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Abstract
Purpose of Review This review summarizes some of the most recent studies on single-cell resolution sequencing of the post-
mortem human brain and the application of these techniques for the study of psychiatric and neurological disorders.
Recent Findings Over the last several years, researchers have optimized single-cell transcriptome and genome sequencing in
post-mortem human brain tissue. This has given us unprecedented access to cell-type specific gene expression profiles and
somatic mutations unique to pathological states. Additionally, we can now measure epigenetic information from individual brain
cells and with advanced statistical approaches, we can focus on the key cell-types underlying psychiatric and other brain
phenotypes.
Summary A new era of cell-type specific and single-cell resolution studies of the human brain is underway. With proper
application of rapidly advancing laboratory and data analysis techniques, we should witness important advances in our under-
standing of molecular changes associated with psychiatric and neurological phenotypes.

Keywords Human brain . Single-cell RNA-seq . Single-nucleus RNA-seq . Post-mortem . Single-cell genomics

Introduction

The extensive specialization and diversity of cell-types in the
mammalian brain has been of great interest since the earliest
days of neuroscience. Over the decades, technological ad-
vances have allowed us to interrogate various features of brain
cell-types, including their morphology, electrophysiology, and
molecular biology, in ever-increasing detail. Many of these
techniques provide some insight into the functioning of single
brain cells, such as patch-clamp recordings of individual neu-
rons in brain slices or tracking of fluorescently labelled mi-
croglia in vivo. However, with the advent of single-cell next-
generation sequencing (NGS) techniques, we are now able to
study in minute detail the identity, function, and state of indi-
vidual brain cells.

Studies of the human brain at single-cell resolution have
become an invaluable resource for teasing apart the interac-
tions between members of this complex cellular ecosystem.
Cell-type specificity provided by single-cell approaches al-
lows us to hone in on the individual components contributing
to complex neurological and psychiatric disorders. In the con-
text of psychiatry, there has been considerable interest in mea-
suring cell-type specific gene expression changes associated
with disease, detecting somatic mutations with single-cell ge-
nomics, and pin-pointing the cell-types which contribute most
prominently to a given psychopathology.

Single-Cell Sequencing Technologies

Currently available techniques encompass single-cell level
measurements of genomes, transcriptomes, proteomes, and
epigenomes, potentially combined with morphological, spa-
tiotemporal, and electrophysiological data (Fig. 1) [1, 2].

Some single-cell and single-nucleus RNA-seq (scRNA-seq
and snRNA-seq) technologies rely on fluorescence assisted
sorting of individual cells or nuclei into the wells of a micro-
plate [3–5] followed by preparation of libraries from the RNA
extracted in each well. Many flavours of microfluidics based
technologies including Drop-seq [6], inDrops [7], DroNc-seq
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[8], sNucDrop-seq [9], and 10X Chromium [10], among
others, have also been developed for scRNA-seq and
snRNA-seq. These techniques rely on microfluidic devices
which encapsulate individual cells or nuclei in oil droplets as
the suspension is passed through the device. Each cell or nu-
cleus is tagged with a unique barcode and mRNA molecules
are captured by poly-A priming. Library preparation is per-
formed in bulk and after sequencing, the reads are
demultiplexed using barcodes, while unique molecular iden-
tifiers (UMIs) are used to generate counts of different RNA
molecules originating from individual nuclei. Plate-based
methods are generally low-throughput but allow for full-
length cDNA sequencing whereas droplet-based methods
can be ultra-high throughput (scalable up to millions of cells)
but suffer from higher dropout rates and 3′ biased reads.

A suite of single-cell level NGS approaches have also been
developed utilizing combinatorial indexing for measuring

transcription [11, 12], DNA methylation [13], chromatin
states [14–16], and even multiple modalities of information
[17]. These approaches are based on split-and-pool strategies
and involve sorting and tagging individual cells or nuclei with
barcodes, followed by sequential pooling and attachment of
additional barcodes. The numbers of barcodes used and cells
pooled are adjusted such that the probability of multiple cells
receiving the same combination of barcodes is very low.
These methods are less expensive and may require less spe-
cialized equipment than droplet-based methods, but they can
result in higher multiplet rates, when multiple cells or nuclei
are tagged by the same barcode combination.

For profiling DNA sequence variations at the single-cell
level, most studies thus far have relied on sorting of individual
nuclei into the wells of a microplate. However, recently, com-
mercial technology for droplet-based high-throughput
single-nucleus genome sequencing has been created which

Fig. 1 The human brain is composed of billions of individual cells which
belong to an amazingly diverse array of cell-types. These cells and their
mutual interactions give rise to the myriad complex functions of the brain,
as well as dysfunctions such as psychiatric diseases. Each cell in turn is
defined by its genome, epigenome, transcriptome, proteome, and other
measurable properties. How do the specific states, functions, and
interactions of a billion cells relate to the state and functioning of an
entire human brain? A rapidly evolving suite of technologies which

apply next-generation sequencing at the single-cell level may help us find
the answer. We are now able to measure changes in the genomic se-
quences, gene expression, epigenetic modifications, chromatin states
and sometimes combinations of these variables within individual cells
of diverse cell-types in the brains of healthy and diseased individuals.
The detailed picture of cell-types and states produced by these datasets
will aid us in teasing apart the specific and complementary roles of di-
verse brain-cell types in psychiatric and neurological diseases
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holds promise for detecting both copy-number variations
(CNVs) and single-nucleotide variations (SNVs) at single-
cell resolution [18].

Droplet-based profiling of open chromatin in single-cells
has also been developed [19]. Furthermore, several techniques
for acquiring multimodal data at single-cell resolution exist,
such as CITE-seq which measures cell-surface epitopes and
transcriptomes [20] or Patch-seq which measures electrophys-
iological recordings and transcriptomes [21].

Thus, a wide variety of sequencing technologies are avail-
able for single-cell resolution studies of complex tissues.
However, not all technologies are equally applicable to human
brain tissue, especially archived, frozen, post-mortem brain
tissue which is of primary interest when studying psychopa-
thology. For example, scRNA-seq is at best extremely chal-
lenging, and often impossible, for frozen post-mortem brain
tissue because of the difficulties of extracting intact cells from
such tissue, especially neurons which have extensive and frag-
ile processes. Fortunately, several studies have indicated that
identification of cell-types based on single-nucleus gene ex-
pression profiles is comparable to single-cell transcriptomic
profiles, although the RNA content of the whole cell and the
nucleus are not identical [22, 23]. In this review, we briefly
touch upon single-cell sequencing studies of the mouse brain
but focus mainly on studies that have harnessed NGS to ex-
amine gene expression (Table 1) and genomic variation
(Table 2) at the single-cell level in the human brain.

Single-Cell and Single-Nucleus Sequencing
of the Mouse Brain

Given that rodent models of psychopathology and neurologi-
cal disease are a mainstay of modern neuroscience, in the past
few years a plethora of studies have been published on single-
cell and single-nucleus sequencing of the mouse brain. Many
different brain regions have been profiled by scRNA-seq in-
cluding cortical regions [8, 24–26], subcortical structures [27],
and the hippocampus [8, 24, 28, 29]. Different stages in brain
development have been investigated in detail [30–32] and
specific cell-types have been targeted, such as oligodendro-
cytes [33, 34] or microglia [35–37]. In many experiments,
cell-type specific signatures of a variety of experimental per-
turbations have been measured [26, 29, 38].

In fact, single-cell transcriptomics has recently pro-
duced several large scale atlases of mouse brain cellular
diversity [12, 39–41]. Moreover, single-cell resolution
ATAC-seq studies of several mouse brain regions have
recently been published [14–16]. The explosion of
single-cell and single-nucleus sequencing studies of the
mouse brain has previously been reviewed in detail else-
where [42–45].

Single-Cell and Single-Nucleus
Transcriptomics of the Healthy Human Brain

Darmanis et al. (2015) performed one of the first scRNA-seq
studies of human brain in surgically excised non-pathological
tissue from the adult human temporal cortex of 8 epilepsy
patients and on developing brain samples from 16 to 18-
week old foetuses. They profiled gene expression in over
400 individual cells using Fluidigm C1 chips [5]. Unbiased
(i.e. unsupervised) and biased (i.e. supervised) clustering ap-
proaches, now commonplace in scRNA-seq, and cell-type an-
notation, identified excitatory and inhibitory neurons as well
as major glial cell-types. Soon after, Krishnaswami et al.
(2016) established one of the first protocols for snRNA-seq
on human post-mortem brain tissue. They used fluorescence
assisted nuclei sorting (FANS) to place individual neuronal
nuclei, selected based on NeuN expression, into the wells of
a microplate and used a SMART-seq approach for generating
libraries [3]. Their work demonstrated on a small-scale the
feasibility of snRNA-seq in archived post-mortem tissues,
such as those accessible through brain banks.

The same year, Lake et al. (2016) performed Fluidigm C1
chip capture of NeuN positive FAN sorted neuronal nuclei to
profile more than 3000 neurons from various cortical regions
of a single healthy subject. They identified numerous inhibi-
tory and excitatory neuronal subtypes which were in broad
agreement with the cell-types described by Darmanis et al.
(2015), but revealed finer subtypes powered by the larger
dataset, such as layer-specific and region-specific excitatory
neuron subtypes [46].

Habib et al. (2017), created an snRNA-seq method they
termed DroNc-seq and applied it to several post-mortem hu-
man prefrontal cortex (PFC) and hippocampus samples, in
addition to mouse brain tissue. DroNc-seq incorporated sev-
eral adjustments to the Drop-seq [6] protocol, including an
alteration to the dimensions of themicrofluidic device to allow
for capture of nuclei, which are smaller than cells, and inclu-
sion of intronic reads in analyses due to the preponderance of
pre-mRNA in the nucleus. They were the first to demonstrate
the feasibility of droplet-based high-throughput snRNA-seq in
archived post-mortem human brain tissue [8]. Furthermore,
there was good correspondence in cell-types between the
mouse and human datasets and with the findings of Lake
et al. (2016).

Lake et al. (2018) independently designed an adaptation of
Drop-seq for snRNA-seq. Their modifications included
heat-based lysis of nuclei and incorporation of intronic reads,
similar to Habib et al. (2017). Moreover, they performed an
assay for single-nucleus chromatin accessibility based on
combinatorial barcoding, in addition to snRNA-seq, and used
their snRNA-seq findings to refine clustering of single-nuclei
based on chromatin accessibility [47••]. Although tissue was
obtained from healthy subjects, the cell-type specific
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chromatin accessibility information generated was used to in-
directly assess cell-type involvement in neurological and psy-
chiatric diseases.

While most studies have focused on the cortex, Welch et al.
(2019) performed high-throughput snRNA-seq on more than
40,000 nuclei derived from archived substantia nigra samples
from 7 healthy donors. They developed and applied a single-
cell data analysis tool called LIGER for aligning the data from
multiple individuals into a consolidated dataset. Clustering
driven by inter-individual variability is a recurring problem
in snRNA-seq datasets, and LIGER was able to mitigate this
effect. They identified the expected subtypes of glial and neu-
ronal cells, including dopaminergic neurons. Moreover, they
were able to pin-point subject specific effects: including acti-
vation of microglia in one subject who experienced traumatic
brain injury (TBI) at the time of death, and distinct microglial
and astrocytic signatures in another subject with histological
signs of amyloid deposits upon post-mortem examination
[48••]. Thus, not only will their dataset serve as a reference
for future snRNA-seq studies of the substantia nigra, but their
software, which can effectively combine results frommultiple
datasets for joint analysis without losing dataset-specific com-
ponents of the information, will be widely applicable in future
single-cell sequencing studies.

While themassive capacity of high-throughput snRNA-seq
is enticing, some questions require a more targeted approach
as exemplified by a recent human brain snRNA-seq study
from the Allen Institute [49]. Boldog et al., (2018) identified
a new subtype of inhibitory neuron, dubbed the rosehip neu-
ron, which seems to be uniquely found in the human cortex.
The information from snRNA-seq was complemented by
morphological and electrophysiological data from surgical tis-
sue as well as corroborated with fluorescent in situ hybridiza-
tion (ISH). The data from this study is part of a larger human
mid-temporal gyrus dataset [50], generated by the Allen
Institute from both post-mortem samples and surgical tissue
and it provides an excellent resource for benchmarking data
produced by high-throughput platforms. Uniquely, this dataset
accounted for cortical layer location during the dissection and
extraction of nuclei.

Single-Nucleus Transcriptomic Studies
of Human Brain Pathology

Over the past year, a slew of single-cell sequencing studies of
the human brain has exploited the rapidly developing technol-
ogy to ask questions about cell-type diversity and cell-type
specific gene expression changes in pathological states, in-
cluding autism spectrum disorders (ASD) [51••, 52•, 53],
Alzheimer’s disease (AD) [54•], multiple sclerosis (MS)
[55], and depression [56].Ta
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Among studies focusing on ASD, Renthal et al. (2018)
performed snRNA-seq using the inDrops approach in a mouse
model of Rett syndrome and in the post-mortem occipital
cortex of Rett syndrome patients. Rett syndrome is an X-
linked developmental disorder in the autism spectrum.
Affected females are heterozygous carriers of causal muta-
tions in the MECP2 gene. Since one X-chromosome carries
the mutation and the other does not, random X-chromosome
inactivation in individual cells results in mosaic expression of
the mutant MECP2 allele in the brain. Using an innovative
analytical approach, this group was able to utilize 3′ biased
snRNA-seq reads to separate cells containing an active
MECP2 mutation causal for Rett, from cells in which the
mutant allele was not expressed [51••]. This was achieved
by genotyping the Rett syndrome patients to identify SNPs
in the 3′ region of genes near the MECP2 locus, in linkage
disequilibrium with the MECP2 mutation carried by the pa-
tient. These SNPs could then be detected by 3’ snRNA-seq,
thus allowing the authors to determine whether the mutant or
healthyMECP2 allele was expressed in a particular cell [51••].
Their approach allowed direct comparison of gene expression
within specific cell-types between cells expressing mutated
versus normal MECP2, revealing similarities in the patterns
of differential gene expression (DGE) in the human patients
and the mouse model.

Further applying single-cell technology to study ASD,
Velmeshev et al. (2019) performed high-throughput
snRNA-seq of the PFC and anterior cingulate cortex (ACC)
in individuals with ASD, epilepsy, or no pathology. Unbiased
identification of cell-types across the brain regions identified
the major cortical cell-types and revealed an over-
representation of protoplasmic astrocytes in ASD subjects.
Cell-type specific DGE analysis revealed over 500 differen-
tially expressed genes (DEGs) which were in good agree-
ment with previous literature on ASD-associated genes [52•].
The DEGs in upper layer neurons and in microglia were the
best predictors for clinical autism severity. Since several of the
ASD subjects also experienced seizures, the authors per-
formed cell-type specific DGE analysis by snRNA-seq in
the PFC of matched sporadic epilepsy patients, to tease apart
the contributions of seizures and ASD. Only a small propor-
tion of DEGs in epilepsy overlapped with the ASD findings,
suggesting that most of the cell-type specific DEGs were spe-
cific to ASD.

Similar to the previous study, Sorrells et al. (2019) per-
formed snRNA-seq post-mortem on the amygdala from 8 in-
dividuals between the ages of 4 and 15 years, both
neurotypical controls and ASD patients. Their paper focused
on identifying a subset of neurons within the paralaminar nu-
cleus (PL) of the human amygdala which show protracted
development and retain molecular and morphological features
of immature neurons well into adulthood [53]. Their
snRNA-seq experiment complemented the ISH and

immunohistochemistry findings. Among more than 13,000
nuclei sequenced, they were in fact able to identify a small
population marked by high expression of DCX, BCL2,
NR2F2, and ROBO1, characteristic of the immature PL neu-
rons identified using other techniques. Moreover, snRNA-seq
allowed them to detect additional genes that were enriched in
this immature neuronal population, namely ST8SIA2, SOX11,
and MAP2. Finally, they were able to compare gene expres-
sion between ASD cases and controls in this immature PL
neuron cluster and identify around 30 DEGs.

To explore Alzheimer’s disease at the single-cell level,
Mathys et al. (2019) performed high-throughput snRNA-seq
on the PFC of 48 individuals from the ROSMAP [57] cohort.
They clustered cells into the major neuronal and non-neuronal
cell-types of the PFC and measured DGE between individuals
with detectable Alzheimer’s pathology and individuals with-
out pathology. Over a thousand DEGs were identified, the
majority of which were downregulated, with the largest con-
tribution from excitatory neurons. A small subset of DEGs
were validated in NeuN positive and negative populations
separated by FANS and by ISH [54•]. They also examined
progressive changes in gene expression with increase in path-
ological burden by grouping individuals according to clinico-
pathological measures. Changes in gene expression were
more cell-type specific between individuals with no pathology
versus early pathology, compared to individuals with early
pathology versus late pathology. Sub-clustering of the major
cell-types identified specific sub-clusters with over-
representation of cells from pathological or healthy states.
Interestingly, some AD-associated sub-clusters had an over-
representation of female cells. Further exploration of sex-
differences revealed a global pathology-associated upregula-
tion of genes in oligodendrocytes in males and a global
pathology-associated downregulation of genes in neurons in
females. An interesting feature of this dataset is the advanced
age of the donors (> 70 years).

In a landmark study of oligodendroglial heterogeneity in
the human brain, Jäkel et al. (2019) performed snRNA-seq on
white matter obtained post-mortem from multiple sclerosis
(MS) patients and controls. In addition to neurons and other
glia, they identified many different oligodendrocyte and oli-
godendrocyte precursor (OPC) clusters, including an oligo-
dendrocyte cluster with immune features. Characteristic gene
expression features of these oligodendroglial clusters were
verified by ISH and immunohistochemistry [55].
Pseudotime analysis indicated that end state oligodendrocytes
most highly express genes involved in cell-signalling and ad-
hesion, whereas myelinating oligodendrocytes most highly
express genes involved in myelination. On combined cluster-
ing of control and MS datasets, there was a higher represen-
tation of immune cells, including macrophages, derived from
MS tissue, indicating immune infiltration. Overall, the same
cell-types were present in MS versus control white matter, but
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OPCs and intermediate oligodendrocytes were under-
represented in MS and the distribution of nuclei among the
mature oligodendrocyte clusters was also altered. DGE anal-
ysis revealed increased expression of genes for myelination in
multiple oligodendrocytic clusters in MS, as well as distinct
changes in gene expression between lesioned, non-lesioned,
and remyelinating regions of white matter from patients.

In our lab, we sequenced around 80,000 nuclei from the
PFC of 17 individuals who were depressed and died by sui-
cide and 17 individuals who were psychiatrically healthy. The
26 quality-controlled cell-type clusters we identified were in
good correspondence with the cell-types identified by Habib
et al. (2017). We were able to detect cluster-specific DEGs
associated with depression in more than half of these
cell-types [56]. Many of these genes have previously been
implicated in bulk gene expression studies of MDD.

Single-Cell Resolution Studies of Sequence
Variation in the Human Brain

The potential impact of somatic mutations, including SNVs
and CNVs, which may accumulate in the post mitotic cells of
the central nervous system over the course of development
and ageing, has long intrigued neuroscientists in the context
of neurological and psychiatric conditions [58]. Experimental
techniques exist for studying somatic mutations and their con-
tributions to brain disorders using tissue homogenates, but
single-nucleus genome sequencing has an undeniable advan-
tage in this context. Although limitations, such as errors intro-
duced during whole genome amplification (WGA) and the
astronomical cost of whole genome sequencing (WGS) for
large numbers of cells, still remain to be addressed, several
groups have succeeded in sequencing the genomes of single-
cells from post-mortem brain tissue and the results have
yielded some intriguing insights.

McConnell et al. (2013) measured CNVs in single neurons
from post-mortem human frontal cortex and induced pluripo-
tent stem cell (iPSC) derived neurons usingWGA followed by
DNAmicroarrays or sequencing. Cultured neurons had higher
incidence of CNVs compared to NPCs or fibroblasts, suggest-
ing that accumulation of somatic mutations may be integral to
the development of neuronal identity. Non-germline small and
large CNVs distributed throughout the genome were detected
in >40% of the brain-derived neurons, although only a small
number of neurons showed extensive CNV burden [59].

Cai et al. (2014) measured CNVs in post-mortem brain
tissue from 3 healthy individuals and 1 subject with
hemimegaencephaly (HMG) and established that aneuploidy
is rare but sub-chromosomal CNVs are common. They con-
firmed an expected CNV at chromosome 1q in the HMG
brain, although they identified a tetrasomy rather than the
predicted trisomy [60]. Some CNVs were shared by multiple

neurons, providing evidence that they are not artefacts of the
technology.

LINE1 (L1) retrotransposon insertion, a subtype of CNV, is
of special interest in psychiatry. These mobile DNA elements
are capable of “jumping” in the genome, i.e. inserting a copy
of themselves into a new part of the genome via an RNA
intermediate, and are thought to be especially active during
neurogenesis. Most of the newly formed L1 insertions in the
genome are not-capable of jumping but they can create varia-
tion in the genomes of individual neurons, even within the
same individual, which may have gene regulatory conse-
quences [58 ] . Moreove r, s t udy ing soma t i c L1
retrotransposition with single-cell genomics is of interest in
psychiatric research because changes in the rates of L1
retrotransposition have been linked to schizophrenia [61,
62], autism spectrum disorders [63], and major depressive
disorder [64].

Evrony et al. (2012) examined the rates of L1
retrotransposition in 300 neuronal nuclei from the cortex
and caudate nucleus in three neurologically healthy indi-
viduals by WGA, L1 insertion profiling (L1 IP), and se-
quencing. They detected hundreds of known and tens of
novel L1 insertions in these single-nucleus genomes, but
on average each neuron had less than one somatic L1 in-
sertion, suggesting that such insertions are generally rare
[65]. In contrast, Upton et al. (2015) reported much higher
rates of somatic L1 insertions in hippocampal neurons (~13
on average) and glia (~6 on average) and cortical neurons
(~16 on average) using single-cell retrotransposon capture
sequencing (RC-seq). Somatic L1 insertions were identi-
fied based on their absence in bulk tissue RC-seq with
brain and liver samples from the same individuals and
seemed to be enriched in hippocampally transcribed genes
in both neurons and glia from the hippocampus [66].
However, Evrony et al. (2016) later reanalysed these data
and estimated that the true rates were closer to less than
one L1 somatic insertion per cell [67], more consistent
with their earlier paper.

In a 2015 study (Lodato et al.), 36 neurons from the
cortex of three individuals were sequenced to detect so-
matic SNVs. On average, 1500 L1 variants were identified
and a considerable proportion was found in transcription-
ally active neuronal gene regions. Interestingly, certain
SNVs seem to be caused by deamination of methyl cyto-
sines to thymines, suggesting that they were produced
post-mitotically rather than during DNA replication in de-
velopment [68]. Using one subject to detect patterns of
shared somatic mutations diverging over time, Lodato
et al., were able to trace the developmental lineage of a
subset of neurons, identifying clades of related neurons.
Of note, some of the more frequently detected brain
SNVs were present in non-brain tissue, indicating that
they arose early in development.
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In a follow-up study, Lodato et al. (2018) measured SNVs
in the hippocampus and PFC of 24 individuals with ages
spanning 4 months to 82 years. Nine subjects were diagnosed
with either Cockayne syndrome (CS) or xeroderma
pigmentosa (XP), neurodegenerative diseases caused by defi-
ciencies in the DNA repair mechanism, and the remaining 15
were free of pathology. In line with previous studies, somatic
SNVs were found to accumulate with age and to be enriched
in neuronally expressed genes. However, SNVs seemed to
accumulate at a higher rate in the hippocampus [69•]. As ex-
pected, somatic SNVs were more frequent in CS and XP sub-
jects than in controls.

Most recently, a study looking at 1000 cells from brain-
healthy individuals found, on average, that neurons harbour
more CNVs than non-neuronal or non-neural cells (Chronister
et al., 2019). Furthermore, these CNVs tended to affect a larg-
er portion of the genomes [70••]. Neuronally expressed tran-
scripts are generally longer and are reported to possess more
somatic mutations within neurons [68]. However, in contrast
to the reported neuronal increase of somatic SNVs overtime,
this study [69•] found a decreased prevalence with age of
neurons with CNVs in their genomes. The authors suggest
that cells with more CNVs may be more susceptible to
ageing-related loss.

Single-Nucleus Methylomics
in the Post-Mortem Human Brain

Whole-genome bisulphite sequencing (WGBS) of single
cells from archived tissue is extremely challenging as
bisulphite-conversion leads to loss of material and is very
limiting when starting with extremely small amounts of
DNA derived from single cells. Furthermore, the process
is expensive as each cell needs to be sequenced at suffi-
cient coverage. Nevertheless, Luo et al. (2017) performed
single-nucleus WGBS and produced a single-cell resolu-
tion map of DNA methylation in the human frontal cortex.
FAN sorting into microplates, followed by bisulphite-
conversion and sequencing, produced single-nucleus DNA
methylation profiles for almost 3000 nuclei from the fron-
tal cortex of a single subject. Despite data sparsity, clus-
tering of cells using single-nucleus DNA-methylation sig-
natures resulted in separation of the cortical excitatory and
inhibitory neuronal subtypes with a resolution comparable
to snRNA-seq [71]. Non-CG methylation was found to be
more cell-type specific than CG methylation and overall
patterns of cell-type specific methylation were highly con-
served from mouse brain to human brain. This dataset is a
valuable reference for cell-type specific DNA methylation
in the human brain and enables deconvolution of bulk
DNA methylation data to estimate constituent cell-types.

Insights, Challenges, and Future Applications
of Human Brain Single-Cell Sequencing

Some limitations of snRNA-seq in the human brain may be
inherent to the technology or the underlying biology, such as
underrepresentation of glial cells [8, 47••, 52•] and consistent-
ly lower numbers of RNA molecules detected in glial cells
compared to neurons [5, 8, 47••]. Other limitations may be
overcome using computational methods such as imputation
for addressing high gene dropout and sparse data [72–74]
and dataset alignment algorithms for addressing inter-
individual variability [48, 75].

As our knowledge of the strengths and limitations of these
techniques increases, so does our ability to better design ex-
periments. Using cryosections from histological dissections
for extracting nuclei can ensure more even input from differ-
ent microanatomical regions [47, 52]. Combining two sub-
jects, differing in sex or in known SNVs, for nuclei capture
on a microfluidic device, followed by deconvolution using
sex-specific genes or based on known SNVs, can help account
for technical variability between captures [76].

In addition to direct identification of cell-types and com-
parison of cell-type specific features between biological
groups, different modalities of single-cell data can indirectly
inform our understanding of disease states. Deconvolution
algorithms [77, 78] can elucidate cell-type contributions to
observed disease-related changes in gene expression or
DNA methylation in bulk tissue studies. Findings from
genome-wide association studies (GWAS) and bulk gene ex-
pression studies can in turn help pin-point disease-relevant
cell-types from single-cell datasets [79–81]. Future work will
likely involve integration of multimodal data [16, 48••, 75],
and use of complementary approaches other than NGS, such
as high-throughput ISH [82, 83], for single-cell resolution
studies.

Conclusion

Promising initiatives such as the Human Cell Atlas [84]
and the Brain Somatic Mosaicism Network [85] are cur-
rently underway, and should greatly enhance our under-
standing of diversity in the transcriptome and genome of
individual cells in the brain. The findings will contribute
to furthering our knowledge of complex diseases which
affect the brain. The continued rapid advancement of
single-cell technology is creating ample opportunities for
applying these technologies to the study of the human
brain in health and disease. Soon we can hope to unravel
the intricate complexity of the multitude of cell-types that
compose the human brain and to better explain how they
contribute to the development of disease.
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