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Abstract
Purpose of review Anxiety is a common neurological disorder with high prevalence and important cause of functional impair-
ment. Related higher cost, experience of complete remission, and intolerant response to the ongoing treatment suggest an unmet
need to develop novel therapeutic strategies for the treatment of anxiety. The present review has focused on the discussion of
targeting of glutamate systemwithmelatonin or orexin or oxytocin receptors as combination approach in the treatment of anxiety.
Recent findings Available evidences suggest a strong correlation between glutamate system and anxiety. Melatonin, orexin, and
oxytocin receptors also showed similar correlation. Recent reports suggested the functional association between melatonin and
glutamate or orexin and glutamate or oxytocin and glutamate.
Summary The novel approaches discussed in present reviewmay avail us an efficacious and safe treatment option which can be a
better or alternative option for the available anxiolytic drugs. There is a need to consider combination approach targeting
melatonin or orexin or oxytocin with glutamate-related receptors in different experimental settings.
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Introduction

Anxiety disorders are one of the most important neurological
disorders. These are associated with symptoms such as fear,
nervousness, apprehension, and panic and affect cardiovascu-
lar, respiratory, gastrointestinal, and nervous systems [1]. The
reported lifetime prevalence of anxiety disorder was 33.7%
[2]. In India, 25% of young adults were suffering from anxiety
and less than 20% of these affected adults taken clinical care
[3]. According to World Health Organization, related preva-
lence was increased worldwide almost by 50% (from 416
million to 615 million) between 1990 and 2013 [4].

Selective serotonin reuptake inhibitors (SSRI’s) are consid-
ered the first line of therapy for anxiety; however they are

associated with adverse drug reaction (ADR) like nervousness,
sexual dysfunction, QTc prolongation, etc.[5]. Another widely
prescribing class of drugs for the treatment of anxiety includes
benzodiazepines (BZD). Their chronic use leads to adverse event
such as physiological and psychological dependence, withdrawal
syndrome, cognitive, and coordinative impairment. BZD also
induces amnesia in long-term exposure [6, 7]. Nearly 58–100%
of patients receiving BZD developed tolerance [8]. In addition,
reduced γ-aminobutyric acid (GABAA) receptor binding was
seen in panic disorder [9] and posttraumatic stress disorder
[10]. These factors might have contributed to the BZD insensi-
tivity. Higher cost and experience of complete remission with
partial and intolerant response to the ongoing treatment [11] sug-
gest the unmet need in the treatment of anxiety disorders [12].
The present review has emphasized on the possible role of glu-
tamate with melatonin or orexin or oxytocin as novel combina-
tion approaches in the management of anxiety disorders.

Glutamate and Anxiety

Glutamate, being excitatory neurotransmitter, is known for its
role in pathology of anxiety [13]. Zeredo et al. [14•] reported
hypofunction of glutamatergic system that regulates high-trait
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anxiety through hippocampal – area 25 circuit in primates. The
need to consider the dietary glutamate as treatment option in
psychiatric disorders has been emphasized by Kraal et al.[15•].
The relatedN-methyl-d-aspartate (NMDA) receptor subtypes are
particularly important in anxiety disorders [16]. NR2A and
NR2B, subunits of NMDA receptors, are highly expressed in
the brain regions that play important role in anxiety and depres-
sion [17, 18]. Ketamine, phencyclidine, and memantine are non-
competitive antagonist of NMDA receptors. Ketamine has a
property of producing dissociative anesthesia. Related research
studies showed benefits of using low dose of ketamine to reduce
symptoms of depression and anxiety disorders [19, 20]. It binds
to ionic channel of NMDA receptor and also interacts with
voltage-dependent Ca2+ channels [21]. It blocks entry of Ca2+

into neurons and has fast onset [22]. Interestingly, lower doses of
ketamine and other NMDA receptor antagonists have been as-
sociated with neuroprotection and neurotrophic effects [23].
Experimental studies have reported increased levels of brain-
derived neurotrophic factor (BDNF) in hippocampi of rats after
ketamine treatment. As it did not produce tolerance effect at
higher dose (10 and 15 mg/kg) with chronic exposure, it could
be a good option in treatment of depressive and anxiety disorders
[24]. Lur et al. [25••] recently showed ketamine-induced inhibi-
tion of glutamatergic transmission and related co-relation withα-
adrenergic receptors and GABAB receptors [26]. Apart from
ketamine, propofol is another short-acting anesthetic drug, wide-
ly used for surgical anesthesia. The mechanism of action of
propofol is through interaction of both GABA and NMDA re-
ceptors. The sub-anesthetic dose (40 mg/kg) of propofol has
anxiolytic effect in animal models of anxiety such as elevated
plus maze and Vogel-type conflict test [27, 28]. These evidences
suggest importance of considering antagonist of glutamate and
related NMDA receptors with GABAergic action in the treat-
ment of anxiety.

Zoicas and Kornhuber [29••] emphasized consideration of
selective targeting of metabotropic glutamate receptors in psy-
chiatric disorders including anxiety. Metabotropic glutamate
receptors such as group III, i.e., mGlu4 and mGlu8 can also be
a good target for anxiety. These are G-protein-coupled recep-
tors and modulate both GABAergic and glutaminergic neuro-
transmission [30]. Experimental studies showed anxiolytic ef-
fect of mGlu4 allosteric agonist PHCCC and the mGlu4/6/7/8
receptor agonist (1S,3R,4S)-1-aminocyclopentane-1,3,4-
tricarboxylicacid (ACPT-1) after injection into basolateral
amygdala [31, 32]. As per recent report, mGlu5 receptors also
contribute in anxiety [33••]. Targeting these specific receptors
may help to widen the therapeutic options.

Melatonin and Anxiety

Insomnia is frequent in people with anxiety and depression. It is
generally accepted that sleep deprivation is associated with

pathological anxiety-like behavior in human [34, 35]. One of
the promising hypotheses for mechanism of action of antidepres-
sant and anxiolytics is based on pathological effect of circadian
abnormality [36]. Melatonin is endogenous neurohormone pro-
duced in pineal gland. It controls various physiological processes
such as circadian rhythms, mood regulation, sleep, anxiety, car-
diac function, etc. Melatonin type 1 (MT1) and type 2 (MT2)
receptors are present in suprachiasmatic nucleus (SCN),
paraventricular nucleus, and supraoptic nucleus and control neu-
ral activity. Knockdown of a clock gene selectively in the SCN
leads to disruption of circadian rhythm, and it was associated
with helplessness and anxiety-like behavior in mice [37]. Most
of neurons which express MT2 receptors are GABAergic. It has
been reported that melatonin administration increases level of
GABA in hypothalamus, cerebellum, and cerebral cortex [38].

A recent report [39••] suggested melatonin benefits with
safe exogenous administration as an adjuvant therapy in neo-
nates. Another recent clinical study reported consideration of
melatonin as an alternative to benzodiazepines [40••].
Pretreatment with melatonin helped in reducing anxiety also
reduced the dose of anesthetic agent in patients undergoing
surgery [41••, 42]. Agomelatine, a recently developed drug,
has slight different mechanism of action that of other
melatonergic drugs. It is MT1 and MT2 receptor agonist and
5HT2c receptor antagonist. Agomelatine and melatonin per-
fusions evoked similar amplitudes of suppression of SCN
neuronal firing, but agomelatine caused long-lasting suppres-
sions [43]. Rainer et al. [37] concluded that 28-day treatment
of agomelatine (10 mg/kg) showed anxiolytic effect in
C57BL/6Ntac mice which was comparable to fluoxetine.
There was also neurogenic effect in which agomelatine facil-
itated maturation [37]. Novel MT2 selective partial agonist
UCM765 showed anxiolytic activity at 20 mg/kg in rats
[44]. According to a double-blinded clinical trial having 227
generalized anxiety disorder, patients treatedwith agomelatine
showed decrease in risk of relapses than patient treated with
placebo. Percentage of relapse was 19.5% versus 30.7%, re-
spectively [45, 46]. However in open label long-term clinical
trial studies, anxiolytic properties of melatonin showed low
sedation and less potential of abuse which may offer optimal
therapeutic outcome over the GABAergic compounds partic-
ularly for mild level of anxiety [47]. Agomelatine has benefi-
cial outcome in anxiety disorder. Still it is not approved in any
country for the treatment anxiety. Its use is off-label [44]. As
its low risk of side effect has well established in clinical trials,
melatonin and its analogue might become a better option to
treat anxiety in future.

Targeting Melatonin and Glutamate Together

Recently, Shah et al. [48] showed benefits of melatonin in
ischemia-induced glutamatergic impairment. Zhang et al.
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[49] and Evely et al. [50••] showed correlation between mel-
atonin release and glutamatergic inputs. Glutamate also mod-
ulates melatonin synthesis from pineal gland [51]. Melatonin
is well-known for its anxiolytic activity and GABA-related
inhibitory effect [52]. Mammalian pineal gland produces mel-
atonin from serotonin through enzyme serotonin N-
acetyltransferase [53]. This process of synthesis is inhibited
by the glutamate. The process involves paracrine interaction
between pinealocytes and astrocytes. NMDA, α-amino-3-hy-
droxy-5-methyl-4-isoxazolepropionic acid (AMPA), and
mGlu1/5 receptors present on the astrocytes get activated by
binding of glutamate that released by stress and increases in-
tracellular Ca+2 which further release soluble tumor necrosis
factor-α (TNF-α) from astrocytes. Available reports [54, 55]
state that TNF-α reduces serotonin content and aralkylamine
N-acetyltransferase (AANAT) mRNA expression which re-
sults depletion of N-acetylserotonin, a precursor of melatonin.
Released soluble factor alone or in association with AMPA,
glutamate binds to the receptors on the pinealocytes.
Activation of these receptors causes reduction in cyclic aden-
osine monophosphate (cAMP) which inhibits serotonin N-
acetyltransferase, the enzyme responsible for production of
melatonin. Finally there is depletion in melatonin synthesis
[51]. Inhibition of the pathway mentioned in Fig. 1 may in-
crease the melatonin levels and give additional benefits in
anxiety. Therefore, targeting specific receptors such as MT2
and mGlu4/6/7/8 receptor in combination can be a novel ther-
apeutic option for treatment of anxiety in future.

Correlation of Orexin with Glutamate-Related
Receptors

Orexin A and B are neuropeptides produced by the neurons
localized in lateral and posterior hypothalamus. These pep-
tides are involved in physiological conditions such as blood
pressure, body temperature, and sleep-waking cycle, which

are also related to anxiety disorder. Orexinergic neurons are
projected to bed nucleus of stria terminalis. This region has
strong correlation with anxiety. Orexin peptides bind with
orexin receptor 1 (OX1) and orexin receptor 2 (OX2).
Injection of orexin in different regions of brain resulted in
increased anxiety in light-dark box and elevated plus maze
test [56–58]. Orexin produced its long-lasting effect of in-
creasing neuronal excitability via increasing number of
NMDA receptors in cell membrane (Fig. 2) and makes neu-
rons highly responsive to glutamate for several hours [61].
Particularly, the involvement of glutamatergic transmission
in the orexin A-induced anxiogenic effect is also known [59].

OX1 receptor antagonist-treated and orexin-deficient rats
showed less response to anxiogenic stimuli activated by
orexin neurons [62, 63]. Exposure of SB-334867, an OX1
antagonist, attenuated anxiety in rats. Vanderhaven et al.
[64] provided behavioral as well as neuroanatomical evidence
regarding the role the orexin-dependent anxiety effect [64]. A
recent report suggested role of OX1 receptor in arousal and
panic-related anxiety through HCRTR1 rs2271933 T allele
[65••]. Orexin neurons can be an interesting novel target for
treatment of anxiety-related behavior [66••]. Grafe et al. [67••]
reported importance of considering inhibition of orexin as an
important target in stress-related disorders. In addition to an-
tagonism of OX1 receptor, consideration of agonist OX2 re-
ceptor as novel target is important in anxiety treatment [68••,
69••]. Staton et al. [68••] showed resilience in anxiety after
stimulation of OX2 receptor. Grafe and Bhatnagar [70••] re-
cently reviewed clinical studies related to orexin and empha-
sized on the need to have clinical studies focusing measure-
ment of orexin functions in psychiatric illness. Interestingly,
there is a synergistic interaction between orexin and gluta-
mate, particularly in ventral tegmental area and resultant in-
creased dopamine levels through potentiating response to glu-
tamate input [71]. These recent outcome suggests a need of
further assessment considering OX1 and OX2 as novel targets
along with glutamate-related receptors.

Correlation of Oxytocin
and Glutamate-Related Receptors

Oxytocin is a hypothalamic neuropeptide. Role of oxytocin in
social behaviors is well documented [72–74, 75••]. Preclinical
[60] and clinical studies [76••] have showed its involvement in
the pathophysiology of anxiety [72]. Several brain regions
have been involved in anxiolytic action of oxytocin [74, 77].
Oxytocin (OT) acts through OT receptors (OTR) which are
highly expressed in medial prefrontal cortex (mPFC) and cen-
tral nucleus of amygdala [78]. Availability of OTR on
GABAergic interneurons in cortex induces increase in
GABA levels [79]. Interaction of OTwith GABA, particularly
through extrasynaptic GABAA, attenuates anxiety [80].

Fig. 1 Modulation of melatonin synthesis through glutamate
neurotransmission [51]
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Sabihi et al. [74] showed the anxiolytic effect of OT through
increasing GABAergic neuronal activation (Fig. 3). Another
pathway through which OT showed anxiolytic activity is re-
lated to the suppression of release of adrenocorticotropic hor-
mone (ACTH) [82]. Release of ACTH is induced by physio-
logical and psychological stress. OT is synchronically released
in the paraventricular nucleus of the hypothalamus. It reduces
the hypothalamic pituitary adrenal (HPA) axis activity,
ACTH, and corticotropin-releasing factor (CRF) [83], which
are implicated in anxiety. Intranasal administration of oxyto-
cin benefited patients with anxiety disorders [60, 72, 84].

OTattenuated the release of glutamate and increased extra-
cellular GABA in medial prefrontal cortex and dorsal hippo-
campus of mice [85]. Expression of OT receptors by gluta-
matergic prefrontal cortical neurons was responsible for social
recognition [86••]. A recent clinical study showed significant
difference in anxiety score between pre-intranasal adminis-
tered OT-treated group and placebo group [87••]. Davies
et al. [87••] also illustrated the link between GABA interneu-
rons, glutamate pyramidal cells, and midbrain dopamine neu-
rons through hippocampus and striatum regions of brain.
Therefore, in addition to the consideration of OTR as a novel

Figure 3. Correlation of oxytocin
and GABA [80, 81]

Fig. 2 Correlation of orexin and glutamate [59, 60]
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target, a combination treatment focusing on balance between
OTR, glutamate, and GABA may help in achieving better
efficacy and safety in the treatment of anxiety.

Conclusion

Higher side effects, lower efficacy, and tolerance of available
anxiolytic drugs indicate an unmet need in the treatment of
anxiety. Targeting MT2 or OX1/OX2 or OT and glutamate-
related receptors together need to be assessed in different ex-
perimental settings as a future endeavor. This can be consid-
ered with the use of either combination of drugs or using a
new drug molecule targeting two receptor systems.
Consideration of more than two targets can also be an option.
These newer therapeutic approaches may provide better treat-
ment options, enhance compliance, and increase quality of life
of patients.
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