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Abstract
Purpose of Review This review explores sporotrichosis development as a disease in both cats and humans as well as options 
for diagnosis and treatment. This work also discusses the factors that might have culminated on the emergence of Sporothrix 
brasiliensis as the main etiological agent of this disease.
Recent Findings Sporotrichosis is currently an epidemic in Brazil with cats acting as the primary vector of the disease. And, 
although molecular diagnostic techniques have been recently developed, the disease remains largely unchecked evidencing 
the need for novel therapeutic options as well as a more effective public health response.
Summary It is becoming more evident that to manage and control sporotrichosis, a One Health approach needs to be glob‑
ally adopted. In addition to that, global warming is creating increasingly favorable conditions to the emergence of fungal 
pathogens.

Keywords Sporotrichosis, Sporothrix · Sporothrix brasiliensis · Sporothrix schenckii · Global warming · Climate change

Introduction

Sporotrichosis, caused by the thermodimorphic fungi of 
the Sporothrix genus, is the most common subcutaneous 
mycosis worldwide. Although ubiquitous globally in the 
environment, most fungi from the Sporothrix genus do not 
usually cause human or animal infections [1]. Until recently, 
sapronotic transmission was the most common source of 
human sporotrichosis, especially in North America and 
Europe, with infection usually beginning after cutaneous 
trauma related to recreational or occupational activities such 
as gardening, farming, and mining, giving the disease the 
epithet of “Rose Gardener’s Disease” [2].

Until the 1990s, Sporothrix schenckii was presumed to be 
the sole agent of sporotrichosis until recent data defined the 
pathogenic species as Sporothrix globosa, Sporothrix bra-
siliensis, Sporothrix luriei, and Sporothrix schenckii sensu 
stricto [1, 3]. Some of these species have high endemicity 
in countries such as China, Japan, Australia, India, South 
Africa, and Brazil [4]. In Asia, particularly in China, S. glo-
bosa is the causative agent in 99.3% of cases of human spor‑
otrichosis [5]. S. schenckii is responsible for 94% of cases in 
Australia and South Africa, and it accounts for 89% of cases 
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in North and South America [6]. In Brazil, however, since 
the identification of a zoonotic sporotrichosis case trans‑
mitted from a cat to a human in 1998, sporotrichosis has 
emerged as a challenging epidemic in the region [7], with 
S. brasiliensis as the main etiological agent, accounting for 
88% of cases reported in the south and southeast regions of 
the country, especially in Rio de Janeiro State, where the 
disease has been considered hyperendemic over the last two 
decades [3, 8•, 9, 10].

The Sporothrix Genus and the Emergence 
of S. brasiliensis

The recent emergence of some of these species, S. brasil-
iensis in particular, has shifted the historic paradigm of 
sapronotic sporotrichosis transmission, with zoonotic and 
enzootic infection becoming increasingly common in Brazil 
[1]. Previous contact with decaying plant material is com‑
monly reported in S. globosa and S. schenckii infections, and 
sapronotic transmission of S. brasiliensis is possible [1]. S. 
brasiliensis is generally transmitted via bites, scratches, or 
direct contact with cutaneous lesions of infected cats [1, 4, 
11, 12]. While dogs are generally not considered a signifi‑
cant source of human infections caused by S. brasiliensis, 
Sporothrix spp. has been isolated from the oral cavity and 
conjunctival mucosa of dogs, allowing for dog‑to‑human 

transmission [1]. Overall, sporotrichosis can be transmitted 
through various routes, including sapronotic, zoonotic, and 
animal horizontal transmission (Fig. 1).

Cat‑transmitted sporotrichosis (CTS) has been reported 
in the American and Asian continents mostly as isolated 
cases and small outbreaks [11]. Isolated cases of feline 
sporotrichosis have also been reported in Spain, Japan, and 
Germany; however, there has been no evidence or report of 
cat‑to‑human transmission in these countries [13–15]. The 
situation is different in South America, especially in Brazil, 
where CTS emerged in the state of Rio de Janeiro in 1998 
and currently remains hyperendemic and has begun to spread 
to other states and South American countries [16•, 17, 18]. 
Argentina, Paraguay, and Chile are among those countries 
where CTS has recently emerged [1, 19–21]. In 2022, in the 
UK, the first three cases of CTS due to S. brasiliensis were 
reported involving mother and daughter of a Brazilian family 
and the veterinarian of their cat with sporotrichosis, appar‑
ently only developed after three years living in the UK [22].

There are a few different factors that could explain the 
changes in the disease profile and recent emergence of S. 
brasiliensis and CTS epidemic such as environmental fac‑
tors (changes in temperature and humidity), evolution, and 
urbanization coupled with changes in human culture and the 
instinct cat behavior, as well as an inadequate public health 
response [21].

Fig. 1  Sporotrichosis transmission routes. Sporothrix spp. are com‑
monly found in soil and decomposing plant matter in a mycelial 
form, which can lead to infections in humans and animals by sap‑
ronotic transmission (blue arrows). This occurs when filamentous 
propagules are traumatically inoculated into the skin. Deep scratches 
or contact with exudate from the cutaneous lesions of ill cats can 
transmit the infection horizontally to other animals (red arrows), cats 
being the most susceptible. Likewise, the infection can reach humans 

by zoonosis (purple arrows) where high load of yeast is inoculated 
through scratches, bites, and secretions from cats with sporotrichosis. 
Human–human transmission is extremely rare, but transmission is 
possible when daily interactions involve direct contact with injuries 
(dark gray arrow). The most involved species according to the routes 
of transmission are shown on the right side of the figure. Original fig‑
ure, created with BioRender.com
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Different approaches can help us analyze those factors 
and help us understand the problem. From a public health 
point of view, it is important to assess what has been done 
(or not) in the last two decades, to put sporotrichosis in 
check in its hyperendemic region. The geographic expan‑
sion of CTS cases is partially related to the fact that fungal 
infections are generally neglected with limited public health 
policies around the world [21, 23, 24]. Notably, Sporothrix 
was left off the 2022 World Health Organization Fungal Pri‑
ority Pathogen List [25]. In Brazil, sporotrichosis is a known 
problem, but its rise and spread have been poorly addressed 
leading to an uncontrolled situation [21]. The expansion of 
the disease is a direct result of socioeconomic difficulties 
coupled with scarce or inadequate health services. A good 
example of this is that it took 16 years for the government of 
Rio de Janeiro, the major CTS endemic area, to implement 
an animal sporotrichosis control program, with free diagno‑
sis and treatment for animals, and, even then, control meas‑
ures have remained relatively inefficient with compulsory 
notification not universally performed and a general absence 
of educational campaigns to inform the population, leading 
to an ever‑growing number of human and animal cases [21].

Other valid approach to understand why S. brasiliensis 
emergence is happening now is to explore the environmental 
and evolutionary point of view, and for that it is necessary to 
evaluate what differentiates S. brasiliensis to its counterparts 
and how that correlates to environmental changes in the last 
two decades. A collection of requirements exists for fungi 
to act as a primary pathogen [26, 27]. Among those are the 
ability to invade/bypass host barriers, evade/withstand the 
immune system, acquire nutrients in the human tissue, and, 
more importantly for our discussion, the ability to grow at 
or above host temperature [26, 27]. Not coincidentally, S. 
brasiliensis exhibits high thermotolerance and can effec‑
tively infect both humans and cats, which have a slightly 
higher body temperature ranging from 38 to 39 °C, whereas 
other members of the Sporothrix genus like S. globosa do 
not thrive well above 35 °C [28]. In addition, recent stud‑
ies with clinical isolates suggest that S. brasiliensis has the 
capacity to undergo microevolutions within its host, increas‑
ing virulence in vivo over the course of infection [29–32]. 
These facts alone could help us explain why S. brasiliensis 
was so successful not only as a primary pathogen, but in 
its adaptation as a cat pathogen, which in turn collaborates 
to the spread of the disease, but we believe the correlation 
between its emergence and thermotolerance is not that sim‑
ple and passes through environmental factors such as climate 
change.

S. brasiliensis grows in soil and decaying plant material, 
with warmer and damp conditions creating more opportu‑
nities for the fungus to proliferate and infect humans and 
animals. These environmental conditions justify why the 
majority of cases reported are concentrated in regions with 

tropical weather [33]. Nevertheless, in the last two decades, 
the number of cases reported in the hyperendemic regions 
seems disproportional, leading to a belief that global warm‑
ing triggered the emergence of the thermotolerant species 
[19, 34–37].

The combination of endothermy and a complex immune 
system has been identified as the cause for the relatively 
high resistance of mammals against fungal infections [34]. 
Furthermore, the correlation between thermotolerance and 
virulence in fungal pathogens has been broadly discussed in 
the literature, as mammals are capable to maintain high body 
temperatures in comparison to environmental temperatures, 
which creates a thermally restrictive ambient for the major‑
ity of fungi, with all common fungal pathogens sharing the 
characteristic of being thermotolerant [26, 34–37].

In 2010, Garcia‑Solache and Casadevall hypothesized 
that global warming is playing a key role in promoting the 
emergence of new fungal diseases in mammals by both 
increasing the geographic range of current pathogenic spe‑
cies and also selecting species for adaptive thermotolerance 
[34]. The emergence and spread of S. brasiliensis in Brazil 
and South America can be supported by both mechanisms 
described above. The rise in temperature favors evolution 
and adaptation of a thermotolerant Sporothrix species, while 
secondary effects of global warming like the increased 
rainfall totals help create the perfect environmental condi‑
tions to S. brasiliensis to thrive [38]. This, in combination 
with the large number of stray cats roaming the streets of 
Rio de Janeiro and other urban areas, created the “perfect 
storm” scenario to facilitate the emergence and spread of S. 
brasiliensis.

Pathogenesis

After traumatic inoculation from the environment or a cat, 
which enables Sporothrix propagules like conidia and myce‑
lial fragments or yeast cells, respectively, to enter the host, 
the disease usually limits itself to the skin, subcutaneous 
tissue, and adjacent lymphatic vessels, accounting for the 
majority of cases reported [39•, 40]. Less frequently, but not 
rare in the cat transmission scenario, multiple skin lesions 
may arise from multiple inoculations (scratches and bites), 
or at the other extreme, skin or mucous lesions may arise 
after a non‑traumatic contact with cats with sporotrichosis 
(touching exudates or being exposed to cat sneezing) [9, 39•, 
41]. Atypical clinical presentations can also occur, espe‑
cially in immunocompromised individuals or in the rare 
event of fungal conidia being inhaled from the environment, 
ranging from pulmonary sporotrichosis to disseminated and 
meningeal forms of the disease [40, 42–44]. Unfortunately, 
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the Brazilian epidemic has had an increase in the number of 
disseminated infections [10].

The disease has a fairly broad incubation period, rang‑
ing from a few days to a few months [45]. Clinical mani‑
festations begin with the development of a small papule or 
pustule at the inoculation site, which evolves into a nodule, 
ulcerating or not, involving the skin and usually with addi‑
tional similar nodular‑ulcerative lesions along the ascending 
lymphatic vessels [45]. This ascending distribution defines 
the classic lymphocutaneous form and, when there is a sin‑
gle lesion, it is classified as the fixed or localized cutaneous 
form with systemic symptoms typically absent [45]. The 
atypical clinical presentations, either extra‑cutaneous or sys‑
temic, occur following contiguous or hematogenous spread 
from the primary affected site or from pulmonary infection, 
both cases more commonly observed in immunocompro‑
mised individuals, especially the hematogenous spread [9, 
45]. It is worth mentioning that, besides the immune status 
of the patient, the clinical manifestations of sporotrichosis 
can vary based on several factors, including the virulence, 
inoculum site and size, and thermal tolerance of the strain 
[19].

The concept of virulence refers to the ability of a microbe 
to cause damage in a host, with injury resulting from the 
microbial processes, host immune response, or both, lead‑
ing to a state of disease when homeostasis is disturbed [46]. 
The Sporothrix genus exhibits several virulence factors such 
as glycoproteins, secreted proteins, extracellular vesicles, 
thermotolerance, melanin production, ergosterol peroxide, 
dimorphism, and the ability to form biofilm in both fila‑
mentous and yeast forms [28, 47]. The genus produces a 
heat shock protein, namely, the chaperone HtpG or HSP90, 
which is crucial for preserving the yeast form of the fungus 
[48]. In 2009, Arrillaga‑Moncrieff et al. performed a com‑
parative study in the murine model that indicated that the 
potential virulence of the main human pathogenic species of 
the Sporothrix genus varies [49], with S. brasiliensis being 
considered the most virulent, S. globosa the least virulent, 
and S. schenckii exhibiting an intermediate virulence phe‑
notype, findings that are also supported by epidemiological 
data [8•, 19, 49].

In humans, sporotrichosis is categorized into cutaneous, 
mucosal, and extracutaneous forms based on the location of 
the lesions [39•, 50, 51]. Apart from the cutaneous presenta‑
tions already described, S. brasiliensis has been associated 
with ocular involvement, disseminated disease, central nerv‑
ous system (CNS) disease, and hypersensitivity reactions 
[52–54].

As for cats, which are the primary animal host and vector 
for human infection, multiple ulcerated skin lesions associ‑
ated with enlarged lymph nodes and respiratory signs are 
the most common clinical manifestations of sporotrichosis 
[55]. The incubation period after infection ranges from three 

to 30 days [56]. While disseminated sporotrichosis cases in 
humans are more prevalent among individuals with immu‑
nosuppressive conditions, such an association was not found 
for feline sporotrichosis, as cats diagnosed with feline immu‑
nodeficiency virus (FIV) or feline leukemia virus (FeLV) did 
not exhibit an increased incidence of sporotrichosis [57]. 
For currently unknown reasons, S. brasiliensis is not easily 
controlled by the cat immune system, compared to response 
typical in humans and certain other mammals, such as dogs, 
leading to high fungal burdens in these susceptible animals.

Diagnosis and Treatment

In a context of hyperendemicity, especially considering 
areas with little access to mycology laboratories, the diag‑
nosis of sporotrichosis is based on clinical‑epidemiological 
probability. However, ideally, the isolation of the fungus 
from skin lesion scraping, exudate, or biopsy is the primary 
microbiologic diagnostic method for sporotrichosis. Other 
clinical specimens are used according to the affected sites. 
Biological materials from human skin lesions and other tis‑
sue samples present challenges in visualizing small yeast 
cells due to the low fungal load causing direct microscopic 
examination (DME) to be ineffective. Giemsa‑stained puru‑
lent lesion imprints, biopsies, or aspirates enhance sensitiv‑
ity [8•], and histopathological examinations with periodic 
acid‑Schiff (PAS) or Gomori‑methenamine silver (GMS) 
staining detect granulomas with epithelioid cells, yeast 
cells (rare in immunocompetent humans), and, in some 
cases, asteroid bodies [45]. In cases of extracutaneous or 
disseminated forms, the ideal clinical sample to isolate the 
fungus for definitive diagnosis will depend on the sites of 
Sporothrix infection and can include deep biopsies, spu‑
tum, cerebrospinal fluid, and blood cultures, for example. 
Stains like Gram, Giemsa, PAS, and GMS are helpful in 
these cases. Molecular techniques are considered ideal for 
epidemiological studies and correctly classify all species. 
The calmodulin (CAL), β‑tubulin, and elongation factor (EF) 
genes are the main targets used in these techniques [16•, 58, 
59]. It is also worth to mention that immunologic tools have 
been developed in the last two decades, and antibody detec‑
tion through enzyme‑linked immunosorbent assay (ELISA) 
is available for the presumptive diagnosis of both feline and 
human sporotrichosis [60–62]. Furthermore, nested PCR or 
quantitative PCR can be used to detect Sporothrix DNA in 
clinical samples with lower fungal burden such as the cer‑
ebrospinal fluid [63••].

Itraconazole is the drug of choice for treating sporo‑
trichosis in humans and animals, but treatment is usually 
prolonged, especially in cats, with a treatment duration 
typically spanning from 3 to 6 months or even longer for 
severe or low‑responsive cases [17, 64, 65]. A dosage of 
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100 to 400 mg per day is used for treating sporotrichosis in 
humans as it results in clinical improvement in nearly all 
patients and has an acceptable incidence of adverse effects, 
ranging from 10 to 40%, mostly mild [66–68]. Cats, on the 
other hand, are often reported as low or unresponsive to 
itraconazole [69] and little is known about predictors of 
the treatment response; however, the occurrence of respir‑
atory signs and lesions on nasal mucosa and skin with high 
fungal loads was associated with treatment failure [70]. If 
patients are unresponsive to itraconazole, potassium iodide 
solution or terbinafine can be used as oral treatments for 
localized cutaneous forms [17]. Antifungal agents that act 
on ergosterol biosynthesis, such as polyenes, azoles, and 
allylamines, are also effective treatments. Amphotericin 
B, a polyene antifungal, is reserved for severe cases, but it 
can be cardiotoxic and nephrotoxic [71, 72].

Sporothrix species show the potential to develop in vitro 
resistance to conventional antifungals. S. schenckii [73] 
and S. globosa [74] have developed in vitro resistance to 
itraconazole in human infections, S. schenckii in felines 
[75, 76], and S. brasiliensis in dogs [77]. Recently, some 
cases of human S. brasiliensis infection caused by strains 
with reduced in vitro susceptibility to azoles, terbinafine, 
and/or amphotericin B have been described. These cases 
require extended treatment times and may develop seque‑
lae [78]. The unequivocal correlation with clinical unre‑
sponsiveness and in vitro resistance remains to be proven, 
since host factors play an important role in the outcomes. 
Antifungal resistance in Sporothrix is related to the fungus’ 
ability to produce melanin, low genetic diversity, possibly 
due to the abnormal number of chromosomes, and single 
nucleotide polymorphisms in cytochrome P450 or other 
genes related to antifungal resistance [79, 80]. Sporotricho‑
sis has a well‑established therapeutic protocol, but the need 
for long courses of treatment and the occurrence of feline 
and human cases unresponsive to the treatment of choice or 
even with relapses, maybe related to resistant strains or low 
drug absorption and metabolism, highlight the importance 
of the development of novel antifungal drugs and therapeutic 
options, preferably more efficient and less toxic.

Significant research efforts have explored various thera‑
peutic options for treating sporotrichosis. Over the past sev‑
eral years, these efforts have focused on diverse alternatives 
such as synthetic organic chemical compounds [81–83], 
essential oils [84], plant extracts [85], metal complexes [86, 
87], nitric oxide (NO) releasing particles [88], and repo‑
sitioned drugs [89, 90]. These compounds have exhibited 
promising results in vitro, as evidenced in Table 1. Moreo‑
ver, some of these compounds show antifungal efficacy in 
animal models of sporotrichosis, further highlighting their 
potential as viable therapeutic options.

Conclusions

It is important to highlight that a One Health approach 
needs to be adopted globally to prevent and control the 
epidemic of S. brasiliensis and CTS. This means that sur‑
veillance, prevention, and treatment efforts should cover 
not only people and animals but also the environment, 
which is particularly crucial in densely populated urban 
areas where the risk of transmission is higher [95].

The possibility for gaining a better understanding of the 
transfer of both pathogenic and non‑pathogenic microor‑
ganisms between humans, animals, and the environment 
is also of fundamental importance. This is achieved by 
analyzing evidence of the interactions that take place 
within this ecosystem [96]. Furthermore, global warming 
concerns are often focused elsewhere and the potential 
for its effects on fungal pathogens is broadly overlooked. 
A warmer climate has the potential to create favorable 
conditions to thermotolerant species [34], which can lead 
to a change in their geographic distribution. Adaptation to 
higher temperatures also has the potential to create condi‑
tions that could turn environmental species into mammal 
pathogens, as for every 1 °C gained in body temperature 
between 30 and 42 °C, approximately 6% of fungal spe‑
cies are currently excluded as potential pathogens [34, 
37], meaning that global warming is particularly danger‑
ous because it narrows down the thermal gradient between 
environmental conditions and mammalian temperatures 
[34].

Taking all the facts together, S. brasiliensis poses an 
especially challenging threat to control. We believe that 
only a One Health approach, coupled with increased 
research to enhance our understanding of the disease and 
to create alternative diagnostics and therapeutics, and 
implementation of educational campaigns for both health 
professionals and general population can stop the further 
spread of sporotrichosis.
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