
HIV IN THE TROPICAL SETTING (B MORAWSKI AND A KAMBUGU, SECTION EDITORS)

Tropical Parasitic Infections in Individuals Infected With HIV

Emily E. Evans1 & Mark J. Siedner2,3,4

Published online: 16 October 2017
# Springer International Publishing AG 2017

Abstract
Purpose of Review Neglected tropical diseases share both
geographic and socio-behavioral epidemiological risk factors
with HIV infection. In this literature review, we describe in-
teractions between parasitic diseases and HIV infection, with a
focus on the impact of parasitic infections on HIV infection
risk and disease progression, and the impact of HIV infection
on clinical characteristics of tropical parasitic infections. We
limit our review to tropical parasitic infections of the greatest
public health burden, and exclude discussion of classic HIV-
associated opportunistic infections that have been well
reviewed elsewhere.
Recent Findings Tropical parasitic infections, HIV infection,
and treatment with antiretroviral therapy alter host immunity,
which can impact susceptibility, transmissibility, diagnosis,
and severity of both HIV and parasitic infections. These rela-
tionships have a broad range of consequences, from putatively
increasing susceptibility to HIV acquisition, as in the case of
schistosomiasis, to decreasing risk of protozoal infections
through pharmacokinetic interactions between antiretroviral
therapy and antiparasitic agents, as in the case of malaria.
However, despite this intimate interplay in pathophysiology
and a broad overlap in epidemiology, there is a general paucity

of data on the interactions between HIVand tropical parasitic
infections, particularly in the era of widespread antiretroviral
therapy availability.
Summary Additional data are needed to motivate clinical rec-
ommendations for detection and management of parasitic in-
fections in HIV-infected individuals, and to consider the im-
plications of and potential opportunity granted by HIV treat-
ment programs on parasitic disease control.
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Introduction

Endemic HIV infection and neglected tropical diseases share a
broad geographical distribution: over 25 million people in
sub-Saharan Africa are living with HIV, and over 500 million
people in the same region are believed to be infected with
neglected parasitic diseases, including hookworm, schistoso-
miasis, ascariasis, and trichuriasis [1]. The interplay between
tropical parasitic disease, HIV, their treatments, and the human
host have important implications for host immunity, inflam-
matory responses, disease acquisition risk and disease severity
[2–4]. As the epidemiology of HIV has shifted from a routine-
ly fatal disease to a chronic, manageable condition for those
with access to antiretroviral therapy (ART), there is an impor-
tant need to describe relevant interactions between HIV infec-
tion, ART, and co-endemic parasites.

In this review, we intend to summarize published literature
on interactions between tropical parasitic infections and HIV,
with attention to impacts of parasitic infections on HIV dis-
ease progression and to the associations between HIV infec-
tion and parasitic disease acquisition, severity, and manage-
ment (Table 1).We exclude discussion of known opportunistic
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infections commonly studied in the developed world, such as
toxoplasmosis, and gastrointestinal protozoa.

Nematode Infections

Hookworm

Human hookworm infection is caused by Ancylostoma
duodenale in northern Africa and India, and by Necator

americanus in most of the rest of the tropics including sub-
Saharan Africa and Southeast Asia. It is a clinically significant
infection in the tropics, where it may cause iron-deficiency
anemia, and, in cases with high worm burdens, has been as-
sociated with malnutrition and cognitive deficits among chil-
dren [75]. In pregnant women living with HIV, hookworm
infection has been demonstrated to worsen anemia and in-
crease the risk of maternal mortality [76–79]. There are 730
million people in the world living with hookworm infection,
130 million of whom are in sub-Saharan Africa [7, 80].

Table 1 Associations between parasitic infections and HIV susceptibility and disease progression, helminth infection severity and relevant drug-drug
interactions

Parasite Helminth infection
effect on HIV disease

HIV infection
effect on helminth
disease

Drug interactions [5, 6] References

Hookworm ↑ susceptibility
(weak evidence)

↓ severity Increased albendazole concentrations with PIs,
decreased concentrations with EFV/NVP

[7–12, 13••,
14–17, 18•, 19]

Trichuris trichiura ↑ susceptibility
(weak evidence)

– Increased albendazole concentrations with PIs,
decreased concentrations with EFV/NVP

[10, 19, 20]

Strongyloides
stercoralis

– ↑ susceptibility
(weak
evidence)

Increased ivermectin concentrations with PIs,
decreased concentrations with EFV/NVP;
increased potential for CNS toxicity or
Mazzotti-like reaction

[21–23]

Ascaris lumbricoides ↑ progression
(weak evidence)

– Increased albendazole concentrations with PIs,
decreased concentrations with EFV/NVP

[14, 19, 20,
24–29]

Wuchereria bancrofti ↑ susceptibility
(weak evidence)

– Limited data on DEC metabolism [30–33, 34••, 35]

Onchocerca volvulus ↑ progression
(weak evidence)

↑ severity Limited data on DEC metabolism [36–40]

Loa loa – – Increased albendazole concentrations with PIs,
decreased concentrations with EFV/NVP

[19, 20]

Taenia solium – – Increased albendazole/praziquantel concentrations
with PIs, decreased concentrations with
EFV/NVP

[19, 20, 41–43]

Echinococcus
granulosis

– ↑ severity Increased albendazole/mebendazole concentrations
with PIs, decreased concentrations with
EFV/NVP

[19, 20, 44–49]

Schistosomiasis ↑ susceptibility
↑ progression

– Increased praziquantel concentrations with PIs,
decreased concentrations with EFV/NVP

[50–57]

Malaria ↑ susceptibility
↑ progression

↑ severity Quinine, chloroquine, mefloquine, pyrimethamine-
sulfadoxine, atovaquone-proguanil, doxycycline
interactions with NVP, EFB, LPV/r, NFV, SQV/r;
artemether-lumefantrine contraindicated with PIs

[4, 58–61]

Leishmania spp. – ↑ susceptibility Paromycin and miltefosine may increase GI side
effects with co-administration of RTV containing
PIs; Sodium stibogluconate may exacerbate
pancreatitis with DDL; potential additive bone
marrow toxicity with AZT, may stimulate HIV-1
replication

[62–68]

Chagas disease – ↑ severity Benznidazole/suramin/nifurtimox may increase
peripheral neuropathy risk with DDL/D4T

[69, 70]

Sleeping sickness ↑ (HIV-2 only, weak
evidence)

↑ severity Pentamidine may increase pancreatitis with DDL;
suramin may have additional nephrotoxicity
with TDF; melarsoprol may increase CNS
toxicity with EFV, nifurtimox may increase
GI side effects with RTV containing PIs

[71–74]

SQV/r saquinavir/ritonavir, NFV nelfinavir, LPV/r lopinavir/ritonavir, D4T stavudine, DDL didanosine, TDF tenofovir disoproxil fumarate, AZT
zidovudine, EFV efavirenz, NVP nevirapine, PI protease inhibitor
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Estimates of HIV and hookworm co-infection vary by region
but, in East Africa, have ranged from 2 to 28% among people
living with HIV (PLWH) [24, 81–84].

Although incompletely described, the interactions between
HIVand hookworm infections demonstrate the complex host-
pathogen interplay at work in co-infections. An induced T
helper (Th)-1 cell response is thought to be protective against
HIV infection; however, as the disease progresses and CD4+ T
cells are destroyed, a Th-2 response predominates and could
theoretically be protective against hookworm infection [8].
However, depletion of Tcells in advanced HIVmay contribute
to advancing parasitic disease through downregulation of IL-
10 and TGF-β, which are known to play a beneficial role in
hookworm infection [85]. Although supportive clinical data
are sparse, a study of treatment-naive PLWH co-infected with
tuberculosis (TB) found a lower prevalence of hookworm (12
vs 25%) and disease burden (49 vs 123 eggs/g of stool) in HIV-
infected versus HIV-uninfected individuals, respectively [9].
Conversely, some evidence links hookworm infection to accel-
erated HIV disease progression through a favored Th2 immune
response, consequent production of IL-10 and TGF-β, and
expansion of T cell HIV virion targets [86, 87]. This relation-
ship has been postulated to induce an increased HIV-1 RNA
viral load in hookworm co-infected individuals [10].

This shift from a Th1- to a Th2-favored immune response
[85, 88] may also increase susceptibility to other intracellular
infections, such as tuberculosis and cryptococcosis. For exam-
ple, HIV-uninfected children in Tanzania with hookworm infec-
tion were more likely to be co-infected with latent TB than those
without hookworm [89]. This relationship was seen despite the
known decreased sensitivity of interferon-γ-based latent tuber-
culosis tests seen in patients with helminthic infection [90].
Other studies have also demonstrated independent associations
between helminth infection and tuberculosis risk [91–93].

Finally, interactions between hookworm infection and HIV
infection also appear to play out at the gut epithelial-lumen
interface. Both hookworm and HIV infection have been dem-
onstrated to induce microbial translocation and resulting im-
mune activation [94]. Although elevated, the Th2-mediated
increases in IL-10 seen in hookworm infection may partially
mitigate HIV-associated inflammation in those with co-
infection [94, 95].

Given the complex interplay between HIV infection and
hookworm infection, the impact of empiric helminth treatment
on HIV disease progression has been an important and contro-
versial area of study. While it has been suggested that there are
beneficial effects of anthelmintic therapy on viral load and
CD4+ T cell concentration trajectories in ART-naïve STH co-
infected individuals [11] others have found no such impact [12,
96]. Morawski et al. found that PLWH receiving ART were
less likely to have hookworm co-infection. Additionally, those
co-infected with hookworm had lower CD4+ T cell counts,
and this effect was sustained up to 2 years after ART initiation

[84]. A case-control study and two randomized controlled tri-
als among ART- ineligible PLWH demonstrated no benefit of
either empiric or targeted treatment with albendazole on CD4+
Tcell count trajectories [13••, 14, 15]. Lankowski et al. studied
CD4+ T cell recovery following anthelmintic treatment in
PLWH initiating ART and found no immunologic benefit, al-
though a sub-analysis restricted to women suggested a benefit
of deworming [16]. Similarly, a randomized controlled trial of
HIV-infected pregnant women on ART in Rwanda found a
significant benefit in CD4+ T cell count change and HIV
RNAviral load reduction 48 weeks after treatment, regardless
of confirmed helminth co-infection [97]. However, in a dou-
ble-blind, randomized, placebo-controlled trial of ART-naïve
pregnant women in Uganda, there was no difference in HIV
viral load after anthelmintic treatment [10]. In a meta-analysis
of six studies on the subject, Sangare et al. did not demonstrate
a significant benefit of deworming on markers of HIV-1 dis-
ease progression [17]. Another meta-analysis of eight observa-
tional and interventional trials analyzing the effect of anthel-
mintic treatment on HIV viral load and CD4+ T cell concen-
tration found minimal impact of anthelmintic therapy on either
CD4+ Tcell concentration or viral load, whether treatment was
empiric or for confirmed parasite infection [18•]. Of the eight
studies included in this meta-analysis, two included PLWH
who had initiated ART, and only one demonstrated a positive
effect of anthelmintic chemotherapy on CD4+ T cell reconsti-
tution [98]. Given the rapid expansion in ART availability in
sub-Saharan Africa, further data that will elucidate these clin-
ical questions in the current era of ART are required.

The World Health Organization (WHO) treatment recom-
mendations for hookworm currently include presumptive treat-
ment with 400 mg albendazole at a prevalence-dependent fre-
quency for all at-risk persons (children, women of childbearing
age, and adults with additional occupational exposures) [99].
There are no specific guidelines for treating hookworm in the
setting of HIV infection, and thus, similar recommendations
are presumed to apply for PLWH. However, there are impor-
tant drug-drug interactions between HIV antiretroviral thera-
pies and selected anthelmintic therapy, e.g., ritonavir-boosted
protease inhibitors, which may decrease concentrations of
albendazole [100] through induction of theCYP3A4metabolic
pathway (Table 1) [19, 20].

Trichuriasis

Trichuris trichiura, or whipworm, is commonly asymptomat-
ic but, in cases with a heavy worm burden, can cause dysen-
tery and anemia, and has been associated with stunted growth
[101, 102]. There are few data on interactions between whip-
worm and HIV infection, although in some regions, the prev-
alence of trichuriasis in PLWH has been reported to be up to
20% [25, 103, 104]. Trichuris infection has been associated
with increased T cell activation (HLA DR+ CD38+) and
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CD4+ CCR5 co-receptor expression, which may increase
HIV susceptibility by increasing target effector cells [105].
Like hookworm infection, Trichuris infection has also been
associated with a higher viral load in pregnant women living
with HIV [10], likely due to T cell expansion promoting viral
replication. Treatment for trichuriasis is either 400 mg
albendazole for 3 days, 100 mg mebendazole twice a day for
3 days, or 200 mcg/kg/day for 3 days, and no alternate con-
siderations have been made among PLWH.

Strongyloidiasis

In healthy individuals, Strongyloides stercoralis infection is
often characterized as a benign chronic infection. However,
various forms of immunosuppression increase risk of a severe
and potentially fatal disseminated disease [106–108], where
the organism is present in organs outside the skin, GI tract, or
lungs. Higher rates of strongyloidiasis have been reported in
PLWH versus uninfected individuals in Ethiopia, Brazil,
Thailand, and South India [109–112], although broader co-
infection prevalence rates are not available in sub-Saharan
Africa. Interestingly, disseminated disease appears to be ex-
ceptionally rare in HIV infection, including those with ad-
vanced disease [107]. Persistent anti-Strongyloides IgG in
PLWH appears to maintain protection from disseminated
strongyloidiasis, even at low CD4+ T cell concentrations
[107]. Nonetheless, because of the overlapping geographic
risk, and the indication for corticosteroids with multiple
HIV-related syndromes (e.g., tuberculous meningitis,
Pneumocystis jiroveci pneumonia, immune reconstitution in-
flammatory syndromes), empiric therapy for strongyloidiasis
infection may be indicated for this patient population to pre-
vent morbidity from disseminated infection.

Although disseminated infection is uncommon in HIV,
ART initiation in strongyloidiasis co-infection has been asso-
ciated with an immune reconstitution-type syndrome [21, 22,
113, 114]. HIV infection has been rarely associated with other
complications of strongyloidiasis infection [105, 108, 113,
115] including invasion of the CNS [114]. Moreover, while
data are relatively sparse, HIV infection has been described
as an independent risk factor for strongyloidiasis. Small studies
in Ethiopia, Thailand, and India have all found estimated in-
creased odds or prevalence of S. stercoralis infection among
PLWH receiving ART [21–23]. Furthermore, one cross-
sectional study in India exhibited a “dose-response” relation-
ship between increasing infection rates and decreasingCD4+T
cell concentrations [22]. However, ART use does not appear to
significantly affect the prevalence of S. stercoralis in PLWH
[116]. Whether this is a true independent effect of HIV infec-
tion or another confounding risk factor (e.g., socioeconomic
status or health system strengthening) remains unknown.

Strongyloidiasis does not appear to affect the progression
of HIV disease, and comparable baseline HIV disease

markers, CD4+ T cell concentration, and viral loads were
observed in Strongyloides-infected versus uninfected individ-
uals in PLWH [109, 112]. There are no specific recommenda-
tions on the timing of ART and/or anthelmintic dosing for
PLWH co-infected with Strongyloides. Empiric treatment
should be strongly considered in patients from endemic re-
gions who have an indication for corticosteroid use and/or
other immunosuppressive therapies. CDC treatment guide-
lines recommend a dose of ivermectin 200 ug/kg daily for
2 days, or until stool exams are persistently negative in
hyper-infection syndrome [117]. Caution is advised in regions
with co-prevalent strongyloidiasis and loiasis, because treat-
ment with ivermectin can cause a fatal encephalopathy in
those with the latter [117].

Ascariasis

Ascaris lumbricoides is the most common soil-transmitted
helminth infection of humans globally [7, 118]. Ascaris infec-
tion is often asymptomatic, but can be complicated by intes-
tinal and biliary obstruction due to wormmigration, especially
in children [119].

HIV disease stage does not appear to predispose individ-
uals to ascariasis [24] and a similar prevalence of Ascaris has
been shown in PLWH compared to HIV-uninfected individ-
uals [25, 26]. Although a decreased prevalence of all STH,
including Ascaris, was reported in Brazil in an era of ART
expansion compared to the pre-ART era [27], these findings
have not been validated in other settings, and concomitant
advances in hygiene and sanitation could be responsible.

Ascaris infections are characterized by a dominant Th2
response [120], which, as described previously, has been pos-
tulated to increase HIV susceptibility [105], although this has
not been demonstrated by epidemiologic studies. There is ev-
idence that untreated Ascaris infection can adversely affect
HIV disease progression [28] through reduced production of
Th1 cytokines [28, 121]. ART-naïve PLWH in southern
Ethiopia treated for confirmed Ascaris infection had increases
in CD4+ T cell concentrations at 15 weeks and at 6 months
[29]. Similarly, a randomized trial found a significant im-
provement in CD4+ T cell concentrations among a sub-
group of Ascaris and PLWH co-infection following treatment
with albendazole compared to placebo [14]. The Center for
Disease Control (CDC) recommends treating ascariasis with a
single dose of 400 mg albendazole, with no treatment-specific
guidelines for HIV-infected individuals [122].

Filarial Diseases

Lymphatic Filariasis

Lymphatic filariasis is caused most commonly by the filarial
nematode Wuchereria bancrofti. It has been decreasing in
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prevalence worldwide, largely due to elimination programs, but
remains a significant public health problem in tropical regions
[123]. In sub-Saharan Africa, an estimated 50 million people
are infected with lymphatic filariasis [1, 124]. Prevalence of co-
infection with HIV has been difficult to estimate, particularly in
Asia and East Africa, where the disease burden is greatest
[125]. Estimates from a study in Tanzania prior to mass treat-
ment found an overall lymphatic filariasis prevalence of 25%,
anHIV prevalence of 9%, and a co-infection prevalence of 42%
in adults older than 18 years of age [30].

No association between lymphatic filariasis and HIV infec-
tion risk has been found in three studies in sub-Saharan Africa
[30–32]. A single cross-sectional study demonstrated that
lymphatic filariasis was correlated with HIV infection preva-
lence, but the results may have been confounded by age and
gender [33]. The most compelling data of an association come
from a cohort study in southwestern Tanzania, which demon-
strated an increased risk of HIV acquisition in HIV-negative
adults and adolescents with lymphatic filariasis compared to
their parasite-free peers for up to 4 years of observation [34••].
The authors hypothesized that increased production of IL-4
and activated macrophages were responsible; however, more
research into these relationships is needed [126, 127].

There is a mixed body of literature on the relationship be-
tween lymphatic filariasis infection, HIV disease stage, and
response to antifilarial treatment. In a prospective case-control
study of individuals with HIV and lymphatic filariasis co-in-
fection, treatment with diethylcarbamazine (DEC) and
albendazole did not appear to affect HIV disease indices 1 year
after treatment, such as HIV-1 viral load and CD4+ T cell
concentrations. Results were similar in a sub-analysis of
ART-naïve individuals [32]. A cross-sectional study compar-
ing cytokine profiles and HIV indices in PLWH with and
without lymphatic filariasis observed no difference in HIV-1
viral load or CD4+ T cell percentage prior to treatment with
DEC [128]. However, a double-blind, randomized controlled
trial demonstrated that treatment of lymphatic filariasis with
DEC in PLWH significantly reduces viral load [128]. A sep-
arate cross-sectional study of PLWH co-infected with lym-
phatic filariasis demonstrated that ART-treated individuals
had a lower filarial load compared to ART-naïve individuals
and the burden of filarial antigenemia also decreased with
increasing duration of ART [31].

Interestingly, therapy against lymphatic filariasis may be
more efficacious in PLWH. One study demonstrated signifi-
cantly increased filarial-specific IgG3 in PLWH and signifi-
cantly lower concentrations of IgG4, a biomarker of filarial
infection, 12 weeks after lymphatic filariasis treatment com-
pared to HIV-uninfected individuals [35]. The authors hypoth-
esize that the increased levels of IgG3 were due to an initial
HIV-induced Th1 response, while the reduction in IgG4
corresponded with circulating filarial antigen before and after
treatment. Further research is required to determine if these

results can offer insights into improving lymphatic filariasis
therapy. Combination treatment with albendazole and iver-
mectin, an alternative regimen recommended by the WHO
in select populations, appears to be as efficacious in reducing
filarial burden in PLWH as it is in people without HIV infec-
tion [34••, 129]. One death due to “severe HIV infection” was
reported in a randomized clinical trial demonstrating the effi-
cacy of doxycycline over placebo through targeting of the
Wolbachia endosymbiont, a finding whichmay require further
investigation [130].

Onchocerciasis

River blindness, caused by the filarial worm Onchocerca
volvulus, is the second leading cause of infectious blindness
worldwide [131]. Since neglected tropical diseases were in-
cluded in theMillenniumDevelopment Goals in 2000, oncho-
cerciasis eradication efforts have been successful in Colombia
(2013), Ecuador (2014), Mexico (2015) [132], and Guatemala
(2016) [133]. Onchocerciasis remains endemic in Uganda,
Brazil, Ethiopia, Nigeria, Sudan, and Venezuela, where over
6.7 million PLWH reside [124]. HIV infection has been
postulated to alter the presentation of Onchocerca infections,
with worse dermatologic involvement among infected
individuals [36]. Additionally, HIV infection has been
shown to reduce antibody responses to onchocerciasis [37]
potentially leading to slower clearance of filarial infection.

Onchocerciasis may alter immune responses to HIV infec-
tion. This was demonstrated in one in vitro study, where HIV
viral replication increased after stimulation of PBMCs isolated
from individuals with filarial infections, compared to parasite-
free individuals [126]. However, in that same study, there was
no difference in expression of proteins known to facilitate HIV
infection such as CCR5 or CXCR4 co-receptors in those with
and without prior filarial infection. Conversely, PBMCs from
PLWHversusHIV-uninfected controls had an impaired specific
response to onchocerciasis and were less efficient in producing
interleukin (IL)-4 and IL-5, which are involved in the immune
control of onchocerciasis [38]. These findings are consistent
with the fact that a vigorous Th2 response is responsible for
parasite death and may hasten resultant blindness [39, 40].

Loiasis

Loa loa, the filarial eye worm, remains endemic in many West
African countries. There are few studies of interactions be-
tween HIV and Loa loa. One study in Gabon demonstrated
that PLWH taking trimethoprim-sulfamethoxazole prophylaxis
were less likely to have L. loa co-infection [99]. Trimethoprim,
which inhibits dihydrofolate reductase, an enzyme encoded in
the L. loa genome, has been suggested as a potential target for
drug therapy in various parasitic infections [134–136]. Future
work is needed to assess if folate-inhibiting agents might
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protect against L. loa and the mechanisms by which these
agents may work.

Cesetodes

Taeniasis

Neurocysticercosis is believed to be responsible for ap-
proximately 30% of epilepsy cases in sub-Saharan
Africa, affecting between 760,000 and 2,460,000 people
in the region [137]. HIV infection can complicate the di-
agnosis of neurocysticercosis as the differential diagnosis
of intracerebral lesions is broad in PLWH and serologic
assays are less sensitive in cerebrospinal fluid [138].
While a handful of published cases describe ART-related
IRIS exacerbating neurocysticercosis infections, there is
insufficient evidence to support this as a common phe-
nomenon [41]. However, there are suggestions that HIV-
related immune dysregulation influences clinical manifes-
tations of neurocysticercosis. Cerebral inflammation in re-
sponse to cystic rupture is partially dependent on Th1-
mediated immune responses, which require active CD4+
T cell populations [41, 42]. Similarly, Th1-mediated im-
mune activity prevents multi-cyst infection. Th2 re-
sponses, which are more vigorous as CD4+ T cells are
depleted, have been associated with subclinical multi-
cyst neurocysticercosis [43].

A combination of albendazole, praziquantel, and cortico-
steroids, which is informed by clinical severity, cyst viability,
cyst location, and cyst number, is the standard of care for
treatment of neurocysticercosis [139, 140]. Some have sug-
gested that treatment thresholds for neurocysticercosis should
be lowered among PLWH [140, 141]. As in all conditions
requiring prolonged steroid use, careful attention to the risk
for Pneumocystis jiroveci pneumonia, disseminated
Strongyloides, active tuberculosis, hepatitis B virus reactiva-
tion, and other diseases with reactivation potential should be
considered.

Echinococcosis

Few cases of echinococcosis and HIV co-infection have been
reported. A single case series of four patients suggested that
advanced HIV disease might increase the risk of more rapid
cyst development and growth [44]. As previously discussed,
advanced HIV infection is believed to result in a Th2-
dominant immune response. This Th2 milieu is hypothesized
to create a more suitable host environment for Echinococcus
growth [45]. For example, T cell lines from individuals infect-
ed with inactive cysts have been shown to have an exclusively
Th1 immune response ex vivo when stimulated by sheep hy-
datid fluid and antigen B, whereas patients with active cystic

disease showed a mixed Th1/Th2 response [142]. These data
suggest that the HIV-induced Th2 imbalance may promote
active cystic growth of the Echinococcus helminth. Other re-
ports of Echinococcus granulosus infection in PLWH indicate
that extra-hepatic disease might be more common in this pop-
ulation [46–49]. However, a review article in South Africa did
not show a statistically significant difference in the prevalence
of disseminated cystic echinococcosis in HIV infected verses
uninfected adults [143].

Trematodes

Schistosomiasis

Human schistosomiasis is caused by the trematodes Schistosoma
haematobium, Schistosoma mansoni, Schistosoma japonicum,
and Schistosomamekongi, and affects 240 million people world-
wide mostly in tropical and subtropical regions [144].
Schistosomiasis can remain asymptomatic for decades, but can
progress to a chronic sclerosing condition with hepatic or geni-
tourinary involvement if untreated. Urogenital schistosomiasis,
caused by S. haematobium, manifests as hematuria, fibrosis of
the bladder and ureters, and, eventually, bladder cancer. Women
with urogenital schistosomiasis may have genital lesions, vaginal
bleeding, and dyspareunia. Some studies have suggested that
urogenital schistosomiasis is a risk factor for HIV infection, and
that the treatment and/or prevention of Schistosoma infections
can potentially aid in HIV disease control [50]. Evidence
supporting this theory includes findings of increased concentra-
tions of HIV target cells surrounding S. mansoni parasites in
vaginal tissue [51], and a resulting increased vascularization of
the vagina and cervix in females with urogenital schistosomiasis
[52]. Females with urogenital schistosomiasis have also been
hypothesized to have higher HIV transmission rates due to com-
promised vaginal epithelial tissue and increased HIV target cells
[53]. A case-control study fromUganda showed no difference in
HIVacquisition between 50 people in a fishing community with
HIV seroconversion and 150 people without seroconversion.
Equal percentages in both groups had evidence of Schistosoma
mansoni before HIV seroconversion suggesting that the effect, if
present, is minimal [145••]. This study included almost equal
numbers of men and women and it is possible that an effect
would have been recognized in a predominantly female popula-
tion, especially in settings with a higher prevalence of
S. haematobium as opposed to S. mansoni,where genital lesions
are more likely to be present. A recent (completed but unpub-
lished) clinical trial in Uganda seeks to test the impact that
Schistosoma infection and treatment may have on HIV suscep-
tibility (ClinicalTrials.gov: NCT02878564).

Some studies have found reduced worm burdens in those
with co-infection compared to those without HIV infection
[146]. Other studies have hypothesized that the life cycle of
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the worm is dependent on a T cell response which is dimin-
ished during HIV infection. However, egg expulsion also ap-
pears to be dependent on Tcell-mediated pathways, and could
explain the decreased egg expulsion in PLWH. Egg retention
does not appear to alter disease severity [147]. However, eco-
logic studies have suggested that regions with high prevalence
of both HIV and schistosomiasis also have a high prevalence
of renal dysfunction [2, 3]. A case-control study of children
living with HIV and their uninfected siblings demonstrated
schistosomiasis as an independent correlate of renal dysfunc-
tion [148].

Finally, there is evidence that schistosomiasis infection can
accelerate HIV disease progression and hamper HIV treat-
ment responses [149], as demonstrated by longer time to viral
load suppression and reduced CD4+ T cell expansion follow-
ing ART initiation [54, 55]. Although immediate treatment of
schistosomiasis did not improve viral suppression in a ran-
domized controlled trial comparing early versus delayed
praziquantel therapy among PLWH receiving ART, those ran-
domized to delayed praziquantel had higher viral loads and
lower CD4+ T cell concentrations after 3 months of observa-
tion [56]. This effect has been attributed to increasing Th2
activity in response to treatment with praziquantel and worm
killing [55–57]. There are no HIV-specific related treatment
recommendations for schistosomiasis, and 40–60 mg/kg of
praziquantel, depending on the species, is typically recom-
mended [150].

Protozoa

Malaria

Globally, malaria prevalence and fatalities have decreased by
18 and 37%, respectively, since 2000 [151]. However, malaria
remains an important public health issue due to its high asso-
ciated mortality among children, and the recurrence of drug
resistance to newer artemisinin-based therapies [152]. PLWH
have a higher burden of malaria and, when infected, could
have more severe anemia [4] and worse outcomes [58, 59].
Malaria infection also appears to increase HIV target cell ex-
pansion and consequentially increases HIV viral replication in
ART-naïve, PCP-prophylaxis-naïve individuals [60, 61].

A randomized controlled trial of cotrimoxazole prophylax-
is in children infected with HIV demonstrated a protective
effect against malaria, compared to HIV-uninfected children
not on prophylaxis [153]. Similar studies confirmed a protec-
tive effect of cotrimoxazole prophylaxis, and that the effect
was no longer present after discontinuation [154, 155]. There
is also mounting interest in the use of boosted protease inhib-
itors in the prevention of malaria in endemic areas, through
improved pharmacokinetics of antimalarial drugs [156–161].
A randomized controlled trial in Uganda confirmed that

protease inhibitor-based ART, compared to non-nucleoside-
based regimens, was associated with a decreased incidence
of malaria, and that this benefit was related to prolonged du-
ration of therapeutic lumefantrine drug levels [162]. Partially
based on these findings, WHO HIV guidelines recommend
cotrimoxazole prophylaxis in all PLWH in malaria-endemic
areas, and boosted protease inhibitors as first-line antiretrovi-
ral therapy in infants and children with HIV [163].

Leishmaniasis

The three principal clinical manifestations of leishmaniasis in-
clude cutaneous, mucocutaneous, and visceral syndromes,
which are caused by over 20 different Leishmania spp. In east
Africa, 40% of patients with visceral leishmaniasis are co-
infected with HIV [164]. Although leishmaniasis is typically
transmitted by the sand fly vector, Leishmania transmission
has been observed through needle sharing in PLWH [165].
There are many HIV-specific clinical features of Leishmania
infection, and the visceral manifestation is considered an op-
portunistic infection [62, 63]. PLWH appear to be at risk for
diffuse cutaneous leishmaniasis, treatment-resistant disease,
and recurrent infections [64, 65], but also appear to more com-
monly have asymptomatic disease [66]. Atypical manifesta-
tions seen in PLWH, especially those with advanced immuno-
suppression, include the absence of the classic triad of fever,
hepatomegaly, and splenomegaly, and the presence of
amastigotes in atypical tissues including gastrointestinal tract,
skin, tonsils, and lung [166]. Although HIV infection has been
shown to significantly increase the risk for death from visceral
leishmaniasis [67, 167], ART appears to be protective against
leishmaniasis among PLWH [66] and likely reduces rates of
relapse [68]. Specifically, protease inhibitors might have direct
activity against the parasite, although more research is needed
[164, 168]. Alternatively, prophylaxis for visceral leishmania-
sis relapse in PLWH with monthly infusions of pentamidine
has demonstrated preliminary success by reducing relapse-free
survival from 50 to 100% in historical controls to 29% [169•].

Although the cutaneous and mucocutaneous forms are di-
agnosed with biopsy and pathology, visceral forms can be
challenging to diagnose, and serologic tests may have a lower
sensitivity in PLWH due to a lack of a humoral immune re-
sponse [62, 170]. Treatment for visceral and severe cutaneous
forms of leishmaniasis involves liposomal or standard
amphotericin B. However, in many areas where amphotericin
B is not available, pentavalent antimony is still recommended.
Although resistance to liposomal amphotericin B has been
reported in HIV infection [171], there is insufficient evidence
to warrant alternate recommendations for PLWH. Many rec-
ommendations include secondary prophylaxis until immune
reconstitution, as defined by a CD4+ T cell concentration
> 250 cells/mcL [172–174]. The FDA recently approved
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miltefosine for all types of leishmaniasis, which was well tol-
erated in a small (n = 5) study among PLWH [175].

Trypanosomiasis

Chagas disease, caused by the protozoan parasite Trypanosoma
cruzi, is an infection characterized by acute and chronic phases,
ultimately leading to cardiomyopathy and, less commonly,
esophageal dilatation in 10–30% of untreated patients [176,
177]. Reactivated Chagas disease is considered an AIDS-
defining illness in Brazil [178, 179]. PLWH are more likely to
have detectable parasitemia on peripheral blood smears in
chronic Chagas infection than HIV-uninfected individuals
[69], and there are reports of higher mortality due to chronic
Chagas disease with cardiac involvement in PLWH [70]. To our
knowledge, there are no reports of Chagas and HIV-related
IRIS upon ART initiation. As in leishmaniasis, there is some
evidence that protease inhibitors may have direct activity
against trypanosomes. Nelfinavir and lopinavir may target
aspartic peptidases and proteasomes of T. cruzi [156, 180].
Treatment for Chagas disease is typically recommended for
younger patients, those with acute infection and those without
significant cardiomyopathy, with benznidazole and nifurtimox
as preferred agents [181, 182]. In contrast, treatment of chronic
disease in those with advanced cardiomyopathy remains con-
troversial [183]. No HIV-specific treatment recommendations
are currently available.

Sleeping sickness is caused by the Trypanosoma brucei
rhodesiense (East African Sleeping Sickness) protozoa in
southern and eastern Africa and Trypanosoma brucei
gambiense (West African Sleeping Sickness) in western and
central Africa. The majority of cases are due to T. brucei
gambiense and were reported in the Democratic Republic of
the Congo (DRC). Infection is characterized in two stages: the
first stage involves the blood and lymph nodes, and the second
stage is characterized by the invasion of the central nervous
system [184]. Data describing associations between African
Sleeping Sickness and HIV infection are sparse. Some re-
search has recommended that serology-based HIV testing
should be avoided until after treatment of trypanosomiasis
because false-positive HIV tests are reportedly more common
during active infection [185]. HIV infection did not impact
outcomes in individuals with second-stage sleeping sickness
in Tanzania [71]. Early clinical studies in Zaire (presently
DRC) prior to ART availability suggested that although HIV
did not increase the risk factor of Sleeping Sickness acquisi-
tion, it was associated with trypanosomiasis treatment failure
[72, 73]. Some evidence has also suggested that African
Sleeping Sickness may predispose individuals to HIV-2 infec-
tion and additionally lower CD4+ T cell concentrations [74].
Treatment for East African Sleeping Sickness involves
suramin for early-stage disease and melarsoprol (preferably
co-administered with corticosteroids) for those with central

nervous system involvement. In regions where onchocerciasis
is endemic, additional caution should be used before admin-
istration of suramin. For West African Sleeping Sickness,
treatment includes either monotherapy with pentamidine for
7–10 days for first-stage disease or intravenous eflornithine
for 2 weeks with or without nifurtimox for infections with
CNS involvement [186]. Neither disease has HIV-specific
guidelines for treatment.

Conclusion

Both HIV infection and parasitic infections are common in
tropical regions and cause significant morbidity and mortality.
Despite this, associations between HIV and most neglected
tropical infections remain understudied, and poorly under-
stood, and opportunities for integrated care are potentially
overlooked [187]. As HIV increasingly becomes a prevalent,
chronic condition, additional attention to the interplay be-
tween the two is warranted, particularly regarding preventing
transmission of HIV infection, ensuring optimal long-term
health of PLWH and strengthening efforts to eradicate and
control neglected infections [188].
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