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Abstract
Purpose of Review Attention deficit hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders
characterized by inattention, impulsivity, diminished executive functions, and hyperactivity. Objective criteria can be used to
assess the diagnosis and response of the disease to medications.
Recent Findings Several biomarkers belonging to electrophysiological, genetic, peripheral, and miRNA-based biomarkers have
shown promise in studies to be an objective aid to clinical diagnostic criteria for the diagnosis of ADHD.
Summary This review article focuses on summarizing the existing evidence for different biomarkers that have been studied in the
past for diagnosing ADHD.
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Introduction

Attention deficit hyperactivity disorder (ADHD) is a
neurodevelopmental disorder, first described by Sir George
F Still, as a condition persisting in children with a problem
associatedwith “moral control” in 1902. This was followed by
a neuropsychological study in 1972 that established inatten-
tion as a key feature of ADHD [1, 2]. This disorder is charac-
terized by core symptoms of inattention, impulsivity, hyper-
activity, and diminished executive functions. It most com-
monly affects children and adolescents, with 60–80% of these
patients having persistence of these symptoms in adulthood
[3]. The diagnosis of ADHD emphasizes the presence of
symptoms in more than two settings with evidence of a reduc-
tion in the quality of social, academic, or occupational func-
tioning after all other psychiatric conditions are ruled out
[4].Owing to the subjective nature of the diagnostic criteria,
ADHD may be misdiagnosed as any other neurocognitive or
neurodevelopmental disorder, thereby causing a delay in

diagnosis and treatment [5–7]. This calls for the need of ob-
jective markers of the disease that can be used in diagnosis,
prognostication, and assessment of response to pharmacolog-
ical interventions.

A biomarker is defined as “a characteristic that is measured
objectively and evaluated as an indicator of normal biological
processes, pathogenic processes, or pharmacological re-
sponses to a therapeutic intervention.” [8] The biomarker
should have reproducibility, be heterogenous over a large pop-
ulation with a high test-retest reliability, and have high sensi-
tivity and specificity to distinguish those with the disease from
those that do not. For ADHD, several biomarkers from the
niche of neurophysiology, neurochemistry, neuroimaging,
and genetics have been reported in small and moderate stud-
ies. This review paper aims to summarize the biomarkers
which have been investigated in the past and discusses briefly
the challenges with their clinical applications along with fu-
ture directions.

Electrophysiological Biomarkers

Electroencephalography (EEG) would serve as an ideal bio-
marker for characterizing neurodevelopmental disorders since
it provides us with a direct measure of postsynaptic activity
and with a temporal resolution that is greater than functional
magnetic resonance imaging (fMRI). It is alsomore tolerant of
the motion artifacts with recordings possible in a more natural
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setting for the study of infants and young children [9]. Their
noninvasive nature is another advantage that makes EEG-
based indices good biomarkers.

Till date, the most robust and stable finding reported in
patients with ADHD has been an increase in theta band power
(4-7 Hz), notably increased theta relative to beta band power
(13-30 Hz) which has been referred to in the literature as
“theta to beta” ratio (TBR). First proposed in 1991 by Luber
and hypothesized to reflect cortical hyperarousal and slowing
[10, 11], TBR quickly gained recognition as a potential elec-
trophysiological marker of ADHD. A meta-analysis by
Snyder and Hall in 2006 reported a sensitivity and specificity
of 94% for this index in the diagnosis of ADHD [12]. The
same group later published an empirical study that reported a
specificity of 94%, sensitivity of 87%, and an 89% overall
accuracy for ADHD diagnosis [13]. In July of 2013, the US
Food and Drug Associat ion (FDA) approved the
Neuropsychiatric EEG-Based Assessment Aid Health
(FDA,2013), for the assessment of ADHD, which was
marketed as “Brain Wave Diagnostic Tool.” However, the
usage of TBR as a biomarker was questioned by several stud-
ies that have rendered this index controversial in its implemen-
tation to diagnose ADHD [14–20]. This was also backed by a
meta-analysis performed by Arns et al. in 2013 who conclud-
ed that increased TBR should not be considered a reliable
diagnostic measure for ADHD [21].

Decreased event-related potentials (ERPs) components in-
cluding the attentional cue and target P300, preparatory con-
tingent negative variation (CNV), and the inhibitory NoGo
P300 are considered good markers of ADHD in children and
adults [22–26]. A recent study performed a visual stimulus go/
no-go task in two groups of age matched adults (75 control vs
75 ADHD) and aimed to investigate the use of ERPs to dif-
ferentiate adult ADHD patients from nonclinical controls
using a classification method originating from machine learn-
ing. The study reported that using a tenfold cross-validation
approach, the classification accuracy was 91% and showed
that ERPs can contribute to the diagnosis of ADHD [27]. A
study by Liechti et al. in 2012 showed that the inclusion of
ERP markers improved discrimination although they were not
diagnostically relevant [28]. These studies show the benefits
and power of advancedmultivariate methods, whichmay con-
tribute to the discovery of more reliable electrophysiological
biomarkers of ADHD.

miRNA-Based Biomarkers

Genetic factors play a vital role in the causation of ADHD, a
disorder that has heritability rates as high as 75–90% [29, 30].
The heritability of the disease is also influenced by epigenetic
factors, of which microRNAs (miRNAs) are known to play a
key role. They are non-coding RNAs that negatively regulate

gene expression in human cells [31] and have emerged as
possible biomarkers due to their implicated role in dysregula-
tion of gene expression [32, 33]. It has been predicted that
approximately one-third of all the genes in the genome are
directly targeted by miRNA, and they play a vital role in the
central nervous system where they are involved in
neuroplasticity as well as development [34]. Owing to their
contribution to the development and functioning of the central
nervous system, miRNAs have been implicated in several
psychiatric and neurological disorders [35–37].

Earlier in the decade, animal studies have reported that
miRNA target gene—Homer 1a is associated with phenotypes
of ADHD models [38•, 39–42]. Early human studies, al-
though focused on the domain of genetics and genomics, fo-
cused on the role of gene polymorphisms within miRNA and
miRNA target sites in ADHD pathogenesis [38•, 39–42].

In human studies, lower levels of miRNA 18a-5p, 22-3p,
106b-5p, 24-3p, and 107 have been observed, whereas
miRNA 155a-5p and miRNA let-7d were reported to be
higher in individuals with ADHD [43, 44]. In 2010, miRNA
let-7d was reported by Wu et al. to be overexpressed in the
prefrontal cortex and was reported to target galectin-3, leading
to a downregulation of tyrosine hydroxylase which plays a
key role in dopamine metabolism as well as ADHD develop-
ment [45]. A common denominator in all the above-
mentioned studies is that the selection of candidate miRNA
rel ied heavi ly on mechanisms implicated in the
etiopathogenesis of the disease rather than screening for genes
at a global level. This disadvantage was avoided in a recent
study conducted by Wang et al. where they used next-
generation technique sequencing (NGS) to create a pooled
patient library from controls and ADHD-affected patients
and found 13 potential miRNA ADHD biomarkers which
were efficient in differentiating ADHD-affected individuals
from healthy controls with sensitivity and specificity of
86.8% and 88.9%, respectively [46••]. These 13 miRNAs
had not been reported to be involved in the pathophysiology
of ADHD previously, which favors the argument of
conducting studies that search for implicated miRNA bio-
markers globally rather than in a preselected fashion based
on previously published literature and etiopathological mech-
anisms implicated in ADHD.

Genetic Biomarkers

The dopamine transporter gene (DAT1 gene) has been linked
to the etiopathogenesis of ADHD with many studies on
knockout mice for DAT1 showing deficits in inhibitory be-
havior and hyperactivity. The same gene has also been
mapped near a susceptibility locus for ADHD, i.e., 5p13
[47, 48]. Along with this, methylphenidate and amphetamine,
which are drugs used to manage ADHD, are known to bring
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about their effects by targeting the DAT1 protein. The most
studied variant of DAT1 is variable number tandem repeats
(VNTR) of 40 base pairs located at the 3′ untranslated region
(3′-UTR) of which 10 repeat (10R) and 9 repeat (9R) alleles
are the most common [49]. A recent meta-analysis showed a
positive association between 10R allele and ADHD in the
pediatric population, although a reverse association is shown
to be present for adults [49, 50]. Studies have shown an asso-
ciation between higher commission errors, increased reaction
time variability (RTV), and increased impulsive responses in
continuous performance test (CPT) and sustained attention to
response test (SART) with 10R allele, although there are other
studies which show no or opposite association [51, 52]. Some
pharmacogenetic studies have also shown increased response
to methylphenidate among homozygous 10R, while others
have conflicting results [53, 54]. A more recent meta-
analysis showed that VNTR polymorphism is not a reliable
predictor ofMPH treatment success in ADHD patients [55]. A
DAT1 VNTR at intron-8 containing 5R and 6R alleles has
also been associated with increased susceptibility of ADHD
[49]. Other variants such as rs6350 have been reported to be
associated with alerting and executive control performance on
the attention network test [56]. Another haplotype,
9rs403636(G)/rs463379 (C)/ re393795 (C)/rs37020 (G)), has
been reported to be associated with spatial working memory
in ADHD [57].

Located on chromosome 11p15.5, the DRD4 gene has a
high expression in the anterior cingulate cortex, which is as-
sociated with attention and inhibition and thereby also impli-
cated in ADHD [58]. This association is further backed by an
earlier study that reported lower mRNA expression levels of
DRD4 in ADHD [59]. A highly polymorphic functional
VNTR comprising of 11 copies of 48 bp repeat sequences
has been studied, and the 7R allele was reported to be associ-
ated with ADHD [49, 60]. Other papers have emphasized the
association of the 7R allele with processing speed, cognitive
impulsiveness, and set-shifting but not with response inhibi-
tion [61, 62]. Pharmacogenetic studies have also reported an
enhanced response to methylphenidate in 7R carriers even
though other studies contradict this finding [53, 54]. Another
interesting aspect that was found regarding this issue is that
different DRD4 genotypes exhibit different methylphenidate
response curves [53, 54]. There have been other variants in the
promoter region that have been studied, including the − 521
C/T (rs1800955), 120 base pair duplication (120-bp dup) lo-
cated in the 5′ untranslated region but showed no association
with ADHD [49, 60].

The DRD2 gene is located on chromosome 11q23.1 and is
known to be expressed profoundly in brain areas relevant for
regulation of mesolimbic pathways and the other regions
known to be associated with ADHD [63]. A genome-wide
association study reported a nominal association of ADHD
susceptibility with this gene [64]. There are three variants that

have been studied in association with ADHD—rs2075654,
rs10795696, and rs1800497. Higher commission errors have
been associated with rs207654 and rs1079596 variants [61],
whereas the study trying to find a relation of MPH response
with rs1800497 showed no association [65].

The DRD5 gene is located on chromosome 4p15.3 and has
been reported to be expressed in high concentration in the
hippocampus, a brain area implicated in the pathogenesis of
ADHD, and functionally affects synaptic strength in memory
formation [66]. Studies have also reported that the 148 bp
allele is associated with omission errors, commission errors,
RTs, and RTVs [67]. Although no association was found be-
tween 148 bp allele and methylphenidate response, the 151 bp
allele has been linked to a favorable response [68].

The SLC6A2 codes the norepinephrine transporter and is
targeted by one of the medications from the non-stimulant
class—atomoxetine—while the NET1 is a gene that is highly
expressed in the frontal lobe where it is involved in dopami-
nergic and noradrenergic reuptake [69]. A genome-wide asso-
ciation study reported a frequently located SNP—rs5569 on
exon 9 to have a nominal association with ADHD [70].
Another such study reported two SNPs in the SCL6A2 gene
to be associated with methylphenidate response and
rs3785143 to be associated with atomoxetine response [71,
72].

Peripheral Biomarkers

One of the most studied protein lines includes the
neurotrophins, which are a group of growth factors that are
known to play a key role in several psychiatric disorders,
including anxiety disorders, major depressive disorder, bipo-
lar disorder, schizophrenia, and autism spectrum disorders
[73–79]. The brain-derived neurotrophic factor (BDNF) is
found primarily in the central nervous system and is distribut-
ed throughout the brain and peripheral blood. Several studies
have reported increased circulating levels of BDNF in patients
with ADHD and have also shown an association between
BDNF gene polymorphisms and ADHD [80–82]. Many stud-
ies also reported increased levels of BDNF in patients after
being started on treatment with methylphenidate and a de-
crease in their levels when started on atomoxetine [83, 84].
Animal studies also back the role of BDNF in characteristics
that are a key feature of ADHD, including aggression, learn-
ing deficiency, and increased locomotion activities [85, 86].
However, there is another set of studies that show no associ-
ation of BDNF levels with ADHD [87, 88]. Another member
of the neurotrophin family is the glial-derived neurotrophic
factor (GDNF), which plays a pivotal role in the maintenance
and survival of dopaminergic and serotonergic neurons by its
actions against oxidative damage and neuroinflammation
[89]. Functionally, it is known to be an integral component
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of learning and memory-related functions [90]. Although ev-
idence reports that no association exists between ADHD and
GDNF levels, a recent study in children reported higher levels
of circulating GDNF levels in children with ADHD as com-
pared to controls [91••]. Neurotrophin growth factor (NGF)
which is known to play a vital role in learning processes and
the executive control of attention [92, 93] has been reported to
have a borderline significant association with its polymor-
phisms and ADHD in a family-based sample [94].
Neurotrophin-3 (NTF3) plays a critical role in dopaminergic
neurons, noradrenergic neurons, and glutamatergic neurons in
the mesolimbic pathways, locus coeruleus, and hippocampal
areas, respectively [95]. Polymorphisms involvingNTF3 have
been reported to be associated with selective attention deficits
in ADHD, with a recent study backing the role of NTF3 in
ADHD by endorsing a relationship between the adverse emo-
tional effects of methylphenidate in the pediatric population
with ADHD and the NTF3 genotype [96•]. A relatively recent
study by Bilgic et al. in 2016 also reported elevated levels of
GDNF and NTF3 levels in children with ADHD [97].

A key pathogenic factor that has been implicated in the
etiopathogenesis of ADHD is the disturbance of neurotrans-
mitter systems in ADHD [98–102]. Noradrenaline and dopa-
mine deficiency in the prefrontal cortex, putamen, striatum,
and limbic regions of the brain were found in patients with
ADHD [103–108]. This was followed by a study that reported
a two-and-a-half-fold increase in levels of glutamate with rel-
ative GABA deficiency in the frontal lobe of ADHD patients
[109]. These initial studies were complemented by studies
involving disturbances of amino acid and their metabolites,
which was first reported by Hoshino et al. in 1985 and report-
ed increased plasma concentration of tryptophan in patients
with ADHD [110]. A recent study by Dolina et al. studied
pyridoxal phosphate-dependent tryptophan degradation and
obtained concentration of compounds formed and metabo-
lized in the pathway of tryptophan degradation and the ratios
between these compounds. The group reported low values of
4PA (4-pyridoxic acid)/TRP (tryptophan), IND (indole)/TRP,
and IND/KYN (kyneurine) ratios in patients with ADHD,
which did not change despite treatment with Ritalin [111••].

A recent study also hypothesized an association between
inflammation and its contribution to the etiopathogenesis of
ADHD by measuring cytokines and reported increased levels
of proinflammatory cytokines and finding cytokine gene poly-
morphisms in patients with ADHD [112]. A study by Oades
et al. reported a high but nonsignificant increase in cytokines,
including interleukin 6, interleukin 10, and interferon-gamma
[113]. Another study reported increased cytokines with certain
symptoms of ADHD, viz., increased interleukin 16 with hy-
peractivity and interleukin 13 with inattention [114]. This as-
sociation between inflammation and its role in the pathogen-
esis of ADHD was strengthened by a study conducted in
Turkey by Avcil who reported higher values of neutrophil-

lymphocyte ratio (NLR), monocyte lymphocyte ratio
(MLR), platelet lymphocyte ratio (PLR), and mean platelet
volume (MPV) in patients with ADHD as compared to
healthy controls in the study [115].

Conclusion

This review summarizes the biomarkers for ADHD that have
been reported in the literature for diagnosis and the response
of patients to pharmacological interventions. Although our
review article attempted all of the well-studied biomarkers,
there might be some that escaped our mention. A common
trend noticed in this respect is the fact that with each of these
biomarkers, there can be some confounding factors that can
lead to elevations or reductions in the level of the biomarker in
question. With the onset of the “omic era” and the continuous
evolution of machine learning and artificial intelligence, the
future of biomarker discovery is promising. The need for a
worldwide database that would integrate and store all known
patterns of biomarkers that have been assessed in the past
would prove to be very useful in the diagnosis of ADHD
and its response to drugs.
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