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Abstract
Purpose of Review The management of hydroelectric generation in the context of power system operations has been a difficult
and important problem since the inception of power systems more than a century ago; however, various current developments are
leading to important new associated challenges and opportunities: massive integration of variable renewable energy and other
disruptive technologies, climate change effects on the availability of hydro inflows, and also new efficient techniques for
optimization under uncertainty.
Recent Findings Multistage stochastic optimization and stochastic dual dynamic programming are currently the dominant
techniques for hydroelectric generation scheduling problems; however, there are many recent extensions and improvements
on such techniques, and alternative approaches are being developed with significant potential for future concrete applications
from power system operators and policy makers.
Summary In this context, this paper presents a literature review on hydroelectric generation scheduling models, and a discussion
on the critical challenges, open research questions, and future lines of research associated to this problem.
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Introduction

Managing the power production from hydroelectric re-
sources is a challenging task that requires properly
balancing operational costs and electricity shortage risks
throughout time. Whenever hydroelectric generators pro-
duce power, this moves water downstream from a reser-
voir, which renders the availability from hydro power pro-
duction to be reduced in the near future. In other words,
operators need to continuously analyze if water should be

employed for power production at that time or kept stored
for future production. This difficult decision depends crit-
ically on the structure of the power system (generation
mix, transmission capacities, etc.) and also on future hydro
inflows into the water network, which are highly uncertain.

In order to account for hydro inflow uncertainty, the
management of hydroelectric generation relies on stochas-
tic optimization models that represent the operation of the
power system over a given planning horizon (e.g., a few
weeks, months, or even years), considering uncertainty on
the hydro inflows over such horizon, in order to represent
the power production from all generators throughout time,
in such a way that the water kept stored in reservoirs
throughout time ensures a cost-effective operation over
the entire horizon.

In this context, the purpose of this paper is to provide an
updated literature review on the problem of hydroelectric gen-
eration in the context of power system operations and a critical
discussion of the most pressing associated challenges and po-
tentially promising research lines. In what follows, “Literature
Review” presents such literature review, “Discussion” such
discussion, and “Conclusion” concludes.
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Literature Review

The problem of hydroelectric generation has been modeled
through multistage stochastic programming (MSP). In an
MSP, there is a stochastic process that represents uncertain
factors (e.g., hydro inflows and/or other factors), and deci-
sions are made throughout time in such a way that expected
costs (or some other metric) are minimized [1]. Every time a
decision is made, it need to take into account the potential
realizations from uncertainty that comes afterwards. Further,
large-scale linear MSPs can be solved using the stochastic
dual dynamic programming (SDDP) algorithm, a method first
proposed by Pereira and Pinto [2••], which is based on a
nested and iterative application of Benders decomposition
[3], possibly exploiting various assumptions in the problem
formulation. SDDP was developed for hydropower schedul-
ing in hydropower dominated systems such as Brazil [4, 5] or
Norway [6, 7] and has been used both under short and long
time horizons [8, 9]. This method is based on two critical
assumptions: (i) a finite number of uncertainty realizations
(or scenarios) and (ii) that the random data process is
stagewise independent. Based on this, the algorithm employs
cutting-plane approximations of expected future costs (or
cost-to-go functions) in a nested form and randomly draws
samples from the distribution of the uncertainty data process
to iteratively solve an approximation of the problem under a
given scenario tree (in what are called forward steps of the
algorithm), and then iteratively add Benders cuts to each cost-
to-go function to improve their approximation of future ex-
pected costs (in what are called backward steps of the
algorithm).

With the purpose of improving the risk-management capa-
bilities of MSPs, various authors have worked on including
risk-averse objective functions in SDDP-based algorithms
[10–13]. Further, according to Rudloff et al. [14], time incon-
sistency induces sub-optimality, and an inconsistency gap can
measure it; thus, a risk-averse approach based on CVaR (con-
ditional value at risk) with time consistency was proposed.
Through the use of SDDP, in the work of Brigatto et al.
[15], the results of Rudloff et al. [14] were extended, along
with a methodology proposed to evaluate the sub-optimality
gap when considering inconsistent policies as a result of ig-
noring Kirchhoff voltage laws and the “n − k” security criteri-
on. It was also showed that these inconsistent policies might
exhibit system vulnerabilities and distort market signals.

Both stopping condition and convergence analysis are
among the most relevant issues regarding SDDP [8, 16], es-
pecially in risk-averse formulations [17]. Thus, for a hydro-
electric operation planning problem, Brandi et al. [18] devel-
oped a convergence criterion, where including a CVaR does
not hind the convergence analysis and whose results yield
improvements in the SDDP algorithm and the effectiveness
of the convergence criterion. In this context, a very relevant

associated difficulty is that the algorithm does not guarantee
convergence under non-convexities. As an example, one of
the main assumptions of SDDP is the stagewise independence
of the uncertainty parameters, thus, including intertemporal
dependence needs to be carefully addressed to avoid possible
non-convexities arising from the representation of the stochas-
tic processes involved (due to the need of auxiliary variables
for representing such process). For example, it has been
shown that autoregressive processes are a form of capturing
intertemporal dependencies that can keep the convexity of the
problem [19, 20].

On the other hand, the SDDiP (stochastic dual dynamic
integer programming) method proposed by Zou et al. [21••]
allows solving MSPs with integer variables by approximating
all state variables through binary variables. The main differ-
ence with SDDP lies in the description of the expected cost-to-
go function: cutting planes (Benders cuts) are used in SDDP,
while Lagrangian and strengthened Benders cuts are used in
SDDiP. A key property of this algorithm is that it significantly
extends the capability of representing non-convex expres-
sions, as in the case of the work done by Hjelmeland et al.
[22], where SDDiP was applied for a medium-term hydro-
power scheduling problem with a non-convex function for
the relation between water discharge and power production.
This is an important type of non-convexity, which is poorly
approximated under an assumption of linearity; in particular,
the authors show an important overestimation of reserve ca-
pacity sales when these non-convexities are ignored.

It should also be noted that important contributions have
been made in the development of open-source and readily
implementable SDDP/SDDiP libraries. Dowson and
Kapelevich [23••] developed SDDP.jl, an open-source Julia
library for solving linear MSP problems using SDDP. Further,
Ding et al. [19••] developed MSPPy, a Python/Gurobi pack-
age to solve linear MSPs and integer MSPs through algo-
rithms based on SDDP and SDDiP.

An alternative method to solve MSPs is approximate dy-
namic programming (ADP). In the work of Asamov et al.
[24••], it was demonstrated that for the problem of grid-level
energy storage, the use of piecewise linear value function
approximations for future operational costs provides similar
performance to those obtained with SDDP, although there are
no guarantees of optimality. On the other hand, Löhndorf and
Minner [25] propose the use of an ADP approach that com-
bines the policy iteration method with a least-squares policy
evaluation to approximate the value function in a model of
optimal bidding strategy for renewable power generation with
storage. Further, through the approximate stochastic dual dy-
namic programming (ADDP) approach proposed by
Löhndorf et al. [26], the work of Löhndorf and Minner [25]
was extended to allow to model systems with a higher number
of units, and hence, a higher number of decision variables for
each stage. ADDP combines ideas from SDDP with ADP by
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approximating the value function through multidimensional
Benders cuts. In turn, Salas and Powell [27•] present an
ADP algorithm based on separable, piecewise linear value
function approximation to obtain near-optimal control policies
in stochastic energy storage problems, where the proposed
method linearly scales with the number of storage devices.

In recent years, another approach that has gained popularity
for solving MSPs is the use of linear decision rules (LDR).
LDR produces an approximation of linearMSPs by restricting
that each stage decisions are a linear (or affine) function of the
uncertain parameters, and under certain assumptions, an ex-
plicit linear model can be formulated. In Gauvin et al. [28••], a
multistage multi-reservoir model based on LDR was pro-
posed, where various relevant aspects were explicitly modeled
(e.g., water delays). The objective was to minimize the flood
risk through a CVaR risk functional, and the obtained results
confirmed the value of the use of LDR by obtaining
implementable policies and maintaining the model tractabili-
ty. Based on this work and using LDR, in Gauvin et al. [29•], a
nonlinear time series (ARIMA) was introduced along with
variable water head. Due to the non-convexity of the time
series, the authors used a successive linear programming
(SLP) algorithm in a rolling horizon framework. Compared
to his previous work [28••], the nonlinear representation of
water inflow improved flood management. Beyond the direct
use of LDR for MSP, Bodur and Luedtke [30••] introduce a
new approach called two-stage LDR, where there are two
advantages over static LDR: it works with slight assumptions
(relatively complete resource), and it provides better bounds
and policies through approximating MSPs by traditional two-
stage stochastic optimization problems that can be solved with
Benders decomposition. Although two types of problems are
analyzed by the authors (inventory planning and capacity ex-
pansion planning), it would be interesting to test this approach
in other contexts.

Besides stochastic optimization approaches, there are vari-
ous other areas of optimization under uncertainty that could
potentially play an important role in the management of hy-
droelectr ic generat ion. In part icular , the area of
distributionally robust optimization (DRO) has received a
growing attention in recent years [31–33]. The overall idea
of DRO is that expected costs are minimized under the selec-
tion of a worst-case distribution within a given set of proba-
bilistic distributions (typically called ambiguity set). This pro-
vides the decisions obtained with a guarantee that they are less
affected by potentially biased or poorly representative data. In
this context, Huang et al. [34••] developed risk-averse multi-
stage hydrothermal planning model using a convex combina-
tion between expected costs and CVaR under an ambiguity set
constructed using an ℓ∞ distance metric between the scenario
weights of different probability distributions. A similar ap-
proach is found in the work of Philpott et al. [35], where a
distance ℓ2 is used to define the ambiguity set, and a novel

algorithm that extends the SDDP is derived to solve DRO
problems, which converges almost surely to an optimal
policy.

Due to the stochastic nature of the problem of hydroelectric
generation scheduling, it is of upmost importance to have an
adequate representation of the uncertainty involved. The use
of historical data for modeling the future realizations of uncer-
tainty is the most commonly performed practice, and in the
literature there is a wide range of streamflow forecasting
methods that are generally time series (such as autoregressive
models), artificial intelligence methods (such as neural net-
works or support vector machines), and also hybrids between
the previous two [36]. Regarding time series approaches, for
hydro inflows there is important research on vector
autoregressive (VAR) models [17, 37], periodic
autoregressive (PAR) models [5, 38, 39], and geometric peri-
odic autoregressive (GPAR) models [20], among others. The
final model choice is entirely dependent on the problem to be
addressed and the historical behavior of the uncertainty fac-
tors. For instance, according to Lohmann et al. [40••], models
such as AR, ARMA (autoregressive moving average), and
ARIMA (autoregressive integrated moving average) are gen-
erally used to model annual forecasts [41] because they as-
sume stationarity, while for those with greater temporal gran-
ularity (which need to incorporate seasonal aspects) models
such as periodic ARMA (PARMA) or PAR are typically used
[42]. In particular, in Lohmann et al. [40••] the modeling of a
SPAR (spatial PAR) is proposed to consider spatial correla-
tions of reservoir water inflows on a monthly scale. In turn, it
has been shown that autoregressivemodels are highly efficient
methods, as in the case of Dashti et al. [37], where it was found
that modeling the uncertainty associated with water inflow
was more accurate by a VAR instead of a simpler polyhedral
set based on historical data, in the context of a robust optimi-
zation model. Although hydro affluents can be considered as
the most significant uncertainty sources, there are other
sources of interest. Regarding solar, wind, and electricity de-
mand, considerable research work has been carried out to
consider them in short-term problems [43–45].

Regarding unexpected contingencies, contingency con-
straints can be added to operational models, e.g., the n − 1 or
n − k criteria. In the work of Street et al. [46], the “n − k”
criterion is considered, where operational decisions are such
that they can cope with up to k components removed from the
network due to contingencies, while Brigatto et al. [15] con-
siders an n − 1 criterion.

Discussion

This section presents a discussion about various important
current challenges in the management of hydroelectric gener-
ation scheduling.
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Flexibility Representation in Cases of Deep Variable
Renewable Energy Integration

Wind and solar power represent variable renewable energy
sources that are increasingly being integrated in many power
systems across the globe due to their cost-effectiveness and
important sustainability contributions; however, their integra-
tion requires power systems to adequately compensate their
variability with flexible energy sources that can quickly adapt
to varying power injection requirements. In this context, hy-
droelectric resources can play an important role in providing
such flexibility and thus contributing to the massive adoption
of variable renewable energy. This raises an important chal-
lenge in terms of correctly representing the flexibility that the
different energy sources can provide, in hydroelectric genera-
tion scheduling problems. In particular, to model flexibility in
a more precise form, such problems need to be adapted by
incorporating more detailed representations of the operational
dynamics of the system, including for example the consider-
ation of hourly granularities through representative days [47].
Further, associated flexibility challenges are to properly rep-
resent the reserves that each generator can provide, the role of
short-term storage units (batteries, concentrated solar power,
hydro run-of-river, and pumped storage), and unit commit-
ment aspects (start-up costs, minimum up and down times,
etc.).

Improved Hydro Inflow Uncertainty Modeling and the
Effects of Climate Change

Hydroelectric generation scheduling depends critically on
how hydro inflow uncertainty is modeled. If the uncertainty
representation employed is closer to the real phenomena it is
reasonable to expect that better water storage decisions will be
carried out throughout time. However, not all uncertainty
models will lead to efficient optimization model formulations.
Thus, it is important to strike the right balance between the
complexity of the uncertainty model employed, and the accu-
racy with which all other relevant phenomena are represented
in a hydroelectric generation schedulingmodel. An interesting
development in this context is the use of Markov chains esti-
mated with clustering techniques and employed in SDDP ap-
proaches [19, 20]. This could be a promising method to cap-
ture relevant uncertain hydro inflow dynamics. Further, it is a
good question if new DRO and robust optimization models
can be developed, with alternative representations of uncer-
tainty in hydroelectric generation scheduling models.
Moreover, it is important to take into account the fact that
historic data for hydro inflows might be significantly biased
as compared to what is expected from future hydro inflows,
due to climate change effects [48, 49]. In fact, many countries
are currently experiencing droughts without precedent in

historic records (see, e.g., the Chilean case in Garreaud et al.
[50]).

Incorporating Other Sources of Uncertainty and the
Concept of Resilience

Another important challenge in hydroelectric generation
scheduling is incorporating other sources of uncertainty into
the models, beyond uncertainty only in hydro inflows. Some
uncertain factors, such as fuel prices, play a role in a similar
time span as hydro inflows. In such factors, the hourly uncer-
tainty is not relevant, but weekly or monthly uncertainty is
very relevant. Thus, similar methods can be employed, or
adapted, to include such uncertainties into the model.
However, other sources of uncertainty present a very different
nature and can be difficult to represent in hydro scheduling
models. For example, wind and solar power present a signif-
icant hourly (and even intra-hourly) variability. This again
connects to the concept of flexibility representation and re-
mains an open challenge. Further, another very relevant
source of short-term uncertainty is that of failure contingen-
cies in generation and transmission assets, which remains an
area where some efforts have been carried out [46] but where
many questions are open, in terms of how this affects hydro
scheduling. Finally, in the near future some other sources of
uncertainty might become relevant for hydro scheduling; for
example, many countries are adopting demand response
mechanisms, which can create uncertainty in terms of the
flexibility provision capabilities of demand response assets.

Handling Difficult Non-convexities

Finally another important challenging problem in hydroelec-
tric generation scheduling models is capturing relevant non-
convexities. For example, the relation between water dis-
charge and power production is typically highly non-convex
[22]. Other relevant non-convex relations are how filtrations
in reservoirs can depend on the level of water stored, certain
regulatory constraints (e.g., water consumption from farms in
the proximities of the water network [51]), and also many
aspects related to thermal generators (start-up costs, minimum
up and down times, etc.). A particular method, discussed
above, which presents a significant potential for addressing
such non-convexities is SDDIP [21••]. It remains an open
challenge to see if SDDIP or other methods can be success-
fully employed to capture such non-convexities efficiently in
large-scale instances.

Conclusion

This paper has presented a literature review and discussion of
challenges on the management of hydroelectric generation in
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the context of power system operations. Multistage stochastic
optimization as a modeling framework and stochastic dual
dynamic programming as an algorithm are currently the dom-
inant techniques to handle such problem; however, this paper
has reviewed many improvements on SDDP and alternative
approaches with significant potential for future concrete ap-
plications from power system operators and policy makers.
Further, some important challenges and open research ques-
tions are associated to flexibility and variable renewable ener-
gy, hydro uncertainty modeling and climate change effects,
the inclusion of other relevant uncertainties, and efficiently
capturing difficult non-convexities.
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