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Abstract
Purpose of Review Residential energy performance prediction has historically received less attention, as compared to commer-
cial buildings. This likely is in part due to the limited availability of residential energy data, as well as the relative challenge of
predicting energy consumption of buildings that are more highly dependent on occupant behavior. The purpose of this effort is to
assess the types and characteristics of energy and non-energy data available for algorithm developed and methods that have been
developed to predict residential consumption.
Recent Findings While there are several large residential building energy datasets, data availability is still generally very limited.
Most energy prediction methods used recently include data-driven approaches, as well as combinations of multiple methods;
however, many methods have not been tested for residential buildings, or at a range of energy data frequencies.
Summary The literature points to the need for the availability of more residential building data sources to be able to assess and
improve models, and further testing is needed including those models that have not yet been significantly used for residential
buildings.

Keywords Energy consumption . Residential buildings . Energy prediction . Energy datasets . Inverse modeling

Introduction

Energy consumption has significantly increased in recent
years, particularly in buildings, growing at a rate of approxi-
mately 0.9% per year in the USA [1]. Consistently, the resi-
dential buildings consume approximately 38% of electricity
and 21% of this energy [2]. Given buildings’ overall signifi-
cant contribution to energy use, as well as environmental

concerns and climate change, methods are needed to reduce
this consumption. This is particularly the case for residential
buildings, whose operation is highly dependent on occupants
and their behavior [3–6]. There are many possible strategies to
reduce energy use in residential buildings; the most common
of which is through retrofitting an existing building with more
energy efficient systems. What retrofits are completed is often
a decision made by the homeowner, based on a variety of
factors [7, 8]. While non-energy-related factors can be influ-
ential in making such decisions [9], the most strongly cited
reason is costs, i.e., the economics of the upfront costs, re-
bates, or incentives provided, and the energy savings that the
retrofit(s) will achieve over time. Another method to reduce
consumption is through occupant energy behavior interven-
tions, which aim to reduce consumption through altering the
behavior of occupants, particularly how they use energy-
consuming systems [10].

The ultimate decision of the homeowner to implement ret-
rofits or change occupants’ behaviors can depend on the in-
formation provided on quantification of the energy and costs
savings achieved as a result of interventions, particularly if
cost is the driving factor [11]. This includes (a) prediction of
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consumption of the building in its existing state, (b) prediction
of energy consumption after interventions, as well as (c) how
their relative difference translates into energy and costs sav-
ings [12]. Therefore, building energy use prediction methods,
used to determine (a), (b), and ultimately (c), play a highly
important role in building energy conservation [13]. The
methods proposed and used in recent literature to predict en-
ergy use of buildings range in complexity and the frequency
and duration of input data needed. Some methods have also
been developed and tested only for specific building types. A
recent review of thesemethods and their use for different types
of data and building applications is thus needed, particularly
as the availability and range of types of data to develop these
algorithms is highly limited.

This work reviews two critical topics in this research area.
This includes, first, a review of known available data and
published information, which is relevant for use in the devel-
opment of methods to predict residential building consump-
tion. This review includes the type(s), frequency, quality, and
duration of data, as well as identifies the challenges and needs
in the area of building energy datasets. Second is a review of
recent published literature on the methods used to predict the
energy consumption in residential buildings, as well as those
developed for other building types that could be applied to
residential buildings. This concludes with the limitations of
existing data and methods, and future research needs in this
area.

Residential Building Energy and Non-energy
Data: Sources, Availability,
and Characteristics

Critical to the ability to develop, test, and validate methods to
predict building energy use is the availability of data for algo-
rithm development. This includes real building energy data, as
well as non-energy data, such as characteristics of the build-
ing(s) and their occupants, and/or weather data, all of which
have demonstrated impacts on energy use. For residential
buildings, much of this information can be challenging to
obtain, particularly for a large number of buildings. This sec-
tion is divided into two main sub-sections, including first, an
overview of residential energy data and second, residential
non-energy use data. Both these sub-sections review the
sources of data, data availability, and characteristics of
datasets, such as frequency, quality, and duration.

Residential Energy Data

Historical energy use data includes electricity use, gas use, and
in some cases, other fuel use data collected at a regular fre-
quency. This historical data is used in many cases, to train,
test , and validate building energy use prediction

methodologies. One of the greatest sources of energy data is
electric and gas utilities, which maintain large sets of energy
use data from their residential customers. This is collected and
stored at a minimum frequency of the monthly level for all
residential buildings, with some locations having higher fre-
quency data from utilizing AMR (automatic meter reading)
and AMI (advanced metering infrastructure) technologies [14,
15]. However, the barriers associated with the use of this en-
ergy use data particularly for residential buildings are often
privacy and law-related [16]. There are a small number of
exceptions such as the city of Gainsville, Florida [17, 18],
which provides public access to 6 years of monthly electricity
and gas consumption data for all homes in the city; however,
this type and availability of energy data is not common.

This means that in many cases, methods for predicting
building energy use must often be developed and tested using
limited data based on energy measurements from small num-
ber of occupied homes, energy measurements from real build-
ing(s) using simulated occupancy methods (e.g., using [19]),
or energy use data based on simulated buildings resulting from
a building energy modeling program such as EnergyPlus.
While these real residential building data provide valuable
information, larger datasets of real data can encompass energy
use information for wider variety of home types, locations,
occupant behaviors, and other natural variations in energy
consumption that smaller datasets cannot. Given the signifi-
cant variations in energy and occupant patterns that can occur
in residential buildings, this can be beneficial to provide a
more comprehensive understanding of how well a methodol-
ogy works in comparison to others.

An alternative source of the utility energy use data collec-
tion is obtaining this information directly from homeowners,
who have access to utility-collected monthly data and in some
cases, 15 min or hourly data if a smart meter is installed in
their home [20]. In rare cases, homeowners may have minute,
sub-minute, or sub-metered data from a home energy moni-
toring system; however, these systems are not common cur-
rently. Thus, with homeowner consent, energy data can be
obtained for algorithm development. However, large-scale
collection of this information is time-consuming and costly.
There are, however, some efforts towards more open access to
energy use data, some available datasets, as well as broader
platforms created to enable easier sharing of datasets.

Arguably, more information is currently available on com-
mercial building energy use than for residential buildings. For
commercial buildings, there are more policies supporting the
public availability of energy information, particularly in large
cities and for publically owned buildings. Large cities such as
Boston [21], New York City [22], and Washington D.C. [23]
among others have enacted laws and/or ordinances requiring
energy benchmarking. Under these laws, buildings must re-
port energy consumption on a regular basis, which is compiled
into databases and often made publically available. In some
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cases, such as Boston [21, 24], this data includes larger non-
residential and multi-family residential buildings. However,
the data in these datasets is also only reported at the annual
level which has limited use for building energy prediction
methods.

Similar benchmarking efforts could also be beneficial for
residential buildings, particularly if the data was at an appro-
priate level of frequency. For example, the ECAD Ordinance
[25] requires that all residential buildings bought and sold that
are over 10 years of age to have an energy audit completed in
Austin, TX; the results of which are compiled into a centralize
database; the city of Chicago allows for disclosure of energy
use and/or costs during the sale of a home [26]. These and
other policy-enforced energy data sources could be highly
valuable. Some local policy-enforced data sources are avail-
able, such as energy use by census block in Chicago [27],
energy use by zipcode in New York [28–30], and aggregated
annual energy use savings for homes in Austin [31]. However,
these datasets are also aggregated and in most cases, only at
the annual level.

Other efforts collect data from a variety of sources on com-
mercial and/or residential energy use in a common location.
The Building Information Database [32], supported by the US
Department of Energy (DOE) consists of datasets of residen-
tial and commercial building energy use intensity on an annual
basis, building characteristics and systems, and location.
Similarly, the DOE-supported Building Dataset [33] contains
information on energy use, building operations and analysis
tools for buildings-related datasets, and the Energy Data
Resources site [34] collects information on sources of energy
data and tools from energy-related projects. The types of data
vary, but do include datasets with energy consumption at vary-
ing levels of frequency.

There are a small number of datasets of residential energy
use information that provide higher frequency and in some
cases, disaggregated end use energy data for residential build-
ings. A large-scale study in the Pacific Northwest in the 1980s
and1990s collected whole-home and end-use data for residen-
tial buildings [35]. Many research papers were written based
on this dataset, and the aggregated data is available online
[36]. The results of this effort are also still used today in
residential energy modeling programs [37, 38] for end-use
modeling. The most recent US large-scale data collection ef-
fort for residential building data known to the authors is in
Austin Texas [39••]. This database provides up to 1-min inter-
val electricity and gas consumption for a large number of
homes from 2012 to present and includes whole-home and
end-use consumption. A number of recent research papers
have used this to study residential energy use [40–42].
Given the current cost of equipment needed to obtain higher
frequency and disaggregated data, it is unlikely that other
efforts of this scale will occur frequently moving forward.
However, given recent efforts to improve the ease of energy

data equipment installation and collection, as well as im-
proved abilities to disaggregate energy use data using
higher-frequency whole-home energy data (e.g., [43]),
lower-cost tools and/or equipment to obtain the frequency
and quality of energy data for larger number of residential
buildings may be more feasible moving forward.

Non-energy Data

Non-energy data, linked with the energy data, also has an
important role in energy use prediction. Weather data is
among the most critical non-energy factors impacting residen-
tial building energy use and particularly HVAC systems which
are used in a high percentage of US residential buildings.
Weather data is often available from public sources of
ground-based weather station data, most commonly at airports
[41, 44, 45]. However, as some recent research efforts have
found, this weather data is not necessarily representative of the
conditions where studied residential buildings are located. For
example, recent efforts have found variations in localized
wind speeds and temperatures (e.g., [46]). The state of the
art in this general area has been summarized in several recent
research articles (e.g., [47, 48]), and thus is not the focus of
discussion herein. However, it is still important to note that
while modeling methods and research efforts in building mi-
croclimates are significant, accessibility to raw weather data
that well represents the actual conditions experienced by
buildings is still a challenge. More recently, some fields of
study have adopted the use of publically available satellite
data-based weather data from MERRA [49], which is avail-
able worldwide on a regularly spaced grid. The use of this
dataset reduces the dependency on ground-based weather
stations.

Building characteristics, such as size, fuel type, HVAC sys-
tem type, age, efficiency, appliances types, thermostat prefer-
ences, air exchange rate, and building envelope characteristics
can also have a strong impact on energy consumption. Thus,
while knowing this information can be highly beneficial, in
many cases, this information is not available or linked with
building-specific energy use data. The best publically avail-
able sources of building data originate from disparate sources,
including assessors data, MLS data, cities’GIS databases, and
LIDAR data. However, if energy use datasets are anonymized
for privacy reasons, this makes linking energy and non-energy
datasets very challenging.

Some datasets, such as national-level datasets US
Census data [50], RECS data [51], and American
Community Survey [52] data, and localized datasets such
as the Green Building Aggregate data in Austin, Texas [31],
provide aggregate-level residential building and occupant
characteristic data for enabling an understanding of build-
ing characteristics at a broader scale than the building level.
The Better Building Neighborhood Program [53] provides
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a large anonymized building-level dataset representing over
75,000 building energy-related characteristics, specified by
region and zipcode information. This and the aggregated
datasets can be useful to determine likely characteristics
of a building in a specific area, or for use in community-
scale energy use prediction methods (e.g., [54]), but is of
limited benefit to building-level energy consumption pre-
diction as they are not linked to specific residential building
energy use data. The datasets mentioned in the previous
section, including the Building Information Database
[32], the Building Dataset [33], and the Energy Data
Resources dataset [34], do contain some building energy
use information linked to building characteristic data.

In summary, building energy data and non-energy datasets
are available; the characteristics of which range significantly.
There are some promising sources of quality and higher fre-
quency data which can be valuable for residential energy con-
sumption prediction methods. There are also promising
methods to encouraging sharing of data that can be further
explored. However, significant opportunities remain to im-
prove data availability in this field, which if done, will be
highly beneficial to improvements in the capabilities of energy
performance prediction methods.

Building Energy Performance Prediction
Methods

Using energy data and non-energy data sources, building en-
ergy performance prediction methods range significantly in
complexity and required types and frequencies of input data.
Most recent efforts have followed similar methodologies for
model development, including, as discussed in Wang and
Srinivasan [13], first, (a) the collection of data for model de-
velopment, then (b) the raw data processing is completed to
ensure the data is of sufficient quality and format. The third
step (c) includes using historical data to train the model to
follow the patterns of use associated with the training dataset,
as well as determining what of the available input data is
significant and ultimately used for the model. The final step
is (d) model testing. The fit of the model to input data not
included in the training dataset is determined and evaluated
in this step. Common metrics and statistical indices utilized
for evaluation include root mean square error, coefficient of
determination, coefficient of variation of the root mean square
error, sum of squares error, mean squared error, and normal-
izedmean bias error. Energy use predictionmethods can either
be physics-based approaches, data-driven inverse modeling
approaches, or a combination of the two [55•]. In this section,
the most recent efforts in energy performance prediction
methods are reviewed, most of which are data-driven
methods.

Change-Point Modeling

Change-point modeling is among the more simple methods,
which are typically single-variate models using dry-bulb tem-
perature as the predictor. A balance point is determined which
best fits the trends in the energy data, where building energy
use switches between seasonal trends [55•]. Linear regression
is then used to create a multi-parameter model based on the
determined level of fit criteria [56••, 57]. Perez et al. [58]
focused on its use to predict daily consumption of residential
HVAC systems in Austin, TX, using data from [39••]. Kim
and Haberl [59] used three-parameter change-point models to
calibrate daily whole-building energy simulations for two
single-family homes based on monthly billing data. Do et al.
[40, 60] utilized large number of homes across multiple cli-
mate zones to study the use of change point models, demon-
strating these methods can fit to a wide range of homes’ use
patterns. Zhang et al. [56••] used it to predict hourly and daily
HVAC hot water energy and Abushakra and Paulus [61–63]
used a hybrid inverse change-point model to predict consump-
tion in simulated and actual buildings; however, both these
efforts focused on commercial buildings.

The strength of the change-point models is the simpler
development with lower computational effort in comparison
to other methods [55•, 56••]. The accuracy of prediction in
change-point models depends on the type and frequency of
data available, but has been shown to demonstrate similar
levels of accuracy to more complex models in some situations
[56••]. Particularly for buildings with a limited number of data
points, this method can be advantageous. However, as
discussed in [40, 59], some data points can be considered
outliers that may significantly impact the model fit, particular-
ly for highly occupant-dependent residential buildings. With
acceptable methods to assess what data is appropriate to use
for residential building models as well model improvements
such as those suggested by Abushakra and Paulus [61–63],
this modeling method provides a simpler but often sufficiently
accurate method.

Artificial Neural Networks

Artificial Neural Networks (ANN) consist of an input layer,
one or more hidden layers, and an output layer, and have
mostly been used for more frequent, hourly or sub-hourly
building energy consumption prediction in recent literature
[56••,64•]. Input variables typically include outdoor tempera-
ture, wind speed, solar radiation, and relative humidity. These
methods have been used to predict whole-home HVAC, and
appliance use in residential buildings [64•, 65], and hot water
[56••], heating energy [66], total electricity [54, 67], and
chilled water use [68] for commercial buildings. ANN has
also been combined with other methods and/or enhancements,
including feed forward backpropagation neural network,
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radial basis function network, and adaptive neuro-fuzzy inter-
ference system [66], backpropagation algorithms [64•,69],
particle swarm optimization and genetic algorithms [54], prin-
cipal component analysis [54, 70], and hybrid lightning search
algorithms [65] to improve and/or optimize performance.

ANN generally performs well with sufficient training data
and can be advantageous particularly for non-linear electricity
consumption [64•, 68]. Wang and Srinivasan [13] also found
performance of ANN methods in short-term prediction is bet-
ter than regression methods. Improvements made to ANN
methods also further improve accuracy [54, 71] with lower
error [70]. However, the complexity of the model also in-
creases computational time [72] and has limited physical in-
terpretation which limits applicability outside of the training
data limits [13]. In some cases, ANN has also been found to
perform worse than simpler models [56••]. ANN has only
been used in recent literature to predict whole-home consump-
tion of unoccupied rather than occupied residential buildings
[64•].

Genetic Programming

Genetic programming is an automated computational method
based on the process of biological evolution [73] and has been
used in combination with other methods to predict residential
energy consumption. Castelli et al. [73] applied different ge-
netic programming systems that use the genetics semantic
operators to predict residential HVAC use. Jung et al. [74]
used genetic programming with a hybrid of the direct search
optimization algorithm and a conventional real-coded genetic
algorithm, with least-squares support vector machine to pre-
dict daily commercial building energy. Genetic programming
has been shown to be an effective method that produces lower
errors than other methods [73] and to also provide an effective
approach for parameter selection and better performance in
terms of convergence time and iteration than conventional
least-squares support vector machine methods. However, sim-
ilar to ANN, genetic programming typically requires a larger
set of input data. It also has only been used in limited studies
for residential buildings.

Bayesian Networks

Bayesian Network models include nodes that represent ran-
dom variables such as outdoor temperature and energy use
with statistical and probabilistic dependencies between the
cause nodes and the effect nodes with a probabilistic graphical
model [76]. The parameters of suchmodels are the conditional
distributions at every node using Bayes’ rule. This method has
been used to predict appliance energy use in residential build-
ings [75] and hot water HVAC use in a commercial building
[76]. Bassamzadeh and Ghanem [77] also used this model to
forecast the aggregated electricity demand in smart grids. In

the limited number of studies that have used this method for
building energy use prediction, the accuracy of the model
predictions was within the recommended limits developed
by ASHRAE for commercial buildings [76]. The uncertainties
from input variables were also determined to be well repre-
sented using this type of method [77]. However, similar to the
ANN and genetic algorithm methods discussed above, this
method requires significant input data and can be highly com-
plex to implement.

Gaussian Mixture Model

Gaussian mixture model (GMM) establishes a weighted sum
of Gaussian component densities based on a parametric prob-
ability density function and multivariate non-linear regression
function [56••]. This method has been used in a number of
recent studies for a range of buildings. Li et al. [78] utilized
GMM to design feasible time-of-use tariffs to minimize the
electricity bills for residential customers. Also, in residential
buildings, and Melzi et al. [79] used GMM to optimize smart
meter electricity consumption, better understand consumer
behavior and electricity use profiles. For other types of build-
ings, Zhang et al. [56••] applied GMM to predict daily and
hourly commercial hot water energy and Carpenter et al. [80•]
predicted supplied energy for a range of manufacturing pro-
cesses in an industrial building. The advantage of this method
found in [56••] was that it results in energy performance pre-
dictions that had the lowest error compared to change-point
and ANN models, for commercial buildings. The GMM has
also been found to capture non-linearity in simpler way than
Bayesian or ANN methods [56••, 80•] for non-residential
buildings. However, its performance in comparison to other
methods for residential buildings is not well studied. Studies
have also found that other statistical values of fitness are also
higher for GMM than change-point modeling [80•].

Support Vector Machines

The final modeling method discussed is Support Vector
Machines (SVM). This method has been shown to be effective
in solving regression estimation problems and forecasting
time series [72]. Jain et al. [81] used a version of SVM for
regression estimation, Support Vector Regression, to evaluate
the effect of temporal and spatial granularity of data on the
prediction of energy in multi-family buildings. SVM has also
been combined with genetic algorithms to predict energy use
[74]. SVM has been assessed as a highly accurate and effec-
tive method for the energy prediction [72]. However, SVM
requires multi-step forecasts, implemented using various fea-
tures and selected techniques [81]; therefore, it is more com-
plicated and requires more computational effort in comparison
to other models discussed. Similar to other methods, it can
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also benefit from additional evaluation for residential building
energy performance prediction methods.

In summary, there are a number of different types of
methods used in recent literature to predict energy consump-
tion of residential buildings. Table 1 represents the summary
of six main methods of building energy performance predic-
tion. However, particularly for residential buildings, it is chal-
lenging to compare the capabilities and determine the overall
“best” model for use for residential energy performance pre-
diction, in part, due to the lack of studies that compare perfor-
mance of the models using residential datasets. Many of the
algorithms have been developed, utilized, and tested for com-
mercial building applications, and may be well suited for res-
idential buildings as well. Some residential building energy
prediction studies have used larger datasets [58, 77]; however,
the number of studies with this size dataset is limited, for both
residential and commercial buildings. The type of energy data
being predicted also varies. Some studies focus on the use of
methods to predict whole-building consumption [54, 67],
while others focus on HVAC [58], or other end uses [75].
Finally, the frequency of data and type of energy use data used
to develop and test these models ranges significantly.

Conclusions

In summary, this review discusses both sources of energy and
non-energy data, as well as methods that use these data to
predict energy consumption. This review points to the need
for the availability of more residential building energy and
non-energy data sources to be able to improve energy perfor-
mance prediction models, and the need to more comprehen-
sively and comparatively study the accuracy of these models
for residential buildings across a range of frequencies of data,
and whole-home as well as end-use consumption. More spe-
cifically, the following conclusions can be drawn:

& Most available datasets provide energy or non-energy data;
however, these are generally not linked together or do not
have the ability to be linked as they are anonymized; this
limits the usability of these datasets for energy use prediction
methods. Datasets that link energy and non-energy data are
needed and with higher frequencies and quantities of data

& Many available national-level and local-level datasets of en-
ergy use provide annual level data. Given that energy use
prediction methods are often developed with the goal of

Table 1 Summary of the building energy performance prediction methods

No. Method Most
common
data
frequency

Advantages Disadvantages References

1 Change-Point Models: supervised machine
learning; single-variate or in some cases
multi-variate steady-state model including a
balance point and weather variable(s) as the
predictor(s)

Monthly,
daily

Simpler; lower computational
effort; easy to interpret and
explain results

Outlier(s) may impact the model fit [39••, 40,
55•,
56••,
57–63]

2 Artificial Neural Networks: supervised machine
learning; consists an input layer, one or more
hidden layers, and an output layer; can be
combined with other methods and/or
enhancements

Daily,
hourly,
sub--
hourly

Works well for non-linear
consumption data

Higher computational demand, limited
physical interpretation; requires
significant input training data; over
or under fitting

[13, 54,
55•,
56••,
64•,
65–72]

3 Genetic Programming: evolutionary algorithm;
an automated computational method based
on the process of biological evolution

Daily,
hourly

Effective in parameter
selection, convergence
time, and iteration

Requires significant input training
data, higher computational demand

[73, 74]

4 Bayesian Networks: probabilistic graphical
model; includes cause nodes and effect node
with a probabilistic graphical model that
represents a set of variables and their
conditional dependencies via a directed
acyclic graph

Hourly,
sub--
hourly

Ability to assess uncertainties Requires significant input training data [75–77]

5 Gaussian Mixture Models: probabilistic model;
unsupervised learning; a weighted sum of
Gaussian component densities based on
parametric probability density function and
multivariate non-linear regression function

Monthly,
daily,
hourly

Captures non-linearity in
simpler way than Bayesian
Networks or Artificial
Neural Networks

Statistical values of fitness have been
found to be better than change-point
modeling in some studies

[56••, 78,
79, 80•]

6 Support Vector Machines: supervised machine
learning; solves classification and regression
estimation problems

Daily,
hourly

Less prone to overfitting than
some other supervised
methods

Higher computational effort with
multi-step forecasts

[72, 74,
81]
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predicting energy use at higher frequencies, this limits the
data usability. There are some recent efforts to make large-
scale studies’ data and law-mandated data available; howev-
er, more efforts are needed in this area, including those
datasets associatedwith publications in this area, almost none
of which are available for broader use. Recent efforts to im-
prove the infrastructure, ease and motivation for energy data
sharing [82, 83], may help to improve this moving forward

& Further and more comprehensive testing is needed to assess
the different energy prediction methods at different data fre-
quencies; this will help to assess which models are most
appropriate and best able to predict consumption for each
frequency level, as this is currently not well established

& Similarly, many of the prediction methods discussed have
been tested for commercial buildings more than for resi-
dential, and in many cases, only tested for specific end
uses; testing of the possible methods across larger sets of
diverse residential buildings could provide a more com-
prehensive picture of capabilities of these methods

& The complexity of prediction models ranges significantly, as
well as the amount of input data needed. Further clarity is
needed as to the positives and negatives associatedwithmore
complex versus less computationally complex methods

As more technologies become available that connect to the
internet and are able to collect energy and non-energy data, such
as through the internet of things, there is a significant opportunity
to improve energy predictionmethods. As energy efficiency con-
tinues to be a priority, improved data combined with improve-
ments in prediction algorithms using this data will help to im-
prove the accuracy and reliability of suchmodels, and as a result,
likely drive efficiency improvements as well.
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