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Abstract
Purpose of Review To review recent data on the role that B cells and/or antibody-based immunity play in host defense against
Cryptococcus neoformans (Cn).
Recent Findings Cn, an encapsulated fungus, causes cryptococcal meningitis (CM). There are ~180,000 deaths per year worldwide
attributed to CM, which is the most common cause of meningitis in adults with HIV in sub-Saharan Africa. HIV infection with
advanced immunodeficiency is the most important predisposing risk factor for CM, highlighting the critical role that T cell-mediated
immunity plays in disease prevention. However, numerous studies in the past decade demonstrate that antibody immunity also plays
a role in resistance to CM. Inmice, B cells reduce early dissemination from the lungs to the brain, and naïvemouse IgM can enhance
fungal containment in the lungs. In concert with these findings, human studies show that patients with CM have lower IgMmemory
B cell levels and/or different serum profiles of Cn-binding and natural antibodies than controls.
Summary There is sufficient evidence to support a possible role for B cells and certain antibodies in natural resistance to CM.
This underscores the need for a deeper understanding of mechanisms by which natural and Cn-binding antibodies may reduce Cn
virulence and protect against Cn dissemination and human CM.
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Introduction

Cryptococcus neoformans (Cn) is an encapsulated basidiomy-
cetes yeast widely distributed in the environment. It is the
most common cause of meningitis in HIV-infected adults in
sub-Saharan Africa, Asia, and South America [1, 2]. Cn is
acquired by inhalation, makes the first stop in the lungs, col-
onizes this organ and in most people enters a state of latency
[3, 4]. In some people, mainly those with advanced immune
suppression, Cn can disseminate to the central nervous system

and cause meningoencephalitis, or cryptococcal meningitis
(CM) [2]. In 2014, it was estimated that there were 215,000
cases and 180,000 deaths due to Cn worldwide [5], primarily
in HIV-infected persons. It is noteworthy that despite antire-
troviral therapy (ART) roll out, the incidence of CM has not
changed substantially in Africa or Asia [5–7].

B Cells and Resistance to CM: Historical
Studies

As the HIV/AIDS pandemic unfolded and an unprecedented
number of cases of CM occurred beginning in the 1980s, the
link between CM and AIDS-associated CD4 T cell loss in
patients established a role for T cells in resistance to CM.
Studies in mice largely confirmed clinical observations in pa-
tients. On the other hand, a role for B cells was more difficult
to establish. In part, this reflected an insufficient understand-
ing that HIV infection also causes profound B cell defects. In
addition, tools to study B cell effects in mice were limited. For
example, one study did not reveal a difference in the suscep-
tibility of B cell sufficient and B cell-depleted mice to Cn [8].
In this study, newborn mice were rendered B cell deficient by
administration of rabbit anti-mouse-μ antiserum prior to
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intravenous infection with Cn. There was no difference in
mortality, colony forming unit (CFU) in different organs, or
antigen level in the sera of control and B cell-deficient ani-
mals. However, a subsequent study in a B cell knockout
(uMT) mouse model showed these mice were more suscepti-
ble to Cn than wild type mice [9]. Notably, B cells were the
predominant cell type in the lungs of A/JCr mice infected with
Cn [10], demonstrating they contribute to the immune re-
sponse to Cn. These early studies suggested B cells can en-
hance natural immunity and resistance to Cn.

Many studies dating to over 40 years ago show that admin-
istration of immune sera containing glucuronoxylomannan
(GXM) capsular polysaccharide specific antibodies elicited
by vaccination can protect naïve mice against Cn [11, 12].
Extensive work with monoclonal GXM antibodies showed
that they can be protective, non-protective, or detrimental de-
pending on isotype, specificity, and host factors [12]. These
elegant studies revealed that the effect of specific IgG (or IgM)
elicited by an acquired antibody response on the outcome of
Cn infection is highly complex. One important study showed
B cells were an important component of acquired resistance to
Cn [13]. In this model, although Cn-infected μMt knock out
(B cell deficient) mice developed an immune response that
protected them against CM, SCID mice reconstituted with
lymphocytes from these mice had high fungal burdens, failed
to contain Cn, and had reduced survival, whereas mice
reconstituted with lymphocytes from B cell-sufficient mice
had lower lung and brain CFU. Thus, B cells contributed to
control of Cn when T cell-mediated immunity was impaired
[13]. This scenario resembles the immune status of patients
with HIV/AIDS, whereby profound T cell loss occurs in the
setting of marked B cell defects [14, 15]. Of note, a vaccine-
elicited GXM IgG1 produced excessive lung inflammation
and did not protect uMt mice from lethal Cn, suggesting that
normal B cells and/or natural antibodies have a role in regu-
lating inflammation stemming from antibody-mediated im-
munity to Cn [9]. Overall, these studies showed that adminis-
tration of defined antibodies formed during an acquired im-
mune response to Cn mediates protection against CM.
However, they did not address the role that B cells or antibody
may play in natural resistance to Cn.

B Cells and Their Role in Natural Resistance
to Cn

Mice, like humans, are highly resistant to Cn. In humans, infec-
tion is common, disease is rare [3, 4]. In the past 10 years,
numerous studies investigated the role that B cells play in natural
resistance to CM in mice [16–19]. One study showed that B-1
and B-2 cells each contribute to the early immune response to
Cn [17]. In this model, capsular and acapsular Cn bound to B-1
cells. B-1a cells were required for early Cn clearance from the

lungs; they enhanced Cn phagocytosis and reduced dissemina-
tion to the brain [17]. This revealed a new paradigm to under-
stand how B cells may augment host defense against Cn. In
contrast to prior work that sought to establish a role for B cells
and/or antibody in acquired immunity to Cn (see above), this
study showed that B-1a cells are a key contributor to the early
innate mouse immune response to Cn. In another study, the role
of B-1 cells in resistance to intranasal infection with Cn was
examined in X-linked immunodeficient (XID) mice [19]. XID
mice, which have a mutation in the Bruton’s tyrosine kinase
(Btk) gene in B cells [20], lack B-1 cells and have reduced levels
of natural IgM. These mice had higher lung and brain CFU than
controls 3 weeks after infection [19]. Lung Cn phagocytosis was
impaired and histopathology revealed a diffuse, disorganized
inflammatory pattern with significantly more enlarged extracel-
lular Cn. In contrast, control mice had numerous small, intracel-
lular yeast cells [19]. This finding was of interest, because Cn
can undergo morphological changes that result in the formation
of Titan cells, which have enhanced virulence [21–24]. A Cn
infection model in Rag1−/−mice showed that these mice, which
lack B and T cells [16], exhibited earlier and more Cn dissem-
ination to the brain than wild-type mice. Adoptive transfer of
wild-type B cells to these mice led to reduced brain CFU and
reversal of an abnormal inflammatory lung histopathology pat-
tern to one that resembled the wild-type response.

How Might B Cells Augment Natural
Resistance to Experimental CM?

Several hypotheses may explain howB cells enhance resistance
to CM. One is that they help curtail Cn dissemination. This may
be mediated by the antibodies they produce. B-1 cells mainly
produce IgM. B-1 and B-2 cells each produce IgM in the early
innate immune response to Cn that binds GXM and Laminarin
(Lam, a mainly 1,3-β-glucan) [17]. Multiple studies now show
IgM enhances early resistance to Cn dissemination in mice [16,
18]. IgM can also augment macrophage recruitment and phago-
cytosis of Cn [18, 25]. Therefore, naïve IgMmay enhance early
antifungal immunity in the lungs [16]. This was examined in
sIgM−/− mice, which lack secreted IgM. In this model, lung
CFU were similar in sIgM−/− and control mice after intranasal
infection with Cn, but mortality was higher in sIgM−/−mice and
they had higher brain CFU and marked brain inflammation
[18]. Adoptive transfer of IgM restored control levels of Cn
alveolar macrophage phagocytosis.

As noted above, adoptive transfer of B cells reduced Cn
dissemination from lungs to brain in Rag1−/− mice [16].
Transfer of naïve IgM from wild-type mice in the same model
enhanced alveolar macrophage phagocytosis of Cn. Taken
together, these studies establish that B cells and/or their secret-
ed product, IgM, enhance early innate immunity to Cn in the
lungs of mice. Given that naïve IgM enhanced Cn
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phagocytosis in multiple models, e.g. (wild-type, sIgM−/−, and
Rag1−/− mice), it is logical to posit it contains antibodies that
bind Cn determinants that augment phagocytosis and/or other
host defense mechanisms in the lungs. Consistent with this
idea, naïve IgM enhanced host defense against pneumocystis
in mice via antibodies that reacted with beta glucans [25].
Thus, B cells and/or naïve IgM reduce early Cn dissemination,
making them a component of the early innate immune re-
sponse to Cn in the lungs.

Another mechanism by which IgM could enhance resistance
to Cn is by restricting fungal size in the lungs and promoting
fungal containment. Though this remains a hypothesis, it is rea-
sonable to posit that absence of IgM in the lungs may have
contributed to Cn enlargement in XID mice [19], possibly
inhibiting Titan cell formation. In support of this idea, a
mouse1,3-β-glucan-binding IgG2b (2G8) isolated from a Lam-
vaccinated mouse bound the Cn cell wall, mediated non-opsonic
Cn killing in vitro, protected mice against lethal Cn challenge
[26]. Cn isolated from lungs and brain of 2G8-treated mice were
smaller than those in control mice, suggesting the antibody may
have inhibited Titan cell formation.

Translating Knowledge Gained from Mice
to Humans

Numerous serological studies dating from the mid-1990s have
demonstrated differences, often featuring lower levels of
GXM-IgM, between the GXM antibody profiles of HIV-
infected persons, HIV-infected persons with a history of
CM, and HIV-uninfected controls [27–31]. These studies
linked perturbations in GXM antibody repertoires with HIV
infection and CM. However, differences were not limited to
those with HIV infection, a study of HIV-uninfected solid
organ transplant (SOT) recipients showed pre-transplant
levels of GXM-IgM were lower in those who developed CM
post-transplant than those who did not [32]. Since IgM mem-
ory (CD10+CD27+IgM+) B cells, (see [31]) which resemble
B-1 cells in mice [33], are the source of ~ 50% circulating IgM
and are depleted in HIV infection [14, 31], perturbations in
IgM may be due to a B cell repertoire defect.

Links Between IgM Memory B Cell Levels
and Risk for CM

Consistent with studies in mice linking B-1 cells to resistance to
Cn dissemination, an association between lower levels of periph-
eral IgMmemory B cells and HIV-associated CMwas identified
in two cohorts [31]: (1) HIV-infected persons with a past history
of CM and HIV-infected persons with no history of CM (retro-
spective cohort); and (2) HIV-infected males in the multicenter
AIDS cohort study (MACS) who subsequently developed CM

and thosewho did notmatched for CD4T cell count (> 300 cells/
ul, prospective cohort). Persons in both cohorts who had/or de-
veloped CM had lower levels of memory (CD19+CD27+) and
IgMmemory B cells than thosewith no history of or who did not
develop CM. A similar study with a cohort of HIV-uninfected
persons with and without CM had similar findings; those with a
history of CM had lower levels of memory and IgM memory B
cells than those who did not [34]. CD4 T cell levels were statis-
tically comparable and CD8 T cell levels were numerically
higher, but not statistically significantly so in those who devel-
oped CM. X-linked hyper IgM (XHIM). The latter, which is
marked by elevated serum IgM, low IgG levels and reduced
levels of IgM memory B cells, has also been associated with
cryptococcosis in children [35]. A mutation in the Bruton tyro-
sine kinase is the cause of X-linked agammaglobulinemia [36],
and as above, XID mice are more susceptible to Cn dissemina-
tion. Notably, cases of CM are increasingly reported in adult
patients treated with the Bruton tyrosine kinase inhibitor,
ibrutinib [37–41].

Links Between IgM and Natural Antibodies
and Risk for CM

IgMmemory B cells produce ~ 50% of the IgM in human sera
[33]. Human serum IgM and IgG bind carbohydrate and poly-
saccharide Ags, including β-glucans, conserved fungal deter-
minants found on Cn and many other fungi [42]. For example,
human sera from HIV-infected patients with CM bound to
glycosylated determinants on the Cn cell wall and inhibited
its growth [43].

Two recent studies examined levels of Cn and Lam (β-
glucan) binding antibodies in persons at risk for and with CM
[44, 45]. Normal human serum antibodies bind Lam, a branched
(mainly) 1, 3-β-glucan [42]. One study compared HIV-infected
persons with positive or negative serum assays for cryptococcal
antigen (CrAg) [45]. CrAg positive persons are at high risk for
CM [46]. The results showed that Lam-binding-IgM and IgG
were lower in CrAg positive persons and negatively correlated
with CrAg positive status. Using an iterative statistical model,
this study found that in combination, plasma IgG2, IgM, GXM-
IgG, Lam-IgM, and Lam-IgG had an 80% ability to predict
CrAg positive status. This suggests statistical modeling may
hold promise for identifying serological biomarkers of risk for
CM. In another study, plasma levels of IgM, GXM-IgM, and
Lam-binding-IgM were lower in HIV-infected patients who de-
veloped cryptococcal-immune reconstitution inflammatory syn-
drome (C-IRIS) after ART initiation [44]. These findings sug-
gest β-glucan-binding antibodies may have a role in preventing
CM and/or the inflammatorymanifestations of C-IRIS, andmay
also hold promise as biomarkers of risk for C-IRIS. Since β-D-
glucan (BDG) levels may be elevated in patients with CM [47],
associations between lower levels of Lam antibodies, CM, and
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C-IRIS suggest these antibodies may play a role in controlling
BDG-mediated inflammation. Finally, we note that multiple
studies show that serum levels of GXM-IgG are higher in
HIV-infected persons, those with a history of CM, and those
with positive CrAg assays than controls [27, 28, 34]. These data
suggest the hypothesis that GXM-IgG levels may reflect fungal
burden, an idea that requires further study.

Conclusion

While recognition of the role that cell-mediated immunity
plays in resistance to CM is longstanding, particularly in
HIV-infected persons, ample data now show B cells also con-
tribute to resistance to CM in mice and may play a similar role
in humans. In mice, B cells and naïve IgM enhance immunity
to Cn in the lungs. In humans, lower levels of IgM memory B
cells associate with CM in HIV-infected and HIV-uninfected
persons, and lower levels of GXM-IgM, Lam(β-glucan)-bind-
ing IgM and IgG can associate with HIV-associated CM, risk
for CM, and/or C-IRIS. These findings require validation in
larger, racially diverse cohorts, and statistical modeling may
help identify robust serological markers. Nonetheless, avail-
able data point to a possible role for B cells and certain anti-
bodies in natural resistance to CM and underscore the need for
a deeper understanding of mechanisms by which natural and
Cn-binding antibodies may reduce Cn virulence and protect
against Cn dissemination and human CM.
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