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Abstract
Purpose of Review Recent development of energy big data could potentially transform existing energy efficiency evaluation
studies into more accurate, generalizable, and scalable ones. This review article covers existing residential energy efficiency
evaluation studies and residential building energy studies.
Recent Findings Results reveal that the majority of existing energy efficiency evaluation frameworks and traditional statistical
analysis are not sufficient enough to identify the causal impact of energy efficiency. In reality, households mostly self-select into
energy efficiency installations and the observed changes in energy consumption after the installations may be due, at least in part,
to certain factors that are generally time-variant and unobservable to the statistician.
Summary Researchers can utilize emerging large-scale building energy datasets combined with high-frequency energy demand
data to develop innovative computational energy efficiency evaluation frameworks. Such frameworks should incorporate knowl-
edge and advances from various disciplines including machine learning, statistics, and econometrics in order to provide more
accurate and information-rich causal impact evaluations of energy efficiency measures.

Keywords Energy efficiency . Big data . Measurement and verification

Introduction

The residential sector consumes 22% of the energy in the USA
[1]. Energy efficiency—reducing the energy input for a given
unit of energy service output—is widely recognized as a key
option to reduce buildings’ energy consumption along with
the associated carbon and environmental pollutant emissions
[2, 3]. Energy efficiency and reduced emissions are crucial
elements of environmental sustainability. There are many en-
ergy efficiency programs (e.g., the Building American
Program or the Weatherization Assistance Program) including
federal-, state-, and utility-level incentives and standards to

encourage home owners to adopt energy-efficient technolo-
gies and promote energy conservation behavior [4]. These
incentives will continue to increase over the next decade [5].
Evaluating the actual and empirical impact of energy efficien-
cy is critical to ensure that environmental sustainability, along
with the economic and social goals of energy efficiency, can
be achieved. However, due to limited data, inadequate evalu-
ation methods, and ineffective communication between differ-
ent academic disciplines, such empirical evaluation is still
limited [6•, 7, 8].

As of 2014, 58.8 million smart metering infrastructure in-
stallations provide high-frequency energy demand data (often
15-min interval) for US electric utilities and their customers
[9]. Smart meters are in 43% of the country and are quickly
becoming the norm [10]. Development and deployment of
smart meters has opened up a new paradigm for empirical
energy efficiency evaluation [11] and underscores the need
for new computational methods to evaluate the causal impact
of energy efficiency on a large scale. Despite the emerging
availability of such rich data, energy efficiency evaluation or
measurement and verification (M&V) studies (rather than en-
ergy demand forecast or monitor and control studies) using
smart meter data for large sample of buildings and advanced
computational methods are still rare [8, 12].
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Currently, empirical analysis of home energy efficiency
improvements is based on costly data collection, limited data,
or inadequate methods. Traditional statistical analysis alone
such as parametric or nonparametric regressions is not enough
to identify the causal impact of energy efficiency. In most
cases, households self-select into energy efficiency installa-
tions (e.g., households that pay more attention to energy con-
sumption might be more likely to install energy efficiency
improvements). Overall energy consumption is determined
by appliance purchase as well as usage decisions. While pur-
chase decisions may be observable to a limited extent, usage
decisions are even less. The observed changes in energy con-
sumption after installations could be partially due to certain
factors that are generally time-variant and unobservable to the
statistician such as households’ environmental awareness,
preferences for indoor temperature and lighting conditions,
or other occupant behaviors [6•]. Collection of these unob-
servables is costly involving installation of sensors [13•].
Existing evaluation or M&V frameworks work best when
the changes in factors that can influence energy consumption
(e.g., weather and occupancy) can be controlled in the models
[14•]. However, for the purpose of the studies which model
reality when there are changes in other factors such as occu-
pant behaviors, technologies, and environmental attitudes that
are hard to control for, existing M&V frameworks are no
longer appropriate. The recent deployment of smart meter
and the availability of high-frequency electricity demand data
at customer level could transform the current empirical energy
efficiency evaluation analysis into an accurate, generalizable,
and scalable process.

Gap Between Engineering Simulation
and Reality of Home Energy Efficiency
Outcomes

Engineering simulation models (e.g., National Energy Audit
Tool (NEAT), eQUEST, TREAT, Home Energy Saver
Professional (HESPro), and RealHomeAnalyzer) can predict
energy savings or technical potential of energy efficiency
measures; these predictions are useful for energy audits and
for prioritizing energy efficiency investments. However, evi-
dence indicates that realized energy savings are consistently
lower than those predicted by engineering simulation model-
ing. Estimates of the ratio of realized savings to predicted
savings range from 30 to 79% [6•, 13•, 14•, 15]. Researchers
also debate whether energy efficiency actually saves energy at
all (e.g., [16•]).

This deviation between realized and predicted savings can
be explained by technology instability, occupant behavior
problems, and modeling errors [4, 17]. Technology instability
arises when there are quality issues with the technologies or
installation process [13•]. One of the behavioral factors is the

rebound effect: energy efficiency reduces the marginal cost of
using certain energy service; as a result, consumers use more
of this energy service [18]. Kissock and Eger [7] discuss the
limitations for engineering simulation models to predict ener-
gy savings, including the functions of the assumptions (e.g.,
the assumed magnitude of change in usage frequency after the
installation of energy efficiency improvement [19]) and sim-
plifications used to create workable engineering models. For
example, one problem with engineering modeling could be
over-statement of baseline energy use [19], which suggests
that engineering auditing tools might under-estimate the effi-
ciency properties of baseline homes prior to energy efficiency
improvements—thus, over-estimating energy savings [6•].

Department of Energy [20] reviews home energy engineer-
ing simulation tools and emphasizes the importance of com-
paring with realized energy savings. Statistically reliable em-
pirical evidence is needed that compares realized savings with
predicted savings [6•]. There is a lack of studies that compre-
hensively and systematically examine the factors that cause
the deviations between the realized and predicted savings.
Deviations could be due, at least in part, to a lack of commu-
nication among engineers, social scientists, and statisticians.
Social scientists can contribute to incorporating behavioral
and economic factors while statisticians can help establish a
valid baseline or counterfactual energy consumption.

Existing Empirical Energy Efficiency
Evaluation: Measurement and Verification

There are several evolving M&V guidelines (e.g., US
Department of Energy Federal Energy Management
Program M&V guidelines (FEMPMV) [21]; International
Performance Measurement and Verification Protocol [22];
and American Society of Heating, Refrigerating and Air-
Conditioning Engineers Guideline 14 Measurement of
Energy and Demand Savings [23]). In general, there is no
direct way to calculate savings of energy efficiency measures
because there are no instruments to measure the energy per-
formance of a building in the same post-installation period
(after energy efficiency improvements are installed) as if there
were no such installations. FEMPMV calculates energy sav-
ings from an energy efficiency improvement as

Savings = (Baseline Energy − Post Installation Energy) ±
Adjustments .

The baseline energy is an approximation of the counterfac-
tual energy consumption without the energy efficiency im-
provements in the post-installation period and is calculated
via engineering simulation, regression models, or both.
Adjustments account for changes in factors such as weather,
occupancy, and other technologies between the pre- and post-
installation periods.
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Increasingly, researchers use large-sample utility billing
data to evaluate the realized savings from energy efficiency
improvements. Results suggest that the savings range from 8
to 21% [6•, 13•, 14•, 15, 24, 25•, 26]. Table 1 summarizes the
key findings of these residential empirical energy efficiency
evaluation studies, including the types of energy efficiency
measures examined, energy savings estimated, and their
methods. Energy efficiency decision makers such as policy
makers, investors, and building owners do not always have
the adequate data they need for their region; therefore, there is
a need for more studies that use large-sample of buildings in a
greater variety of regions [6•].

The most difficult component of the empirical evaluation is
constructing the baseline energy consumption as shown in
Fig. 1 [21]. Due to the difficulty and high cost of
implementing a randomized control trial experiment or
installing sensors, most studies use pre-installation energy da-
ta with or without modifications from engineering models or
control groups as the baseline for energy use. Such approaches
require assumptions of how treated households behave post-
installation, but these assumptions may not accurately reflect
reality due to self-selection bias and omitted variable bias.
Omitted variable bias is the biggest threat to a valid empirical
evaluation. Variables such as occupancy, occupant behaviors,
appliance stocks, electricity pricing, on-site renewable energy
technologies, and in-home charging of electric vehicles can
influence both the households’ decisions to install energy ef-
ficiency improvements and energy consumption [28]. These
variables are generally not addressed in large-sample studies,
potentially causing bias in the estimation. Thus, more justifi-
able methods are needed to construct baseline energy use that
better model the reality [27].

Except for Metoyer and Dzvova [8], Boomhower and
Davis [12], and Novan et al. [29], most residential energy
efficiency evaluations look at monthly or average daily energy
consumption—ignoring the intra-day timing of energy sav-
ings. Timing is important here in three aspects. First, utility
load curve is not flat (as illustrated in Fig. 2); service providers
have incentives to flatten the load curve in order to delay
expensive capital investment as well as to increase grid stabil-
ity [30]. Energy savings during load peak hours potentially
add to the benefit from a load management perspective.
Second, for households that are on time-of-use electricity rates
(i.e., electricity prices are higher during load peak hours),
timing of savings means different economic incentives and
outcomes. Third, because the mix of fuel to generate electric-
ity changes with time of day and season, savings at different
times will have different environmental impacts. As such,
more dynamic studies on timing of savings are needed [12].

Studies mostly analyze the heterogeneity of the impacts of
energy efficiency in a traditional way, such as separately ana-
lyzing different groups of households or, in regressionmodels,
adding interaction terms between building attributes and the Ta
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energy efficiency variable [13•, 24]. Nonlinear or more flexi-
ble functional forms need to be applied when modeling the
heterogeneity [29]. In addition, it is difficult to tease out the
impact of individual retrofits because different retrofits and
appliances interact with each other, e.g., lighting with cooling,
HVAC with insulation [14•, 31].

High-frequency Data in Energy Demand
Analysis

High-frequency smart meter data are valuable in revealing
household energy consumption behaviors, analyzing the het-
erogeneity of the technology impact, and generating precise
prediction of energy consumption [32]. Machine learning
techniques have been shown to predict energy consumption
more reliably than traditional regression or simulation models

[33], especially given their ability to model nonlinear and
interacted patterns [34–36]. With increasing access to smart
meter and sensor data, many researchers have started using
such data to model electricity consumption. However, the ma-
jority of these studies are focused on the total electrical load of
a region [37–39] or commercial buildings [40–44]. For the
residential sector, studies that use high-frequency energy de-
mand data and advanced data analytics are mostly based on
data from one [45, 46] or several buildings [47, 48], making it
difficult to generalize the results. Kavousian et al. [49] use
large-sample high-frequency data to analyze energy consump-
tion; that study does not, however, focus on energy efficiency
evaluation and does not have valid methods to construct base-
line energy consumption due to lack of pre-installation
periods.

Most building-level energy studies using high-frequency
data focus on forecasting energy demand or monitor and

Fig. 1 Difficulty in baseline energy consumption construction

Fig. 2 California electrical load by hour, 2 July 2016. Source—California Independent System Operator Corporation
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control purpose instead of evaluating energy efficiency; esti-
mated energy savings using monthly billing data can differ
from high-frequency data estimates [8]. Therefore, there is a
need for comparison analyses as well as explanations for the
differences. There is a lack of large-sample building-level ma-
chine learning studies, with the exception of Burlig et al. [50],
using high-frequency data that are generalizable, representa-
tive, and can potentially provide more insights improving
forecasting accuracy.

Future Directions

In this section, we discuss the roadmap of using big data,
machine learning, smart meters, and high-frequency energy
consumption data to improve the accuracy of energy efficien-
cy M&V. Fig. 3 is a visual summary.

Statistically sound empirical energy efficiency causal impact
evaluation studies should be conducted, which can provide valu-
able new evidence of the empirical savings of energy efficiency
improvements. Empirical savings from these causal impact studies
should then be compared with savings predicted by engineering
models. If there exists any gap, systematic examination of the
relevant technical, behavioral, and economic factors would be
needed in order to help reduce the uncertainty of future energy
audits and improve prioritization of energy efficiency investments.

With the availability of big data related to energy efficiency
and energy consumption, such empirical energy efficiency causal
impact studies should be of large samples, producing results that
are statistically sound, representative, and generalizable.
Researchers should advance most existing high-frequency resi-
dential energy studies by examining a completely different scale
of sample—from a few buildings in most studies to the thou-
sands or even millions of residential electric customers. This
scale of data provides greater variation in building characteristics,
appliance stocks, and demographics; thus, the results will be
more precise and representative, and impact heterogeneity can
be analyzed. To handle this scale of analysis, a new evaluation
framework is necessary.

As discussed earlier, big data allows us to overcome the lim-
itations caused by the absence of true randomized control trials
by estimating more precise counterfactual energy consumption.

To address baseline consumption and variable omission, novel
evaluation framework that uses rigorous and advanced statistical
analysis should be developed. For example, a combination of
matching (to select a valid control group) and flexible fixed ef-
fects panel regressions [12, 13•, 14•] can be used to construct
valid baseline energy consumption and to address the missing
variable issues. Researchers can use both the energy consump-
tion of control customers matched on large set of attributes and
the pre-installation period consumption of the treatment cus-
tomers, while controlling for other time-variant conditions (e.g.,
weather and occupancy) and using flexible fixed effects to con-
trol for unobservable factors in the panel regressions. Since the
ground truth of the counterfactual is not observed for any house-
hold [51], cross-validation and out-of-sample prediction are not
very relevant in casual inference here for panel regressions.

The high-frequency electricity demand data allow us to
estimate energy savings at hourly or even 15-min intervals.
The intra-day timing of energy savings allows us to more
precisely evaluate the impact on grid operation, economic
incentives for utilities and residential customers, and environ-
mental emissions. Researchers should utilize the high-
frequency data to evaluate energy savings at different time
of day and seasons in future studies.

Nonparametric and machine learning techniques such as ran-
dom forest [52, 53] can be applied to rich high-frequency data to
uncover the nonlinear impacts of various factors on the efficacy
of energy efficiency improvements. Such fine level analysis of
heterogeneity is critical for customized energy efficiency solu-
tions for individual buildings. Combined with other technology
information such as appliance saturation survey or energy effi-
ciency installation dates, the impact of certain improvements or
bundles of improvements can be isolated. Being able to disen-
tangle the effects of individual or combinations of energy effi-
ciency improvements is important for decision makers to priori-
tize energy efficiency investments.

Rather than focusing on forecasting energy demand, evalua-
tion studies should examine the causal impact of energy efficien-
cy. Causal inference concerns how much energy savings can be
allocated to an energy efficiency improvement instead of how
much savings are associated with it. For example, an environ-
mental savvy householdmay be likely to install energy efficiency
improvements and may save energy after the improvements, but

Fig. 3 Roadmap of future directions for energy efficiency M&V
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their savings could also be partially due to their environmental
attitudes. This phenomenon is called self-selection bias. If the
statistician is not able to observe the environmental savvy vari-
able, s/hemight allocate all of the savings to the energy efficiency
improvements. Causal inference is critical for decision makers to
understand in order to pass judgment on the cost-effectiveness of
the energy efficiency improvements. Machine learning tech-
niques have mostly focused purely on improving forecasting
and prediction, and recent development has not contributed sig-
nificantly to causal inference [68]. Selection bias and omitted
variable bias are two key challenges for consistently assessing
the causal impact of energy efficiency improvements. A combi-
nation of quasi-experimental design or randomized control trial
[6•], flexible fixed effects panel regression, andmachine learning
techniques [50] can be used to develop an energy efficiency
evaluation framework for causal impact. Balandat [54•] uses
machine learning methods for causal inference on time series
high-frequency electricity demand data to evaluate the impact
of a large-scale demand-side management program in California.

Table 2 is a summary of the pros and cons of existing energy
efficiency evaluation methods and how big data techniques
enabled by high-frequency demand data can help improve such
methods. There are three working papers that serve as good
examples of applying new techniques discussed in the roadmap
as shown in Fig. 3. The first study is Novan et al. [29], which
finds that the building codes in California adopted in 1978 help
residential buildings save 13% of electricity for cooling. They
use individual building-level high-frequency data to estimate
building-specific temperature response function, which is then
used to construct the counterfactuals of energy consumption in
post-code period if the codes were not adopted. The second
study is Boomhower and Davis [12], which applies a rich set
of fixed effects in panel regression models to help eliminate
unobservable confounding factors. They estimate the energy
savings of energy-efficient air-conditioners by hour of day
and assess the economic value of such energy savings. The
third study is Burlig et al. [50], which uses high-frequency data
and the machine learning technique LASSO, a form of regular-
ized regression, to construct counterfactual electricity consump-
tion. They evaluate the energy efficiency from school buildings
and find savings of 2–5%.

Conclusion

New energy big data opportunities can potentially transform
existing energy efficiency evaluation studies intomore statistical-
ly sound and generalizable ones which can provide richer infor-
mation about the impacts of energy efficiency measures [55].
Exploiting big data effectively will require interdisciplinary re-
search that links social science, information science, along with
energy systems science and engineering [56]. As the Internet
becomes more pervasive (i.e., with Internet of Things), potential Ta
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sources of data increase dramatically—beyond just smart meters.
Virtually all key appliances and energy conversion units (such as
heating, air-conditioning, and ventilation) will become “smart”
and generate large sets of data. These new types of big data can
help researchers analyze occupant behaviors in a more efficient
way. This will create new opportunities, first for big data analyt-
ics and then for energy management intervention—including
customer feedback and engagement [57].

New energy efficiency evaluation studies enabled by big data
could facilitate the adoption of energy-efficient technologies that
are crucial for tackling climate change, reducing energy con-
sumption, and ensuring environmental sustainability. Perceived
risk and lack of information are the two biggest reasons for the
slow diffusion of these technologies [58] [4]. Empirical energy
efficiency evaluation studies can help resolve the perceived un-
certainty associated with the actual energy savings of these tech-
nologies by providing accurate estimates based on a large sample
of high-frequency data and innovative energy efficiency evalua-
tion framework. The energy efficiency industry requires custom-
ized energy efficiency solutions at the individual household level.
Evaluation studies, bolstered by big data, can better evaluate the
heterogeneity of the impacts of energy-efficient technologies by
various factors (e.g., household characteristics, building attri-
butes, technology attributes, and weather conditions) and thus
can prioritize household-level energy efficiency investments
and provide customized recommendations. Enabled by high-
frequency data from smart meters, energy savings timing esti-
mates enable deeper and more accurate analysis of the environ-
mental and economic impacts of energy-efficient technologies.
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