
variant rs78239784 of the complement factor H-related 4 gene (CFHR4) with
PHT-induced MPE in Europeans [75].

Another interesting point is how allele combination may help to predict
NIRs. Thus, in a study on PHT-induced severe cutaneous reactions, the HLA-
B*13:01,HLA-B*56:02/04, and CYP2C19*3 alleles were found to be strong risk
factors for DRESS [76]. Carriers of the allele CYP2C9*3 were also at risk of
developing SJS/TEN only if they had Chinese ancestry [76]. However, in Thai
patients this variant was not found to be associated with PHT-induced DRESS
but with SJS/TEN [77]. Recently, concurrent testing of the CYP2C9*3/HLA-
B*13:01/HLA-B*15:02/HLA-B*51:01 alleles has shown an appropriate sensi-
tivity and specificity to be potentially used as a predictive tool to prevent PHT-
associated DHRs in East Asian populations [78].
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Information concerning the interpretation of genetic testing and available
tests for CBZ and PHT can be found in the CPIC guidelines [79, 80].

Lamotrigine
In contrast to CBZ-induced severe cutaneous DHRs, the alleleHLA-B*15:02was
not found to be associated with LTG-induced SJS/TEN and MPE in two inde-
pendent studies carried out in Han Chinese populations [81, 82]. However, in a
recent meta-analysis, HLA-B*15:02 was associated with LTG-induced SJS/TEN
in Chinese patients, whereas the variant HLA-B*24:02 was associated with the
risk of both SJS/TEN and MPE [83••]. In addition,HLA-B*33:03was protective
in Chinese and Korean populations [83••], contrary to the findings of a Thai
study that associated it with MPE [84]. Finally, the HLA-A*02:01:01/HLA-
B*35:01:01/HLA-C*04:01:01 haplotype has been linked to LTG-induced MPE
in Mexican Mestizo patients [85].

Antiretrovirals
Abacavir, a nucleoside reverse transcriptase inhibitor used in combination
therapies for the treatment of HIV-1 infections, is usually well tolerated; how-
ever, 5–7% of exposed patients developed DHRs within the first 6 weeks after
initiation of abacavir [86]. The first links between abacavir-triggered DHRs and
the HLA-B*57:01 allele were reported in 2002 on Australian and North Amer-
ican patients [87, 88], and the first study showing that the pre-prescription of
pharmacogenetic testing for this allele could be cost-effective was published in
2004 [89]. Thus, the FDA recommended in 2008 a HLA-B*57:01 screening test
for all patients prior to starting abacavir [90••]. In fact, the associations of this
allele with DHRs to abacavir have been also described in other populations
[91–95]. AsHLA-B*57:01 is significantly less common in HIV-infected Koreans
than in other populations, testing this allele may be a less useful tool for
screening in Asians patients, who have a low prevalence of this variant [96].

A guideline on HLA-B genotyping and abacavir dosing is available [97], and
has been recently updated [98].

SJS/TEN has been associated with the administration of nevirapine, another
reverse transcriptase inhibitor used in HIV-1 infections. The CYP2B6 c.983T9C
polymorphism has been associated with nevirapine-induced SJS/TEN in Afri-
cans, and considered an ethnic-specific predisposing factor [99]. The intronic
variant rs76228616 in the TRAF3 interacting protein 2 gene (TRAF3IP2), which
encodes for a protein involved in regulating responses to cytokines bymembers
of the Rel/NF-κB transcription factor family, has also been recently linked to
nevirapine-triggered SJS/TEN susceptibility [100].

Cross-reactive hypersensitivity to NSAIDs

According to the timing of the reaction, CRHmay have an immediate outcome
or appear several hours after the last drug intake [101].

As COX-1 inhibition and subsequent cysteinil-leukotrienes (CysLTs) release
have been proposed as key players in CRH to NSAIDs [102], most genetics
studies have evaluated SNPs related to the arachidonic acid (AA) metabolic
pathway following a candidate gene strategy [103]. NSAIDs-induced acute
urticaria/angioedema (NIUA) is the most frequent entity induced by NSAIDs

6 Drug Allergy (L Mayorga, Section Editor)



hypersensitivity [104–106]; however, most available genetic information refers
to NSAIDs-exacerbated respiratory disease (NERD) [103]. Another drawback
for most genetic studies on CRH to NSAIDs is that a second population to
replicate potential findings had not been usually included [103].

Concerning the AA pathway, two variants (rs5789 and rs10306135) in the
prostaglandin-endoperoxide synthase gene, which encodes COX-1, were found
to be associated with NERD [107]. Increased eosinophil expression levels of the
leukotriene C4 synthase gene (LTC4S) were found in two studies in bronchial
biopsies fromNERD patients [108, 109]. These findings were further replicated
in another NERD population and associated with the minor allele of the LTC4S
promotor polymorphism rs730012 [110]. However, this association was not
found in other NERD populations [111–114] or in NIUA patients [115].
Regarding lipoxigenases, we found an association between NIUA and the
rs1132340 variant in arachidonate 5-lipoxygenase (ALOX5) activating protein
[115], which was not found in a previous Korean study in NERD patients [113].
The promotor polymorphism rs7220870 (-272C9A) in ALOX15was associated
with NIUA in two independent populations from Spain [115]; however, this
variant was not linked to NERD in Korea [94]. Another variant in ALOX15
(rs3892408) was also associated with NERD in a Spanish population [107].
Other associations have reported between NIUA and thromboxane A (TBXA)
synthase 1 gene (TBXAS1, rs6962291) [116], and in the prostaglandin receptors
genes PGE1R (rs3810253 and rs3810255), PGER2 (rs1254598), and PGDR
(rs8004654) [115].

Several associations with SNPs in PGR1-4 and PGGIR have also been report-
ed for NERD [117, 118]. Concerning CysLTs receptors, three SNPs in the
CYSLTR1 promotor (-634C9T, -475A9C, and -336A9G) have been associated
with NERD [117, 118], whereas the synonymous rs320995 variant has been
linked to NIUA [115]. SNPs in CYSLTR2 affecting gene expression have been
associated with NERD [119]. The minor allele of the 795T9C TBXA2R poly-
morphism was found to be higher in NERD than in ASA-tolerant asthmatics
[120], and the TBXA2R variant -4684T9C was associated with NIUA [121].

Apart from candidate genes, other associations have been reported between
NERD andNIUA and themissense SNP rs10156191 (Thr16Met) in the diamine
oxidase gene (DAO) [122], and the 8956 C9G variant has been recently linked
to NIUA in Brazilian patients [123]. We have also found in a Spanish popula-
tion some associations between NIUA and SNPs in genes involved in mast cell
activation such as phospholipase A2 group IV A (PLA2G4A, rs12746200),
phospholipase C gamma 1 (PLCG1, rs2228246), and TNF receptor superfamily
member 11a (TNFRS11A, rs1805034) [124]. Two intronic polymorphisms in
the epithelial cell apoptosis-related gene gasdermin B (GSDMB, rs870830 and
rs7216389) were statistically associated with FEV1 in a Korean NERD popula-
tion [125]. Other associations have been described between NERD and IL4 (-
589T9C) [126], and with CCTTT repeats in nitric oxide synthase 2 gene
(NOS2A) [127]. As non-immunological mechanisms have been demonstrated
to take part in the pathogenesis of CRH to NSAIDs, it is intriguing that some
studies have linked NERD to some alleles from the HLA system [128, 129].

Up to now three GWAS on CHR to NSAIDs are available. The first
one was published in 2010 in a Korean population of NERD patients,
and found an interesting association between the non-synonymous SNP
rs7572857 (Gly74Ser) in CEP68 and the decline in FEV1 [31]. We
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further evaluated the genetic variability in this gene and found evidence
of association between 17 SNPs and NIUA, including the Gly74Ser
variant, whereas 8 of these polymorphisms were marginally associated
with NERD [32]. As stated before, we have also found variants in this
gene associated with selective reactions to NSAIDs [30]. CEP68 partici-
pates in centrosomal cohesion and epidermal growth factor signaling
mechanisms [130, 131]; however, the cause of this association needs to
be clarified at the molecular level. The second GWAS was also per-
formed in NERD in Korea, and found the most significant association
with HLA-DPB1 rs1042151 (Met105Val) [132]. In addition, this variant
also showed a gene dose effect for the decline of FEV1 after aspirin
challenge, supporting a potential role for HLA-DPB1 in the etiology of
NERD [132]. We have performed the last available GWAS on CRH to
NSAIDs, focusing on NIUA and including two independent populations
from Spain and Taiwan [32]. The most interesting finding was a sug-
gestive association in Spanish patients with RIMS1, which encodes a
protein from the RAS gene superfamily member that regulates synaptic
vesicle exocytosis; whereas in the Han Chinese group from Taiwan, it
was with ABI3BP [32]. Most of suggestively associated regions are linked
to Ca2+, cAMP, and/or P53 signaling pathways [32].

New available technological approaches

Personalized medicine aim should not be confounded with the hypo-
thetical design of an individual specific treatment for every patient to
maximize drug effectiveness and to minimize unwanted responses. In
fact, the US National Research Council has proposed the term “precision
medicine,” defined as the “ability to classify individuals into subpopu-
lations that differ in their susceptibility to a particular disease, in the
biology and/or prognosis of those diseases they may develop, or in their
response to a specific treatment” [133].

Outstanding advances achieved inmolecular biology techniques over recent
years are making it possible to begin to elucidate the genetic mechanisms
leading to the development of DHRs in some individuals but not in others;
however, as our knowledge of individual disease-predisposing factors is still
sparse, precision medicine is not currently in clinical use for most pathologies,
including DHRs.

As stated, genetic studies on DHRs have been usually performed following a
candidate gene strategy without including replication populations. Concerning
GWAS, although they have been successful in elucidating genomic regions
influencing some pathologies [134••], they do not assess rare variants that need
sequencing to be identified and are widely thought to influence complex
diseases [135–137]. The need of high-throughput, faster, and cheaper se-
quencing methods was evidenced with the completion of the human genome
project [138, 139], which finally guided the development of parallel or next-
generation sequencing (NGS) and bioinformatics tools [140]. The description
of fundamentals of NGS is beyond the aims of this manuscript although
comprehensive revisions about this topic are available [141••, 142].

As for other pathologies, genomic sequencing in DHRs patients would
improve not only our understanding of the association between genetic
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variability and individual drug response, but also its interpretation and trans-
lation to diagnosis and clinical decisions. NGS technologies, including whole
exome and whole genome sequencing (WES and WGS, respectively), are
transforming biomedical research and have shown their potentiality in a variety
of human diseases; however, they have not yet been applied to the discovery of
variants involved in DHRs.

In addition to genotype changes (WES and WGS, and targeted se-
quencing), other NGS techniques could evaluate phenotypic changes
induced by DNA methylations (Methyl-Seq) or by histone modifications
affecting the interactions DNA-proteins such as transcription factor bind-
ing (chromatin immunoprecipitation sequencing, ChIP-Seq). These phe-
notypic changes may affect gene expression-related processes or RNA
expression, which can be assessed through RNA sequencing (RNAseq)
[143••]. Changes in gene expression during the acute phase of different
types of DHRs have been described [144].

Finally, an interesting clinical application of NGS in DHRs refers to HLA
typing, which could be a powerful clinical predictive tool [145, 146••] espe-
cially in severe, life-threatening diseases.

Conclusion

The identification of reliable genetic markers to predict DHRs is a crucial issue
for healthcare professionals and represents an important goal for the pharma-
ceutical industry.

Up to now most of them have been identified for NIRs, with a central place
for alleles from the HLA system [146••]. In fact, FDA recommendations for
genetic testing to prevent DHRs are mainly related to these alleles, and
pharmacogenomic biomarkers are increasingly included in drug labeling. An
exhaustive table of such biomarkers has been updated in June 2018 and is
available in PDF format (https://www.fda.gov/downloads/drugs/
scienceresearch/ucm578588.pdf).

Although substantial information exists for IRs and for CRH to
NSAIDs, genetic variants with a clinical utility to identify or prevent
DHRs have not been identified yet, even if some of these reactions
can also be life-threatening.

Two main approaches have been used in the study of the genetic
basis of DHRs, i.e., candidate gene and GWAS. Both have shown to be
of utility in pharmacogenetics/pharmacogenomics but they also have
important limitations, mainly related to statistical power and their in-
ability to detect rare variants, which is widely accepted to play a sub-
stantial role.

NGS technologies are increasingly used in the study of several human
diseases for diagnostic purposes and for identifying potential therapeutic
targets. With the reduction of sequencing costs, it is expected that these
approaches could be generally used in other clinical settings, including the
field of DHRs. The implementation of NGS in the clinics may lead to
simultaneous, quick testing of many genes at relatively low costs. Interna-
tional collaboration efforts will be needed to circumvent difficulties related
to sample size when evaluating rare variants and ethnic/ancestry influence.
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