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Abstract
Purpose of Review This paper introduces the major state-level regulations and policies for improving energy efficiency in
buildings. The purpose of the review is to discuss the challenges and issues in policy implementation and the latest trend in
adopting innovative instruments.
Recent Findings The implementation of customer efficiency programs increasingly incorporates non-price instruments to en-
courage participation and deep savings. States pay attention to not only code adoption and update but also compliance and
evaluation. Many states have adopted innovative policy instruments, including decoupling mechanisms and performance incen-
tives to make energy efficiency a good business model for utilities, dynamic pricing to reduce consumption and peak load,
flexible financing to provide incentives, and green labeling and benchmarking policies to increase information transparency.
Summary State governments continue to be the primary decision-makers for improving energy efficiency in buildings.
Combined efforts on code/standard compliance and innovative policies are the leading strategy to promote energy efficiency.
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Introduction

State governments are key decision-makers in improving energy
efficiency (EE) of buildings. Unlike the federal regulations that
provide uniform solutions, state governments have the flexibility
to enact regulations and establish targets that reflect local circum-
stances and considerations. Local energy efficiency markets are
driven by customer efficiency programs and state standards and
regulations, which may exceed the stringency of federal stan-
dards. States take pro-efficiency actions because of multiple inter-
nal factors, such as public awareness and environmental move-
ment, pressure for job creation, and requirement for grid stability
and energy security [1, 2]. States also learn from their neighbors,
peers, and leaders in adopting new policies for clean energy [3, 4].
Sometimes the federal government sets up targets and provides
incentives that frame and guide state actions. For instance, the

American Recovery and Reinvestment Act (ARRA) of 2009 pro-
vides large amount of grant funding to state and local govern-
ments, conditioning on their adoption of the most stringent build-
ing energy codes. Overall, policy design and implementation for
energy efficiency needs to take into consideration of utility plan-
ning [5], stakeholder involvement [6], and indirect cost, consumer
perception and other behavioral barriers [7].

This paper provides an overview of the state-level regula-
tory, financial, and information-based policies that aim at im-
proving energy performance for products, equipment, appli-
ances, homes, and buildings. Special attention is paid to the
issues and challenges with policy design and implementation,
as well as the recent trend in the adoption of innovative policy
instruments. Massachusetts and California are selected to
showcase how leading states take the strategy of combined
efforts to promote energy efficiency.

Ratepayer-Funded Energy Efficiency
Programs

All states have customer efficiency programs funded through pub-
lic benefit funds, which are collected through charges wrapped
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into customer rates or other charges that appear on customer utility
bills. Ratepayer-funded programs are administrated either directly
by utilities in most states, or by third parties in some cases.1

Customer efficiency programs have fast growing budgets—in-
creased from $3.2 billion in 2010 to $7.6 billion in 2016 [8].
Program budget is spent primarily on electricity efficiency mea-
sures, with expenditure on natural gas efficiency improvements.
CA, MA, and NY are the states that have large budgets for EE
programs [8–10]. Budgets for EE programs are lower in smalle
r states; but some of them, such as RI, VT, and D.C., have
budgeted high percentages (about 6%) of their utility revenues
on energy efficiency [8].

Ratepayer-funded programs typically combine financial in-
centives with energy audit and training/educational services.
Some utilities design separate programs to target specific con-
sumer sub-segments with fine-tailored offerings. For instance,
the Efficiency Vermont and Vermont Gas Systems provide gen-
erous financial incentives for new homes constructed in compli-
ance with stringent building energy codes. The Northwest
Energy Efficiency Alliance runs a program to accelerate the
adoption of ductless heat pumps by developing marketing strat-
egies to increase customer awareness and supply chain capacity.
Recent trend in designing EE programs focusesmore on tackling
information and behavioral barriers by incorporating non-price
instruments [11], such as social media marketing, relationship
building, process simplification, and quality assurance [12].

The estimated energy saved by customer efficiency pro-
grams has more than doubled since 2010: increased from
10.6 GWh to 25.4 GWh in 2016 [8]. From 2014 to 2016,
EE programs have realized on average 25.9 GWh of electric-
ity savings (0.69% of retail sales), and 353 MMTherm of
natural gas savings (0.42% of retail sales) each year [8–10].
The top performing programs can save up to 3% of electricity
[13]. The estimated cost of saved electricity was $0.030/kWh
for residential customers and $0.053/kWh for non-residential
customers, based on a study of EE programs in 20 states from
2009 to 2013 [14]. Many of the programs have also reduced
peak demand and achieved non-energy benefits, such as
health benefits, job creation, and water savings [15].

Customer efficiency programs are frequently criticized for
the program effectiveness, the incomplete and inconsistent
data, and the discrepancies in measurement of energy savings
[16]. A review estimates the average savings is merely 0.9%
from ratepayer-funded EE programs between 1992 and 2006
[17]. The estimated energy savings delivered by the programs
may not reflect sustained load reduction over long time. The
evaluation, measurement and verification (EM&V) of energy
savings are critical, but methods always vary from case to
case. Study suggests that third-party evaluations tend to gen-
erate lower verified savings than self-reported savings by

customers programs, while the selection of the third-party
evaluator also affects the estimate of energy savings [14].
But EM&V procedure is increasingly standardized and auto-
mated [18], with tools emerged for measuring and verifying
energy savings from EE projects.2 Benchmarking the baseline
or pre-participation consumption is a key first step. The ac-
counting of free-ridership [19] and the rebound effect [20, 21]
also affect program performance and evaluation.

Nevertheless, research on behavioral science provides new
opportunities to save energy by using non-price instruments to
tackle the behavioral barriers in the EE market. Multiple be-
havioral nudges have been tested in pilot studies, such as
framing and psychological cues [22, 23], tailored information,
consumption feedback, goal setting, and commitment [24,
25], as well as in large-scale projects [26••]. Novel design
features and behavioral “nudges” become popular with EE
programs to target the “hard-to-reach” customers and encour-
age deep, sustained, and long-term savings.

State Regulations and Policies on Energy
Efficiency

Investor owned utility (IOU) companies are not interested in
energy efficiency due to the throughput incentive for energy
sales. State governments attempt to better engage utilities in
energy efficiency through mandatory energy savings require-
ment, decoupling utility revenue from sales, and providing
performance-based incentives. Policies are also enacted to im-
prove efficiency performance for products and buildings and
motivate consumers through dynamic pricing of energy and
flexible financing.

Energy Efficiency Resource Standard (EERS)

States adopt EERS to set up mandatory energy-saving targets,
which are binding targets for utilities and non-utility program
administrators to reach certain levels of savings through end-
use efficiency. Most of the EERS targets require long-term
energy savings with specified incremental annual savings in
either percentage or quantity measures. For instance, CA’s
target requires on average 1,738 GWh electricity savings,
440 MW peak demand reduction, and 54.3 MMTh natural
gas savings every year from 2016 to 2024 (see CA Public
Utility Commission Decision 15-10-028). Some states set
EERS targets to pursue deeper savings in later years, such as
MI’s target starting from 0.3% in 2008 and ramping up to 1%
in 2012 through 2012 (Public Act 495 & SB 438). EERS is

1 In DE, D.C., HI, ME, NJ, NY, OR, VT, and WI, customer EE programs are
funded through public benefit funds and run by third parties.

2 The International PerformanceMeasurement and Verification Protocol is one
of the most important tools that are widely used by EM&V processes.
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popular among states, and efforts have been devoted toward a
federal target.3

As of January 2017, 20 states have statewide mandatory
targets for energy efficiency, and six other states have set up
non-binding efficiency goals [27]. Seven of these states have
specified cost-effective efficiency measures. Some of the
states impose efficiency targets for all utilities, while others
only mandate energy savings for IOUs. The coverage of the
EERS targets ranges roughly from 57 to 100% of total energy
sales [28•]. In addition, NV and NC have classified energy
efficiency as an eligible resource (with caps) in their
Renewable Portfolio Standards. The design of EERS targets
also varies in funding method, baseline setting, incentive/
penalty setting [28•], and demand-side technology eligibility
[29]. See Palmer et al. [28•] for a summary of the EERS policy
design and implementation.

The energy-saving requirements of EERS vary substantial-
ly; if normalized into annual saving, EERS targets are 0.7%
per year on average [8]. MA and RI require the highest energy
savings, which are over 2.5% incremental savings each year.
EERS targets of OH, AZ, and NY are considered to be more
stringent than others, based on the converted % savings of
impacted entities with consideration of future population
growth [28•].

Mandating energy savings provide some level of legislative
certainty that greatly encourages market actors to invest in
energy efficiency [28•]. Evidence has shown that EERS are
more successful at driving energy-efficiency improvements
than regulatory tools affecting utility business models [30].
The implementation of EERS may lead to electricity rate in-
crease, but this customer rate impact can be alleviated when
utility business model is adjusted [31]. A comprehensive strat-
egy is recommended to achieve high efficiency gains—“get-
ting the business model right and setting specific efficiency
targets” [30].

Decoupling

Decoupling utility profits from electricity sales is designed to
ensure that utilities are “indifferent” to demand-side efficiency
versus supply-side investment. Decoupling can be accom-
plished by using periodic rate reconciliations to cover cost.
Allowed rate adjustments are commonly calculated on a per-
customer basis to compensate for under- or over-collection of
revenues. Another decoupling approach is “lost revenue adjust-
ment mechanism” (LRAM), which allows utilities to recover
lost contribution to fixed costs by redistributing it over all sales
by class. Lost revenue can also be remedied by using straight
fixed variable rates (SFVR). The SFVR mechanism recovers

all fixed costs through a flat charge, and recovers variable costs
through a volumetric rate.

Allowing recovery of direct program cost and lost revenue
is not enough to make utilities “indifferent”. IOUs are subject
to the Averch and Johnson effect that they tend to expand
investment to earn more profit for the present stockholders
[32]. Demand-side efficiency will reduce the rate bases for
utilities and lower the return on equity for stockholders, but
this disincentive cannot be 100% offset with decoupling [33].
Many states provide “additional” performance-based incen-
tives to reward utilities for achieving pre-established goals
so that they can earn an extra stream of revenue from energy
efficiency. Performance incentives are popular with decoupled
utilities, and mechanisms based on “shared benefits” are the
most common type [34]. The shared savings is calculated
based on a share of the net benefits from approved efficiency
programs. Other types of incentives include an allowed per-
centage of program costs and an allowed rate of return on
program spending.

Evidence shows that utilities have increased their expendi-
tures on energy efficiency when decoupling policies are in
place [35]. Brown et al. study the decoupling mechanism in
the southeast—LRAM combined with direct program cost
recovery and shared benefit incentives based on program ad-
ministrator cost test. This business model has largely in-
creased the rate of return on equity to exceeding the authorized
rate of 11.25% [36•]. However, studies show that allowing
rate adjustments through decoupling leads to the dispropor-
tionate distribution of the efficiency benefits. That is, partici-
pating customers enjoy savings from efficiency improve-
ments, but non-participant may face with increased rates and
costs [36•, 37]. Great scrutiny should be given to minimize the
rate impact for customers when altering utility business
models [36•].

Dynamic Pricing

The cost of power production varies significantly from hour to
hour. Dynamic pricing is the idea to provide accurate price
signals to customers so that they can cut down usage during
high-rate peak times. Mechanisms for dynamic pricing in-
clude time-of-use pricing (TOU), critical peak pricing (CPP),
and real-time pricing (RTP). Dynamic pricing enables utilities
charge different rates for electricity based on time, generation
cost and conditions of the grid. Dynamic pricing can remove
subsidies to peak users embodied in flat rates, encouraging
customers to shift load to non-peak time [38, 39].

Time-of-use Pricing sets and publishes electricity prices for
peak and off-peak periods in advance. Electricity prices in
peak periods are higher than off-peak time, which encourages
load shifting and reduces peak demand. The rates for each
time block are usually adjusted two or three times each year;
however, TOU pricing does not address unforeseen weather

3 A Senate bill was introduced in 2015, proposing a 20% electricity savings
and 13% natural gas savings target by 2030.
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conditions or equipment failures that can unexpectedly drive
up generation costs. CA utilities implement Critical Peak
Pricing, which adds one more rate in “critical” summer peak
hours to recover the full generation cost. There can be a num-
ber of CPP event days in a year, and utilities usually notify
customers ahead of time. Real-time pricing disseminates price
singles in much smaller time intervals: typically hourly or
even sub-hourly. RTP can reflect the changes in marginal costs
and capture most of the cost variation in electricity generation.
Technology improvements have helped enhance customers’
ability to respond to real-time prices [40].

The implementation of dynamic pricing does not always
lead to electricity savings [41], because not all customers have
the capability or willingness to reduce peak demand or shift
load [42]. Dynamic pricing is recommended to be combined
with demand response or other demand-side solutions to
achieve great savings [43, 44]. However, load shift may save
money but increase CO2 emissions due to the heterogeneity in
hourly CO2 intensity for electricity generation [40]. Another
challenge to the use of real-time price and usage data is data
security and privacy. States are beginning to set requirements
regarding the use of metered-data. TX, for example, has de-
termined that all meter data belongs to a customer; however,
energy providers can be granted access to the data with cus-
tomer authorization [45].

Other Policies Targeting Market Sub-Segments

Building Energy Codes Many states have adopted building
energy codes to ensure efficiency improvement in new homes
and commercial buildings. Imposing minimum energy perfor-
mance requirements for new and renovated buildings can re-
duce energy consumption and save building owners and oc-
cupants money. Model codes are developed and updated pe-
riodically by independent organizations.4 In the U.S., state
governments have the authority in building code adoption
and modification. Some states have decided to directly adopt
the model codes, and many states have adopted revised ver-
sions of the model codes tailored to address location climate
conditions. A few of the states draft codes using their own
knowledge, capacity, and resources. As a prerequisite by the
2009’s stimulus package, many states adopted building energy
codes around that time so that they are qualified to receive
funds from the federal government. Building energy codes
have been found to be effective in a wide range of countries
(see a review by Evans et al. [46]), and more attention has
been paid to code compliance and implementation [46, 47].
Effective strategies for code compliance include performance

testing, independent testing and review, professional account-
ability, incentives, training, and streamlining processes [46].
Automated tools are also in development for checking code
compliance [48].

Appliance Standard The federal government has implemented
minimum energy performance standards (MEPS) to phase out
the least efficient models of appliances and equipment in the
marketplace. Different from design standards mandating par-
ticular technologies or processes, appliance standards mandate
performance outcomes, which provide design flexibility and
motivate innovation. Currently, nationwide MEPSs cover 42
product types in 13 major end-uses, including refrigerators,
HVAC, lighting, laundry equipment, cooking equipment, wa-
ter heating, distribution transformers, and motors [1]. MEPSs
are effective in improving product efficiency and stimulating
R&D. But implementing uniform national standards is fre-
quently criticized. States intending to set more stringent stan-
dards may find the US federal standards to be a barrier since
the application for exemption tends to be slow and tedious.
Currently, state governments take the lead in developing min-
imum efficiency standards for portable electronic devices,
such as compact audio equipment, DVD players, pool pumps,
portable electric spas, etc. [49]. The new technologies of smart
appliances and Internet of Things impose new challenges to
the development of appliance standards [50, 51].

Flexible Financing Innovative financing approaches, particu-
larly on-bill financing, are beginning to take hold in the build-
ing sector. On-bill financing provides opportunities for end-
users who want to adopt efficient technologies but have lim-
ited access to financing options. On-bill financing offers low-
or zero-interest loans, with short payback time (typically less
than 3–5 years). Utilities sometimes provide free products and
installation, but customer monthly bill stays at the same level
as pre-installation consumption [52]. Utilities get the invest-
ment back by capturing the savings—the differences between
customers monthly bill and their actual consumption. On-bill
financing tackles the split incentive problem because the
monthly payment stays with the meter even if tenants moved
out [53].

Benchmarking and Green Labeling States have taken the
leading role in running information-based programs [54],
such as energy audits and green labeling, home energy
rating [55], building benchmarking, and the “Lead by
Example” program for public buildings. Some states lead
by example though setting up savings requirements for
public buildings to demonstrate efficiency improvement
opportunities. Benchmarking information is increasingly
available for public and commercial buildings, as more
and more states and cities adopted policies to require util-
ities and building operators to make their energy use data

4 The International Energy Conservation Codes (IECC) for residential build-
ings developed by the International Code Council are widely adopted. For
non-residential buildings, codes developed by the American Society of
Heating, Refrigerating and Air-Conditioning Engineers (ASHREA) are used
by many states in the USA and by other countries.
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publicly available.5 According to the estimation by the
Institute for Market Transformation, these policies affect
over 10^9 sf of floor space in major real estate markets
[56]. Empirical studies demonstrate energy savings for
certified efficient buildings [57, 58], and in return, energy
performance labels and certificates provide price pre-
miums for efficient homes in the real estate market [59,
60].

State Case Studies

MA and CA are widely recognized for their outstanding per-
formances and leadership in energy efficiency due to strong
and innovative policies, large customer efficiency programs,
and significant energy savings. Short case studies of the two
states are provided to exemplify the policy options for energy
efficiency that are at state legislator’s disposal.

Massachusetts

MA economy is driven by non-energy-intensive service in-
dustries, with energy consumption per capita lower than the
national average [61]. MA also has some of the highest elec-
tricity rates in the country [13], a factor that tends to lead to
high overall efficiency performance [1]. The state passed the
“Green Communities Act” in 2008, requiring electric utilities
to first exhaust all cost-effective energy-efficiency resources
prior to utilizing other supply-side resource options. The leg-
islation also requires utilities tomeet escalating annual savings
targets, ramped up to 2.94% of electricity, and 1.24% of nat-
ural gas by 2016. The energy savings targets are higher than
most targets of the states that have adopted EERS. Large bud-
get (over 6% of utility revenue) is planned for the customer
efficiency program, “Mass Save,” which has realized electric-
ity savings for over 2.5% of retail sales for multiple consecu-
tive years (calculated using data from EIA from 861 [13]).
One of the most successful programs, the “Small Business
Program’s” direct install model has been recognized as one
of the best delivery mechanisms, which got adopted by other
states. According to program evaluation, the benefit/cost ratio
is 3.14 for electricity and 9.6 for natural gas based on the total
resource cost test. Three key elements for the success of the
program are the turnkey approach, the generous incentives,
and the on-bill repayment option [12].

To make efficiency a business model for utilities,
Massachusetts allow them to propose decoupled rate struc-
tures and collect supplemental revenue (less than 1%) with
rate adjustments. Utilities are also offered incentives through

shared savings and performance targets. The shared savings
incentive is particularly rewarding because participating utili-
ties are able to receive a return on benefits on top of the net
benefits that result in “double earning” [1]. Massachusetts is a
restructured market, which allows for consumer choices for
competitive electric suppliers. Electric utilities (Eversource
and National Grid) also offer time-of-use rates to residential
consumers.

State government is obligated to lead by example
(Executive Order 484), by setting aggressive energy savings
targets for its public buildings—35% by 2025, and support
efficiency improvement with government funding. For resi-
dential and commercial buildings, energy-performance codes
are updated to the most stringent codes, which are estimated to
be 10% more efficient than the baseline codes. To ensure
savings, analysis and compliance studies have been conducted
and a “strategic compliance plan” has been developed.
Massachusetts is also the only state that has more stringent
minimum efficiency standard for gas furnace that is granted a
waiver of federal standard. Information about home energy
audits has mandatory disclosure to homebuyers throughout
the state. There is no comparable information-based policy
for commercial buildings, but the city of Boston and
Cambridge have adopted benchmarking policies for their pub-
lic, commercial, and multifamily buildings.

California

Over the last 4 decades, CA’s per capita energy use has
remained steady as the result of a sustained emphasis on energy
efficiency. CA’s customer efficiency program has the highest
budget of all states—over $1364 million in 2016 [13]. CA’s
energy efficiency industry is strongly motived by its long-term
savings targets, decoupling utilities, and performance incen-
tives. All IOUs (74% market share) are decoupled to allow
revenue requirement being adjusted for customer growth, pro-
ductivity, weather, and inflation. Critical peak pricing is default
for large commercial and industrial customers, and an option
available for small customers on voluntary basis. Critical peak
events happen 5–15 days for different utilities, and estimated
demand reduction is higher for large customers (over 5%) than
small-sized customers (about 2%) [62].

Code and standard development has been a very important
driver for efficiency improvement in CA. The Golden State
has arguably the most advanced code program in the country,
with the latest residential code being estimated to exceed the
IECC 2015 by 29% and the commercial code exceed the
ASHREA 2013 by 13% [63, 64]. The latest code expands
the capacity of demand response (DR) by requiring large com-
mercial buildings to be designed with the capability to reduce
lighting energy use when utilities issue a DR signal. CA has
also promulgated minimum efficiency standards for 17 appli-
ances that exceed federal standards, including computers,

5 The U.S. Department of Energy is promoting the Energy Star Portfolio
Manager, an online benchmarking and data management tool, for energy
and water usage information.
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televisions, faucets, showerheads, small-diameter directional
lamps, and toilets.

CA is currently the only state that requires public, commer-
cial, and residential multifamily buildings to disclose energy
use data. California is also the first state in the nation to im-
plement a mandatory green building standards to design stan-
dards that exceed the mandatory codes and standards for zero
net energy buildings. State-owned buildings not only have
water efficiency requirements, but also have a target to reach
zero net energy for 100% new construction and 50% existing
square footage.

Conclusions

States have been running ratepayer-funded efficiency pro-
grams, and have enacted energy savings targets, building ener-
gy codes, and appliance standards to improve energy efficiency
for appliances, equipment, and buildings. More attention has
been paid to the challenges to the implementation of such reg-
ulations and programs, particularly behavioral barriers and is-
sues. Innovative policy instruments are gaining popularity with
state governments, such as decoupling mechanism to engage
utilities, dynamic pricing and innovative financing to incentiv-
ize customers, and benchmarking and other information-based
programs. New concerns associated with the innovative poli-
cies include consumer behavior and data security, which are to
be solved with future technology improvements and the pas-
sage of new legislations. Study of the leading states—MA and
CA—suggests that combined efforts on compliance to codes
and standards and adoption of innovative policy instruments
strongly motivate end-use efficiency.
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