Curr Behav Neurosci Rep (2016) 3:193-203
DOI 10.1007/s40473-016-0086-1

@ CrossMark

CHILD AND DEVELOPMENTAL PSYCHIATRY (M GRADOS, SECTION EDITOR)

Developmental Neuroimaging in Pediatric

Obsessive-Compulsive Disorder

Yanni Liu' - Emily L. Bilek' - Kate D. Fitzgerald'

Published online: 13 July 2016
© Springer International Publishing AG 2016

Abstract

Purpose of review This review examines emerging neuroim-
aging research in pediatric obsessive-compulsive disorder
(OCD) and explores the possibility that developmentally sen-
sitive mechanisms may underlie OCD across the lifespan.
Recent findings Diffusion tensor imaging (DTI) studies of pe-
diatric OCD reveal abnormal structural connectivity within
fronto-striato-thalamic circuity (FSTC). Resting-state functional
magnetic resonance imaging (fMRI) studies further support
atypical FSTC connectivity in young patients, but they also sug-
gest altered connectivity within cortical networks for task con-
trol. Task-based fMRI studies show that hyperactivation and
hypoactivation of task-control networks may depend on task
difficulty in pediatric patients similar to recent findings in adults.
Summary This review suggests that atypical neurodevelopmental
trajectories may underlie the emergence and early course
of OCD. Abnormalities of structural and functional connec-
tivity may vary with age, while functional engagement during
task may vary with age and task complexity. Future research
should combine DTI, resting-state fMRI, and task-based
fMRI methods and incorporate longitudinal designs to reveal
developmentally sensitive targets for intervention.
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Introduction

Obsessive-compulsive disorder (OCD), characterized by in-
trusive thoughts (obsessions) and related behavioral rituals
(compulsions), is a disabling psychiatric illness that begins
during childhood or adolescence in 50 % of patients [1]. The
prevalence of OCD in pediatric samples is 1-3 % [2], similar
to estimates in adults [3]. Among pediatric patients who re-
ceive treatment for OCD, approximately half continue to ex-
perience full-blown illness into adulthood [4] and, in patients
with adult-onset illness, many report subclinical symptoms
beginning in childhood [2, 3]. Yet, despite the apparent origin
of OCD in early life, neuroimaging studies designed to eluci-
date the neural underpinnings of the disorder are mostly de-
rived from research with adults. Understanding brain abnor-
malities in pediatric compared to adult OCD may help to
elucidate unique features of illness across the lifespan and
ultimately guide the design of therapies most appropriate for
different patients at different ages.

FSTC in OCD: a neuroanatomical model

Neuroimaging research has consistently demonstrated abnor-
malities of fronto-striato-thalamic circuitry (FSTC) in adult
OCD [5], and accumulating research in pediatric patients pro-
vides evidence for FSTC abnormalities at early stages of the
illness. The FSTC system is comprised of parallel, segregated
“loops” between distinct portions of the cortex, striatum, and
thalamus [6]. FSTC loops of functional relevance for OCD
include those passing through dorsal and ventral striatum into
the medial dorsal thalamus via topographically organized
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projections from cortical centers for cognitive control (e.g.,
anterior cingulate cortex, dorsolateral prefrontal cortex; [7])
and for emotionally driven evaluative functions, including
reward processing and internal mood states (e.g., ventral me-
dial prefrontal cortex; [8]).

The first neuroimaging evidence of FSTC abnormality in
OCD came from positron emission tomography (PET) studies
showing increased metabolic uptake of radiotracers marking
glucose and oxygen metabolism in the anterior cingulate cor-
tex (ACC), orbital frontal portion of the ventral medial pre-
frontal cortex (vimPFC), and striatum and thalamus in adult
patients compared to healthy controls [9]. Initial studies were
conducted while patients lay awake in the PET scanner, not
performing any particular tasks, thereby demonstrating hyper-
activity of FSTC at rest. Follow-up work showed that symp-
tom provocation further increased metabolic hyperactivity in
FSTC and that treatment resolved FSTC hypermetabolism [9].
Taken together, these findings suggested a neuroanatomical
model of OCD in which excessive signaling through FSTC
was hypothesized to underlie symptoms.

An important element of the FSTC system, which is likely
relevant to its role in OCD, involves the splitting of each loop
into direct and indirect pathways at the level of the basal gan-
glia (i.e., striatum, globus pallidum, subthalamic nucleus;
Fig. 1). In general, the direct pathway facilitates neuronal ac-
tivity through FSTC, whereas the indirect pathway inhibits it
[10]. Neuroanatomical models of OCD suggest that greater
direct pathway activity through vimPFC-based loops for emo-
tion processing and Jower indirect pathway activity through
dorsal anterior cingulate cortex (dACC)- and dorsolateral pre-
frontal cortex-based loops for cognitive control may underlie
intrusive thoughts, ritualistic behaviors, and related anxiety in
OCD [5, 9, 11]. In other words, hyperactivity in neural circuit-
ry underlying the affective valuation of thoughts and behav-
iors (i.e., vmPFC-based FSTC) may couple with hypoactivity
in neural substrate underlying capacity for task control (i.e.,
dACC-, dorsolateral prefrontal-based FSTC). A resulting im-
balance in FSTC substrate for emotion-processing, relative to
task control, could lead to the intrusion of distressing, obses-
sional thoughts and the repetition of compulsive behaviors to
reduce distress, despite insight that such thoughts and behav-
iors “do not make sense.” Task-based neuroimaging research
has supported this possibility, demonstrating deficits of dACC
activation during cognitive tasks requiring behavioral adjust-
ment and hyperactivity of vmPFC during emotion-laden eval-
uative processing in patients, even when OCD symptoms are
not directly provoked [5].

MRI-Based Technology Enables Study of FSTC
in Pediatric OCD

Despite the pediatric onset of OCD in at least half of all the
patients [1], the FSTC model of OCD was first developed
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Fig. 1 Simplified illustration of fronto-striato-thalamic circuitry (FSTC)
and its overlap with salience network (SN), central executive network
(CEN), and default mode network (DMN). FSTC model adapted from
prior reviews [5, 10-12]. ACC anterior cingulate cortex, 4//FO anterior
insula/frontal opercular, dIPFC dorsolateral prefrontal cortex, /PL inferior
parietal lobule, vmPFC ventromedial prefrontal cortex, PCC posterior
cingulate cortex. Adapted from: Journal of Neural Transmission,
Neuroimaging of cognitive brain function in paediatric obsessive com-
pulsive disorder: a review of literature and preliminary metaanalysis,
Volume 119, 2012, Silvia Brem, with permission of Springer

based on studies conducted in adults. Initial focus on adult
patients was largely due to technical characteristics of PET,
the first widely available tool for neuroimaging research,
which requires injection of radioactive tracer to reveal brain
activity. With the advent of non-invasive magnetic resonance
imaging (MRI) technologies, neuroimaging research in chil-
dren became more feasible and MRI-based neuroimaging stud-
ies of pediatric OCD began to emerge. Initial evidence for
FSTC abnormality in young patients came from MRI studies
showing altered volume of FSTC nodes, including ACC, stri-
atum, and thalamus, but also superior parietal lobule and
precuneus (for a review, see [13]). In addition, task-based func-
tional MRI studies began to propagate, revealing abnormalities
of activation in FSTC regions during tasks designed to engage
OCD-relevant psychological processes (see next section).
Advances in MR-based technology also produced diffu-
sion tensor imaging and resting state functional MRI methods,
enabling the measurement of FSTC structural and functional
connectivity, respectively, in young patients. Diffusion tensor
imaging (DTI) measures the direction and magnitude of water
diffusion within white matter tracts [14, 15]. The most com-
monly studied DTI measure is fractional anisotropy (FA), an
index of white matter coherence and thus, the integrity of
white matter tracts [16—19]. Resting state functional
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connectivity MRI (rsfcMRI) measures fluctuations of blood
oxygen level-dependent (BOLD) MRI signal. During
rsfcMRI data collection, subjects are instructed to “allow your
mind to wander” to induce a “resting state” during which low-
frequency BOLD signal oscillations throughout the brain are
measured. Correlations between oscillations in different brain
regions are then calculated to produce a metric of resting-state
connectivity. Greater resting state connectivity is believed to
reflect a history of co-activation, providing evidence of a func-
tional circuit [20, 21].

Diffusion Tensor Imaging Research in Pediatric OCD

The literature on DTT in pediatric OCD has provided evidence
of white matter involvement in the FSTC from early in the
course of illness (Table 1). White matter tracts of particular
relevance to FSTC include the anterior corpus callosum (CC),
anterior cingulum bundle (CB), and anterior limb of the inter-
nal capsule (ALIC). The anterior CC contains white matter
fibers connecting the right and left prefrontal cortex [22], the
anterior CB contains fibers that connect emotion-processing
regions such as the amygdala to ACC [23], and the ALIC
contains white matter pathways connecting the frontal lobe
and thalamus. Several DTI studies have found increased FA
and/or axial diffusivity (another DTI metric of white matter
integrity) in these tracts in OCD-affected youth compared to
healthy controls [24-26], while other researchers have found
the reverse [27, 28]. Interestingly, the largest DTI study of
pediatric OCD [29¢¢] found no overall differences in FA, but
rather demonstrated steeper age-related increases of FA in
FSTC white matter in patients compared to controls across
the ages of 8 to 19. After subdividing the samples into child,
early adolescent, and late adolescent groups, lower FA was
demonstrated in 8- to 11-year-old child patients, but higher
FA was found in 16- to 19-year-old adolescent patients relative
to same-aged controls in the anterior CC and anterior CB.
These results suggest a possible interaction between FA and
age, a finding that may help clarify the discrepant reports of
lower FA in OCD compared to healthy youth [27, 28]; the
examination of FA in older as compared to younger partici-
pants may increase the likelihood of finding abnormally in-
creased or decreased FA in FSTC white matter tracts in pedi-
atric samples (Table 1).

If steeper age-related increases in FSTC structural connec-
tivity in OCD relative to healthy youth [29¢¢] continues be-
yond adolescence, then abnormally increased FA might be
expected in adult patients. Greater FA has been reported in
adult OCD in the CC [32, 33], CB [33, 34], and ALIC [32,
34] and in other white matter tracts, including superior longi-
tudinal fasciculus (SLF) and anterior corona radiata in some
reports (for a review, see [35]). However, other studies have
found decreased FA in these regions in adult patients com-
pared to healthy controls (for a review, see [35]). A meta-

analysis of DTI research in adult OCD suggests that conflict-
ing results across studies may derive from sample heteroge-
neity due to demographics, medication status, illness chronic-
ity, and imaging methodology [35], and the same may be said
of DTI research in pediatric OCD with the added complexity
of developmental stage. In typically developing individuals,
most white matter tracts (e.g., internal capsule, CC, CB) ex-
hibit curvilinear trajectories (i.c., inverted “U” shaped), with
age-related increases found during childhood and adolescence
followed by decreases in adulthood [36]. DTI research in pa-
tients compared to matched controls from childhood into older
adulthood will be needed to assess whether shifts in the timing
of this curvilinear trajectory (e.g., earlier peaks for healthy,
later peaks for OCD) may best describe developmental differ-
ences in FSTC structural connectivity over the lifespan.

In summary, the bulk of DTI research in pediatric OCD
suggests that increased white matter in FSTC and other white
matter tracts occurs in young patients by the time of adoles-
cence and that, from childhood into adolescence, structural
connectivity within these tracts may increase at faster rates
in patients compared to age-matched healthy youth.
Critically, longitudinal research is needed to understand when
white matter abnormalities in pediatric OCD emerge to map
changes in white matter abnormalities over time and to deter-
mine how these changes associate with the course of illness.
Moreover, combining DTI and other MR-based imaging
methods may elucidate the functional significance of atypical
white matter development in pediatric OCD to aid identifica-
tion of DTI measures as potential targets for intervention and/
or intermediate outcomes. Finally, FA abnormalities outside of
FSTC have been demonstrated in pediatric (e.g., SLF, corona
radiata, posterior limb of internal capsule; see Table 1) and
adult patients (for a review, see [37]), prompting a reevalua-
tion of the FSTC model originally theorized to underlie

symptoms.

Resting-State Functional Connectivity in Pediatric OCD:
from FSTC to Cortical-Cortical Networks

Myelinated neuronal projections (i.e., white matter connec-
tions) between FSTC regions were first revealed by chemical
tracer studies in laboratory animals [6], but the advent of task-
based fMRI and rsfcMRI methods has revealed that functional
connectivity between regions can exist in the absence of direct
structural connections [38, 39]. These “functional” networks
are identified by regions that coactivate in response to task
demands and exhibit connectivity at rest [40]. For example,
cortical targets of FSTC, particularly dACC, vmPFC, and the
dorsolateral prefrontal cortex (dIPFC), are now realized as
critical nodes within such networks. As depicted in Fig. 1,
functional connectivity of the dACC-bilateral anterior insula,
dIPFC-parietal cortex, and vimPFC-posterior cingulate cortex
define canonical networks that are now widely believed to
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support, respectively, salience detection (salience network,
SN), executive functions (central executive network, CEN),
and “default” mode processes such as self-reflection, internal-
ly directed mentation, and episodic memory requiring task
control (default mode network, DMN) [41].

Building from rsfcMRI research in adult patients with
OCD [42, 43], rsfcMRI research in pediatric OCD initially
focused on FSTC. This work tested for temporal correlations
of fMRI BOLD signal between anatomically defined regions
or “seeds” placed in the striatum and thalamus with voxels
across the rest of the brain. Replicating work in adults [42, 44],
evidence for distinguishable FSTC loops was demonstrated
for seeds placed in the ventral striatum, dorsal striatum, and
medial dorsal thalamus [45]. Functional connectivity for each
seed was then compared for patients and healthy individuals
by developmental stage (child, adolescent, and adult), demon-
strating excessive connectivity of dorsal striatum with the me-
dial frontal pole, a subregion of the vimPFC, across the age
span. By contrast, the youngest patients exhibited reduced
connectivity of dorsal striatum with rostral ACC and of medial
dorsal thalamus with dorsal ACC. These child-specific abnor-
malities of functional connectivity have since been partially
replicated in a study of patients with pediatric OCD compared
to healthy youth, ages 8 to 16 years; within a “cingulate
network” defined by resting-state correlations of striatum, bi-
lateral dIPFC, and dorsal medial prefrontal cortex (dmPFC),
patients exhibited reduced connectivity of dmPFC [46].

The relevance of abnormal functional connectivity within
FSTC loops in pediatric OCD remains poorly understood, but
it can be interpreted in the context of task-based literature. For
instance, FSTC running through vimPFC is associated with the
processing of emotionally salient stimuli to motivate behavior
[8, 47], whereas the maturation of ACC-based FSTC plays a
critical role in the development of cognitive control [48].
Thus, excessive connectivity of the FSTC loop running
through vmPFC in child, adolescent, and adult patients could
drive excessive worry about errors and related attempts at
corrective behavior in OCD in patients across the lifespan.
By contrast, premature reduction in the connectivity of
ACC-based FSTC for cognitive control may contribute to an
inability to suppress the contextually inappropriate thoughts
and behaviors near illness onset and perhaps, at a critical pe-
riod of development, give rise to the emergence and progres-
sion of OCD in young patients.

In conclusion, interpretation of DTI and rsfcMRI research
in pediatric OCD can be informed by neuroimaging work in
typically developing youth showing that development of
ACC-associated cognitive control and vmPFC-associated
emotion processing functions depends not only on the matu-
ration of structural connections between FSTC nodes but also
on the developing connectivity of these regions within large-
scale, neural networks for salience detection (SN), central ex-
ecutive processes (CEN), and default mode function (DMN)

[20, 41, 49]. Indeed, preliminary work in pediatric OCD
shows that hyperactivation of dACC and failure to deactivate
vmPFC during a simple cognitive task occurs in the context of
reduced functional connectivity within the salience (dACC-
anterior insula, SN) and default mode (vmPFC-posterior
cingulate, DMN) networks [50]. These task-based and
rsfcMRI findings extend historical models of altered FSTC
connectivity in OCD to include abnormalities in overlapping,
resting-state networks in young patients (Fig. 1). In addition,
atypical functional connectivity between dACC and vMPFC
in pediatric OCD suggests inappropriate interactions of SN
and DMN in young patients [50]. In adult OCD, rsfcMRI
research has shown that the normally inverse relationship be-
tween task-positive networks, namely, the SN and CEN, with
DMN is attenuated in patients with OCD compared to healthy
controls [51, 52]. These findings suggest a failure to segregate
between networks that could lead to deficits in task-control
processes due to intrusion of emotional and introspective
function of DMN. Task-based fMRI studies may aide exami-
nation of the functional significance of altered SN and CEN
connectivity and will be further reviewed in the next section.

Functional Activation during Task Control Demands

OCD has long been theorized to stem from core deficits of
task control [53, 54]. Task control is a broadly defined term
that encompasses a variety of cognitive tasks including inter-
ference control, response inhibition, working memory, and
cognitive flexibility [55, 56]. Collectively, task-control pro-
cesses enable the selection of appropriate behavior across a
myriad of internal and external inputs and, when impaired,
may associate with the repetitive thoughts and behaviors char-
acteristic of OCD. For instance, recurrent intrusive obsessions
might be related to an inability to inhibit and select certain
stimuli (interference control) and/or an inability to switch at-
tention from one aspect of a stimuli to another depending on
environment and context (cognitive flexibility), whereas the
repetitive compulsive behavior of OCD might stem from fail-
ure to inhibit certain prepotent, but inappropriate, response
sets (response inhibition) and/or a deficit in working memory
prompting repeated urges to check.

Task-control demands are known to engage “task-positive”
salience and central executive networks [55, 57]. These net-
works were originally defined by task positive coactivations
and later found to remain functionally connected, even at rest
[40, 41, 57]. As noted above, preliminary evidence suggests
reduced functional connectivity between task-positive regions
during rest in pediatric OCD [50]. Below, we will review
accumulating research from task-based fMRI studies demon-
strating abnormal SN and CEN function in both adult (for
reviews, see [58¢, 59]) and pediatric patients with OCD.
Taken together, these studies suggest that altered function of
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canonical networks for task control in adults with OCD may
develop at the early stages of illness.

To frame an understanding of task-based fMRI studies of
OCD, it is important to consider the relationship of brain ac-
tivation to behavioral performance during tasks which, in turn,
relates to task difficulty. For example, tasks tapping interfer-
ence control (e.g., the flanker task) might be less difficult than
tasks requiring motor response inhibition (e.g., stop-signal
task) since interference control requires inhibition of a
potential response through the focusing of attention on task-
relevant over task-irrelevant stimulus features, whereas motor
response inhibition requires the suppression of a behavioral
response that has already been triggered and is closer to actu-
ally being produced [60]. In some tasks, difficulty can be
manipulated by varying parameters within a task; for example,
the 3-back working memory task is harder than the 2-back
working memory task. Other complex tasks, such as the
Wisconsin card sorting test (WCST) and Tower of London
(TOL), entail relatively high levels of difficulty by requiring
the coordination of multiple task control processes to produce
correct performance [61]. In fMRI research, hyperactivation
in the context of normal performance in a patient compared to
a control group has been interpreted to reflect compensation
for underlying neural inefficiency and may be most likely to
occur on less difficult tasks [62]. By contrast, as task difficulty
increases, hypoactivation may occur as capacity for compen-
satory activation is exceeded and performance deficits emerge
[58e, 63].

Task-Based fMRI Research in Adult OCD

Functional MRI studies of adult OCD have revealed altered
activation of SN and CEN during task-control demands [58e,
59] and provide context for interpreting the fMRI literature in
pediatric patients. In adults with OCD, increased activation in
the dIPFC and dACC has been demonstrated during a rela-
tively simple interference control task relative to healthy con-
trols [64]; in this study, patients maintained normal perfor-
mance relative to controls, consistent with the interpretation
that hyperactivation may enable compensation for underlying
inefficiency of task-control networks [58¢, 64]. By contrast, a
more difficult task requiring response inhibition elicited
decreased activation in the inferior frontal gyrus (IFG) and
parietal regions in OCD relative to healthy control (HC)
adults; hypoactivation occurred in the context of performance
deficits in patients [65]. The notion that task difficulty impacts
the nature of task-control network function in OCD is further
supported by fMRI research showing increased activation of
dIPFC under low-cognitive demand (e.g, 1- and 2-back
working memory task) but decreased-to-normative levels of
activation in dACC under increased task demand for patients
compared to controls [66—68]. On the more complex tasks of
self-shifting/task switching, adult OCD patients showed
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decreased activation in the dIPFC, dACC, and parietal and
caudate regions in cognitive flexibility relative to HC
[69-71]. Similarly, on the TOL task, OCD patients showed
decreased activation in the dIPFC and parietal lobe during
planning, relative to controls [72, 73].

Thus, whether task-related brain areas are hypoactivated or
hyperactivated in patients compared with healthy controls ap-
pears to depend largely on the difficulty of the task and wheth-
er compensatory mechanisms are enlisted [58e, 59]. During
less difficult tasks, OCD patients may recruit additional neural
resources in SN and CEN, possibly to compensate for an
underlying inefficiency of these task-control networks. This
hyperactivation may explain why individuals with OCD are
able to maintain normal behavioral performance, relative to
healthy controls, during less complex tasks (e.g., the Flanker
task and the Simon task). However, with increasing task de-
mand (e.g., the Go/no-go and the Stop-signal task), these com-
pensatory mechanisms may fail in individuals with OCD,
such that behavioral impairments and decreased activity in
task-control networks emerge.

Task-Based fMRI Research in Pediatric OCD

Modeling after recent reviews of the adult literature, we con-
sider whether altered activation of task-control networks in
pediatric populations also depends on task complexity and/
or relates to performance. In contrast to the fMRI literature
in adult OCD, only a few studies have examined task-control
processing in pediatric samples (Table 2). During simple cog-
nitive tasks with relatively low levels of difficulty (e.g., sim-
plified serial reaction time, interference, 1-2-back working
memory tasks), fMRI studies in pediatric OCD reveal
increased activation in patients compared to healthy youth in
task-control regions, including dACC, dIPFC, and the parietal
cortex [50, 74, 75]. As with adult studies, hyperactivation of
task-control networks in pediatric patients occurred in the con-
text of normal performance relative to controls, suggesting
that increased engagement of task-control regions may reflect
a compensatory function by which patients maintain appropri-
ate behavioral output. Review of the pediatric OCD literature
on brain activation during more difficult/complex cognitive
tasks (e.g., motor inhibition, set-shifting, planning) demon-
strated that, relative to healthy controls, pediatric patients with
OCD showed decreased activation in task-control regions in-
cluding dIPFC, dACC, IFG, and parietal [76-78].

Thus, consistent with adult OCD literature, a pattern of
increased activation during tasks requiring lower cognitive
load and decreased activation during tasks with higher level
of demand for control characterizes pediatric patients with
OCD compared to healthy youth. In line with this notion,
Huyser and colleague [79] found decreased activation in con-
junction with impaired performance (slower reaction times) in
pediatric OCD participants relative to healthy youth on a task
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Behavior findings Main imaging findings

Task(s)

Subject characteristics

Table 2 (continued)

Study
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| TFG activation to task switch vs. no switch

Set-shifting/switch (higher difficulty) No group difference

Range: 10-17

Britton et al. [76]

| Right caudate activation with shift costs

OCD: 13.5+£24,n=15,9 M
HC: 13.6+24,n

Range: 8-19

IFG—caudate connectivity only in HC, but not in OCD

Before treatment:

20, 13 M

OCD slower than HC before treatment,

Tower of London, pretreatment to

Huyser et al. [78]

but no group difference after treatment | Left dIPFC/premotor and right parietal cortex activation to planning

posttreatment (higher difficulty)

25,9 M
25,9 M

OCD: 14.0+2.5,n

1 dIPFC, left dACC, right dmPFC, left insula with increased task load

Afier treatment:

HC: 13.7+£29,n

No group difference; no group x task load interaction

Correlation of before-to-after treatment decrease in the left dIPFC and parietal

to planning with decrease in OCD severity on CYBOCs

Arrow pointing up means greater in pediatric obsessive compulsive disorder (OCD) than healthy controls (HC); arrow pointing down means lower in OCD than HC

M male, F female, SRTT serial reaction time task, MSIT multisource interference task, d/PFC dorsal lateral prefrontal cortex, /PL inferior parietal lobule, Nacc nucleus accumbens, #SPL right superior

parietal lobule, d4CC dorsal anterior cingulate cortex, vmPFC ventral medial prefrontal cortex, 74CC rostral anterior cingulate cortex, dmPFC dorsal medial prefrontal cortex, /FG inferior frontal gyrus,

TPJ temporoparietal junction, CYBOCs Child Yale Brown Obsessive Compulsive Scale [30]

requiring higher levels of control (TOL). However, this study
stands out as an exception since, in other fMRI studies of
pediatric OCD, patients performed as well as healthy youth
on relatively difficult tasks (e.g., [76, 77]), despite decreased
activation in task-control network. Finally, patients with pedi-
atric OCD have been found to exhibit normal performance in
the context of decreased dIPFC activation during incorrect
[80] and correct [79] trials on relatively low-load, interference
tasks. These findings are in conflict with the theory that, dur-
ing less difficult tasks, hyperactivation of task-control regions
is necessary to support the maintenance of performance in
OCD [58e].

Several factors may contribute to the discrepancies ob-
served in the pediatric OCD fMRI literature. First, most of
the pediatric OCD fMRI studies employed small sample sizes
(ranging from 10 to 25 pediatric OCD participants). Small
samples in neuroimaging studies often yield low reproducibil-
ity of results [81] and may contribute to the observed incon-
sistencies. Future studies should include larger sample sizes to
increase the external validity of the findings. Second, fMRI
studies in pediatric OCD have typically included children and
adolescents across a wide age range, spanning 8 to 19 years.
The function and connectivity of task-control networks devel-
op dramatically from early childhood into adolescence and
early adulthood [20, 49]. Thus, different studies may produce
different findings depending on the specific ages of each study
sample. That is, developmental variability within age groups
may outweigh the between-group (OCD versus healthy) var-
iability in brain function and/or performance. Future studies
should further stratify by age and recruit more subjects at each
age, differentiating effects for young children from adoles-
cents [82].

Conclusions

In conclusion, there is strong evidence demonstrating abnor-
malities of both FSTC and canonical networks for task control
(SN, CEN) in pediatric OCD. Emerging works suggests that
these abnormalities may vary with age and performance in
young patients. Understanding this variation will be important
for elucidating the neurodevelopmental trajectories that may
underlie the emergence and early course of OCD. Additional
research combining DTI and rsfcMRI studies with task-based
fMRI methodologies will also be needed to elucidate the re-
lationships between developing connectivity and interactive
cognitive and emotional functions served by FSTC and
cortical-cortical networks. Such knowledge would guide ef-
forts to develop brain stimulation (e.g., transcranial magnetic
stimulation (TMS) or transcranial direct-current stimulation
(tDCYS)) to potentiate/modulate activity in the relevant neural
circuits or cognitive training paradigms to target the brain
regions involved in cognitive and emotional dysfunction
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specific to pediatric OCD. Longitudinal imaging designs will
be especially important in reaching these goals. By following
patients over time, neuroimaging research may reveal devel-
opmentally sensitive MR metrics, as well as functional acti-
vation and connectivity patterns, to serve as targets or inter-
mediate outcomes, by which to measure the effect of cognitive
training and neuromodulatory therapies. Ultimately, this line
of research may identify personalized strategies for adjusting
neurodevelopment to treat (and even prevent) OCD in differ-
ent patients, at different ages.
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