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Abstract Histoplasmosis is an infection caused by the dimorphic fungus Histoplasma capsulatum. Histoplasmosis is typically
self-limited and presents asymptomatically in most people. Nevertheless, histoplasmosis can cause severe pulmonary disease and
death. Histoplasmosis is increasingly found worldwide; however, it is best documented in the endemic region of the Mississippi
river valley system in the Eastern part of the United States (US). Epidemiological studies from the US detailing the morbidity,
mortality, and cost associated with histoplasmosis underscore the need to develop a vaccine.
Purpose of Review This review will detail some of the major developments in potential vaccines against histoplasmosis, with
particular emphasis on those that could be used to immunize immunocompromised hosts. Additionally, this review will highlight
some non-traditional vaccine-like ideas for the prevention of diverse mycoses.
Recent Findings Historically, immunization strategies against histoplasmosis have largely focused on identifying immunogenic
proteins that confer protection in animal models. More recently, novel active, therapeutic, and immunomodulatory strategies have
been explored as potential alternatives for those with various immune deficiencies.
Summary The studies summarized in this review demonstrate that more research is needed to clarify the immunobiology,
clinical role, and efficacy of each candidate vaccine in the ever-expanding potential armamentarium against histoplasmosis.
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Introduction

Histoplasmosis is an infection caused by Histoplasma
capsulatum (H. capsulatum), a thermally dimorphic ascomy-
cete fungus. H. capsulatum and, correspondingly, histoplas-
mosis are increasingly found worldwide [1–3]. Of all the sys-
temic mycoses, histoplasmosis is the most common in North
America, with the majority of cases occurring within the en-
demic region of the Mississippi river valley system in the
Eastern part of the United States (US) [4–6]. From 2011 to
2014, a total of 3409 cases of histoplasmosis were document-
ed in health surveillance records across 12 states, including
those within and outside the classically defined endemic re-
gion of the continental US. State-specific annual incidence

rates of histoplasmosis ranged up to 4.3 cases/100,000 popu-
lation and were relatively consistent over the 4-year period
[6]. Due to a lack of reporting and robust public health sur-
veillance data, however, the true incidence and burden of his-
toplasmosis in the US may be underestimated.

H. capsulatum infection is a serious public health issue as it
can cause severe disease and has a significant risk of mortality.
Of all the cases of histoplasmosis reported in the aforemen-
tioned study, 57% of patients were hospitalized for a severe
infection, of which 7% died [6]. These recent findings are
consistent with a previous epidemiological study, conducted
in 2002, which found a mortality rate of around 7% for adult
patients hospitalized for histoplasmosis within the endemic
region of the US [4]. Moreover, significant costs are incurred
by patients and the health care system at large for hospitaliza-
tions related to histoplasmosis (average hospital charge per
adult patient in 2002: $20,300) [4]. The current morbidity,
mortality, and cost associated with histoplasmosis, in combi-
nation with the emergence of drug-resistant varieties of
H. capsulatum, suggest that a robust immunization strategy
to prevent cases of histoplasmosis is indicated [6, 7].
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Histoplasmosis

H. capsulatum infection typically occurs after incidental
exposure to either contaminated soil or the decaying ex-
creta of bats or certain bird species. H. capsulatum enters
the host through the inhalation of spores or mycelial frag-
ments into the alveolar spaces of the lung. Spores or ac-
tive mycelia readily differentiate into budding yeast cells
at physiological temperature and are phagocytosed by
dendritic cells (DC), polymorphonuclear phagocytes (neu-
trophils), and alveolar macrophages [8]. Dendritic cells
are able to rapidly phagocytose and kill yeast-phase
H. capsulatum in the lung; neutrophils also play a role
in the acute response to H. capsulatum infection by
inhibit ing fungal growth through the release of
azurophilic granule contents [9, 10]. A few days after
initial infection, phagocytosed H. capsulatum yeast cells
are principally found within inflammatory macrophages,
wherein they are able to survive and proliferate as facul-
tative intracellular pathogens [8]. Control of histoplasmo-
sis is thus classically dependent on the activation of in-
fected mononuclear phagocytes by various type 1 pro-
inflammatory cytokines such as IFN-γ, TNF-α, and
GM-CSF to kill phagocytosed yeasts or form granulomas
encapsulating the infected tissue [11].

The severity of histoplasmosis is largely dependent on the
degree of exposure and the patient’s immune status.
Histoplasmosis is typically asymptomatic and self-limited in
immunocompetent hosts. More severe, symptomatic infec-
tions characteristically involve some degree of pulmonary dis-
ease. H. capsulatum infection can also cause a lethal dissem-
inated disease. Disseminated H. capsulatum infection is most
commonly seen in immunocompromised hosts (e.g., those
with comorbid HIV infection and hematologic malignancies,
or those receiving some type of immunosuppressive therapy)
[12–14]. Nevertheless, disseminated disease can occur in oth-
erwise immunocompetent hosts as well, particularly in the
setting of a heavy inoculum exposure.H. capsulatum can also
establish a latent phase in humans. In this capacity,
H. capsulatum is able to operate as an opportunistic pathogen
causing infection as host conditions permit (e.g., organ trans-
plant, anti-TNF-α therapy) [13, 15, 16]. Thus, the ability to
vaccinate even those with various immune deficiencies is par-
amount in the search for an effective immunization strategy
against histoplasmosis.

Currently, there are no vaccines available for the prevention
or treatment of any mycosis. However, there are numerous
strategies under study. This review will detail developments
in both active and passive immunization strategies against
histoplasmosis.

Active Immunization Strategies

rHsp60

In an early pioneering study, a detergent extract of the cell wall
and membrane of yeast-phaseH. capsulatumwas identified to
confer protective immunity against lethal intravenous chal-
lenge with H. capsulatum in murine models [17].
Subsequent research narrowed in on specific fractions of the
extract, testing them systematically for antigenicity and immu-
nogenicity [18, 19]. HIS62, a glycoprotein isolated from the
62-kDa fraction of the extract, was identified as an immuno-
genic antigen. Additional experiments showed that purified
native HIS62 could induce a delayed type hypersensitivity
reaction (DTHR) in mice that had been previously immunized
with a sublethal inoculum of H. capsulatum [18]. Moreover,
splenocytes from mice that had been previously immunized
with live H. capsulatum proliferated in response to exposure
to HIS62. Most importantly, however, approximately 80% of
mice immunized with purified HIS62 survived the subsequent
lethal intravenous challenge of H. capsulatum [18].

After documenting the protective capacity of HIS62, the
gene encoding the protein was identified and cloned in order
to better understand the biology of the native protein and as-
sess the antigenicity and immunogenicity of its recombinant
counterpart. The amino acid sequence revealed that HIS62 is
about 70% homologous to heat shock protein 60 (Hsp60)
found in S. cerevisiae; HIS62 was also recognized by a rabbit
antiserum raised against E. coli Hsp60. Thus, HIS62 was re-
named heat shock protein 60 (Hsp60) fromH. capsulatum and
its recombinant counterpart, rHsp60. rHsp60 was documented
to have a similar antigenicity and immunogenicity to its native
cousin. One hundred percent of mice vaccinated with rHsp60
survived a lethal intranasal challenge with live H. capsulatum
yeast cells [20].

Subsequent studies were carried out to isolate the specific
amino acid sequence of rHsp60 responsible for its immuno-
genicity. To do this, rHsp60 was broken down into four over-
lapping polypeptide fragments, all of which could stimulate
cell proliferation of pre-sensitized splenocytes. Only fragment
three (F3), however, ranging from amino acids 172 to 443,
conferred protection, albeit in only 50% of mice, against lethal
intranasal challenge with live H. capsulatum yeast cells. By
comparison, the full-length recombinant protein, rHsp60, pro-
vides greater protection against histoplasmosis in murine
models than the immunologic fragment, F3, in and of itself
[20, 21].

rHsp60 vaccination in murine models works by priming a
CD4+ Th1 effector response against histoplasmosis.
Induction of the Th1 effector response to H. capsulatum
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infection is classically dependent on the interleukin 12 (IL-
12)/IFN-γ axis. In simplest terms, macrophages and dendritic
cells respond to H. capsulatum infection by secreting IL-12.
IL-12 induces the differentiation of naïve (Th0) CD4+ T cells
into Th1 cells, which in turn secrete IFN-γ among other pro-
inflammatory cytokines. IFN-γ plays a pivotal role in promot-
ing the cellular immune response to H. capsulatum as it is a
potent activator of effector macrophages; its absence is corre-
lated directly with decreased survival in murine models of
primary histoplasmosis [22–24]. Vaccination with purified
rHsp60 requires the presence of CD4+ T cells, a functioning
IL-12/IFN-γ axis and IL-10 for an effective inductive phase.
Neutralizing any of these mediators with mAb results in a
100% mortality rate upon subsequent lethal challenge with
H. capsulatum in murine models [25].

The expressive phase of vaccination after lethal challenge
with H. capsulatum requires the presence of either CD4+ or
CD8+ Tcells. This finding suggests that even though CD8+ T
cells are not necessary for the afferent phase of rHsp60 vacci-
nation, these cells, when present, can also be primed by
rHsp60 immunization to carry out an effector response in the
expressive phase of the vaccine, even if the CD4+ T cell pop-
ulation has been depleted. MAb-induced depletions of both
CD4+ and CD8+ Tcell populations after vaccination results in
the failure to control a lethal H. capsulatum infection in mu-
rine models [25].

Vaccination with rHsp60 is critically dependent on a func-
tional host CD4+ T cell population in the afferent phase and
thus would have limited efficacy in those with significantly
depleted CD4+ T cell counts (e.g., individuals with AIDS).
Theoretically, the evidence suggests that vaccination with
rHsp60 might still be effective if given before the acquisition
of such an immunodeficiency. Though most importantly, this
discovery indicates that it may be possible to immunize those
with seriously depleted CD4+ T cell counts by directly acti-
vating CD8+ T cells to carry out an effector response [25].

Molecular indicators for vaccine efficacy for rHsp60
and F3 of rHsp60 have been studied in some detail.
Vaccination of mice with rHsp60 or F3 induces the dif-
ferentiation and clonal expansion of different subsets of T
cell clones. In either case, elimination of the specific clon-
ally expanded Th1 cell population nullifies the protective
effect of vaccination. Despite the differences in the T cell
clones isolated after vaccination with either rHsp60 or F3,
common protective epitope-binding domains were identi-
fied in the T cell receptors (TCRs) of both populations.
Thus, if the same phenomenon holds true in humans,
common TCR domains could potentially serve as primary
indicators for effective induction of vaccination, reducing
the need for extensive primary clinical efficacy trials [26].

F3 of rHsp60 has additional value in that it is a small pro-
tein fragment. It may well be possible to generate immuno-
genic peptide fragments of F3 as potential subunit vaccines.
Peptides are advantageous in that they can be manufactured in
mass and be readily modified to improve their stability and
enhance their immunogenicity, and most importantly, they are
non-infectious [27]. Thus, even in the face of potentially di-
minished protection from the subunit in and of itself, the pros
of using a peptide may outweigh the cons. In the context of a
defined biologic marker for efficacy, immunogenic peptide
fragments of F3 represent potentially powerful, modifiable,
and scalable clinical options for active vaccination against
H. capsulatum.

H Antigen

An additional protein immunogen, H antigen, has also been
shown to confer protective immunity againstH. capsulatum in
murine models. H antigen, a member of the β-glucosidase
family, is a surface protein component of the cell wall of
H. capsulatum [28]. Studies have revealed that H antigen is
indeed antigenic [29–31]; however, mice immunized with re-
combinant H antigen were not protected against sublethal or
lethal intravenous inoculums of liveH. capsulatum yeast cells
[32]. Nevertheless, it was subsequently shown that immuni-
zation with recombinant H antigen does confer protection
against sublethal and lethal intranasal challenge with
H. capsulatum. The mechanism by which this differential re-
sponse occurs is not currently understood [33]. These studies
highlight the fact that the efficacy of H antigen vaccination, at
least in murine models, is dependent on the route of infection.
This is a critical finding in that it identifies a potential limita-
tion of H antigen vaccination against histoplasmosis. More
importantly, however, it suggests that future active immuniza-
tion strategies against histoplasmosis should be assessed in
terms of their efficacy against different potential routes of
infection.

Cross-priming

Dendritic cells play a critical role in the control of histoplas-
mosis in murine models. Dendritic cells can phagocytose and
kill intracellular H. capsulatum, and, as principle multimodal
antigen presenting cells, they are able to stimulate effective
CD4+ or CD8+ T cell responses to H. capsulatum infection.
In vitro priming of dendritic cells with apoptotic macrophages,
which have previously phagocytosed heat-inactivated
H. capsulatum, followed by auto-transplantation has been
shown to produce protective CD4+ or CD8+ T cell responses
in murine models of histoplasmosis. This active immunization
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strategy, although technically challenging, may be invaluable
in the context of actively vaccinating people with HIV/AIDS
who might otherwise not be able to mount a sufficient re-
sponse to H. capsulatum infection due to low CD4+ T cells
counts [34].

Passive Immunization Strategies

The natural humoral response to histoplasmosis is not well
understood. However, that does not preclude the use of anti-
bodies against H. capsulatum as a therapeutic tool to control
histoplasmosis. H. capsulatum infection in murine models in-
duces the production of polyclonal antibodies against a variety
ofH. capsulatum antigens. Nonetheless, passive immunization
with polyclonal serum from mice immune to H. capsulatum
does not protect naïvemice from lethalH. capsulatum infection
[35]. This may be due to the need of cellular components for an
effective response againstH. capsulatum, but also to the differ-
ential composition of polyclonal serum, which has been found
to include both protective and non-protective (infection-
enhancing) antibodies. A few H. capsulatum–specific mAbs,
however, have been shown to confer protection against histo-
plasmosis and are currently being studied as potential passive
immunization strategies [36].

IgM Against Histone 2B

Immunization of mice with heat-inactivatedH. capsulatum yeast
cells elicits the production of IgM mAbs against histone 2B
(H2B), a protein exposed on the cell surface of H. capsulatum
[37]. Pre-treatment with these mAbs prior to H. capsulatum in-
fection reduces the overall severity of the disease and increases
survival in mouse models of histoplasmosis [37, 38]. This pro-
tective effect is enhanced with the addition of sub-therapeutic
concentrations of amphotericin B; however, even with the addi-
tion of amphotericin B, the protection is incomplete with only
about 40% survival at 45 days after lethal H. capsulatum infec-
tion [37]. The treatment of histoplasmosis with IgM is limited by
nature due to the large pentameric structure of the immunoglob-
ulin, which impedes its ability to easily move from the blood-
stream to the alveolar space. However, when preincubated with
H. capsulatum prior to intranasal challenge, the IgM mAb to
H2B does not only enhances survival, but it also decreases the
fungal burden and tissue damage in experimental infections
[34••].

IgG Against rHSP60

Protective IgG mAbs against rHsp60 have been raised and
are currently under study [39]. Intraperitoneally (IP) ad-
ministered IgG1 and IgG2a mAbs against rHsp60 have
been shown to significantly prolong the survival of mice

challenged with a lethal intranasal inoculum of
H. capsulatum yeast cells. However, the efficacy of these
mAbs is limited. IP administered IgG1 and IgG2a mAbs
conferred protection in only about 60% of the recipients.
Surprisingly, an IgG2b mAb does not confer protection
against lethal H. capsulatum challenge in murine models,
even though it was demonstrated to bind to the same
epitope on rHsp60 as one of the protective IgG1 mAbs.
The pre-treatment of mice with the anti-Hsp60 IgG2b has
no effect on mice survival after a lethal challenge with
H. capsulatum, but incubation of the fungus with this
mAb prior to infection leads to a 30% survival of infected
mice. The pre-incubation of H. capsulatum with this
IgG2b mAb has no effect on the rate of phagocytosis by
macrophages, but the mAb significantly enhances the in-
tracellular growth of the yeast [36]. Currently, research is
underway to determine whether the agglutination proper-
ties [40], isotype, or other fine specificity issues mediate
this differential protective effect.

Pan-Fungal Therapeutic Antibodies

An ever-expanding armamentarium of mAbs is being gen-
erated against a diverse set of pan-fungal antigens. Most
recently, a lectin (wheat germ agglutinin (WGA)) was
fused with the Fc domain of an IgG2a generating the
chimera WGA-Fc. WGA has high affinity to chitin olig-
omers, a product generated by chitin degradation, a main
fungal cell wall constituent [41]. Not only does WGA-Fc
directly inhibit fungal growth in culture, but it also en-
hances phagocytosis of diverse fungal species by macro-
phages in vitro [42]. Opsonization of H. capsulatum with
WGA-Fc prior to co-culture with macrophages decreases
the rates of intracellular growth and most importantly, pre-
treatment of mice with WGA-Fc completely protects mice
against subsequent lethal challenge with an intranasal in-
oculum of H. capsulatum [42••]. Additional examples of
pan-anti-fungal mAbs include but are not limited to an
IgG2b against 1,3 β-glucan, IgM against the fungal sur-
face antigen glucosylceramide, and an IgM against mela-
nin. These mAbs are not necessarily H. capsulatum–spe-
cific but they may be useful down the road in combination
therapy to treat histoplasmosis [43•–48]. Pan-fungal anti-
bodies represent a novel strategy to control diverse myco-
ses, including histoplasmosis. Therapeutic antibodies may
end up being the most effective way to treat mycoses such
as histoplasmosis in immunocompromised patients who
might otherwise not benefit from active immunization
strategies. Certainly, more research into the safety and
efficacy of these antibodies in a variety of experimental
models is indicated.
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Immune System Modulation

Recently, immune system–based therapeutic approaches to
treating cancer are being investigated as new potential tools
for treating fungal infections. One new strategy takes advan-
tage of the PD-1 peripheral immunologic tolerance pathway.
Binding of PD-1 ligand (PD-L1) to its receptor (PD-1) on T
cells activates inhibitory pathways leading to Tcell anergy and
immunosuppression [49]. H. capsulatum infection in mice
induces the upregulation of both PD-L1 and PD-L2 on the
surface of macrophages and dendritic cells as well as T cells,
promoting disease progression. PD-1 knockout mice survive
challenge with a lethal inoculum ofH. capsulatum yeast cells;
moreover, 70% of mice treated with mAb against PD-1 sur-
vive lethal H. capsulatum infection. Although the selective
blockade of the PD-L1–PD-1 interaction does not represent
a passive immunization strategy, it constitutes a promising use
of antibodies to treat histoplasmosis by blocking inhibitory
immunologic checkpoints [50•].

CARTcells that target 1,3β-glucan, using the extracellular
domain of Dectin-1, have been made and tested in experimen-
tal models of murine aspergillosis. Mice treated with the mod-
ified T cells showed a reduction in hyphal expansion of
Aspergillus fumigatus compared to mice that did not receive
the modified T cells [51•]. Although this therapy has not been
tested in experimental histoplasmosis, the use of CAR T cells
to target pan-fungal antigens represents a potentially powerful
tool in the armamentarium of the clinician to treat advanced
mycoses as access to these biotechnologies becomes more
widely available.

Conclusion

There are numerous candidate preventative and therapeutic
vaccines against histoplasmosis described in the literature.
Additional epidemiologic data will be needed to evaluate
who should be vaccinated and when it would it feasible and
reasonable to do so. Determining the utility of vaccination in
the setting of variable incidences of disease, particularly with
an endemic pathogen in and outside of the high incidence
regions, and in different settings of immune competency or
suppression will be essential for optimal implementation of
vaccine strategies againstH. capsulatum. Additionally, specif-
ic work testing efficacy in the absence of different components
of the immune system in animal models can aid in predicting
which individuals may benefit most from different immuniza-
tion approaches. Nevertheless, these epidemiological ques-
tions should not preclude the much-needed transition from
pre-clinical laboratory research to clinical trials. Numerous
lives could be saved, and ultimately healthcare costs may be
reduced.
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