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Abstract
Purpose of Review Identification of genetic variants to aid in
individualized treatment of solid organ allograft recipients
would improve graft survival. We will review the current state
of knowledge for associations of variants with transplant
outcomes.
Recent Findings Many studies have yet to exhibit robust and
reproducible results; however, pharmacogenomic studies fo-
cusing on cytochrome P450 (CYP) enzymes, transporters, and
HLA variants have shown strong associations with outcomes
and have relevance towards drugs used in transplant. Genome
wide association study data for the immunosuppressant tacro-
limus have identified multiple variants in the CYP3A5 gene
associated with trough concentrations. Additionally, APOL1
variants had been shown to confer risk to the development of
end stage renal disease in African Americans.
Summary The field is rapidly evolving and new technology
such as next-generation sequencing, along with larger cohorts,

will soon be commonly applied in transplantation to understand
genetic association with outcomes and personalized medicine.
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Introduction

Although new drug development and improvement in patient
care have resulted in better short-term transplant allograft sur-
vival, there has been little improvement in long-term out-
comes. Defining genetic associations with posttransplant out-
comes has the potential to improve donor-recipient matching,
selection of immunosuppressive treatment regimens and/or
drug dosing, and posttransplant care. For example, identifying
genetic variants associated with increased risk of acute rejec-
tion (AR) and/or chronic graft dysfunction (CGD) could lead
to trials of immunosuppressive protocols for individuals with
those variants.

Genetic variants in the donor and recipient have long been
studied to better define transplant risk. Initial genetic variants
found to impact transplant outcomes were alleles associated
with major histocompatibility complex (MHC) antigens, also
called human leukocyte antigens (HLAs) [1]. The response to
this was to attempt better HLA matches between donor and
recipient. Unfortunately, waiting for an optimal match be-
tween donor and recipient results in a balance between the
risk associated with increased wait time and the risk associated
with increased mismatches [2].

As the different alleles of the MHC antigens were being
studied, variants in additional candidate genes, including
those which were thought to modulate immune function, were
being evaluated. In most studies, AR was the phenotype
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investigated. For more than two decades, studies reported sig-
nificant associations between AR and individual candidate
variants [3, 4], though other outcomes were studied [5]. In
most cases, the p values were modest, as were the effect sizes.
These associations, for the most part, have not stood up to
scrutiny. Oetting et al., in a large cohort of kidney transplant
recipients, studied 23 genetic variants previously reported to
have a significant association with AR; only one variant was
found to be significant in the validation set [6]. There are a
number of reasons that the findings reported in many of these
early studies have not been able to be validated: (a) they were
underpowered [7], and in some, cohorts of 100 recipients or
smaller were studied; (b) when multiple variants are being
genotyped, correction for multiple tests was not always done;
and (c) there were differences in defining the phenotype be-
tween the original study and the validation studies [7].

In an effort to overcome the limitations of candidate gene
approaches, genome wide association studies (GWASs) were
used to test known variants [8, 9]. There have been few
GWAS reports for transplant outcomes. For those variants that
have been reported, similar problems with validation have
emerged as was found in the candidate gene approach. In an
attempt to validate results of an earlier GWAS reporting two
variants associated with death-censored graft survival,
Pihlstrøm was unable to find a significant association with
either variant [10]. In the latest GWAS reported by Ghisdal
et al., using a DNA pooling approach, rs10765602 in the
CCDC67 gene and rs7976329 in the PTPRO gene, associated
with AR, were significant in both a discovery and a validation
cohort but have not yet been validated by other investigators.

Other transplant phenotypes have been studied including
new onset diabetes after transplant (NODAT) for which a
recent meta-analysis in kidney allograft recipients identified
three associated variants [11, 12]. Genetic variants have also
been associated with respiratory infection and primary graft
dysfunction, but again, most were underpowered case studies;
future studies will require larger cohorts [13]. Several studies
have analyzed telomere length and its association with age and
have shown that shorter telomeres are associated with worse
transplant outcome [14–16], yet there are other studies that
have not found these associations [17].

As noted above, previous attempts to identify and then
validate genetic risk factors have been complicated by a num-
ber of aspects including differences in study populations, un-
derpowered cohorts, variation in study design, differing clin-
ical interpretation of outcomes, and varying use of statistical
methods. There is a need for large prospective multicenter
studies to identify and validate these alleles before they are
translated into clinical trials [18]. Most likely, multiple gene
variants will cumulatively identify the genetically associated
variation for the many transplant outcomes [19]. These studies
will be complicated though by the fact that individuals will
have differing combinations of these risk alleles requiring

gene-gene interaction studies and even larger well-described
cohorts. Additionally, there will likely be different variants for
each organ type, and for the donor and the recipient. However,
once we have identified a set of alleles with strong statistical
power to predict outcome, clinicians will be able to identify at-
risk individuals and provide risk tailored treatment.
Identification of these genes will also help us better under-
stand the pathways associated with transplant outcomes pro-
viding a better understanding of mechanisms and lead to even
better treatment trials.

Pharmacogenomics in Transplantation

Pharmacogenomics is the study of how genes affect a person’s
response to drugs. It is a rapidly growing and maturing field
and has already had clinical implementation in areas such as
psychiatry, oncology, and cardiology. There are to date 17
published pharmacogenomic guidelines for 38 drugs (https://
www.pharmgkb.org/page/cpic). The NIH Pharmacogenomics
Research Network (PGRN) supports the development of these
guidelines through the work of the Clinical Pharmacogenetics
Implementation Consortium (CPIC) which reviews and rates
the strength of the studies, and authors the guidelines. In most
cases, individuals who carry risk variants require either non-
standard doses due to altered pharmacokinetics and clinical
outcomes or are at higher risk of drug-related adverse effects.
Most of the important variants to date that have been identified
are in genes mainly for drug-metabolizing enzymes, drug
transporters, and specific HLA alleles. For immunosuppres-
sants, clinical guidelines are available for azathioprine and
more recently for tacrolimus. Table 1 provides examples of
CPIC guidelines for medications used in transplantation.

Pharmacogenomic studies for the immune suppressants, cy-
closporine, tacrolimus, mycophenolate, sirolimus, and azathio-
prine, have primarily evaluated variants in drug-metabolizing
enzymes and transporters [32]. The pharmacogenomic data for
tacrolimus is strong, and the presence of cytochrome P450
3A4/5 variants (CYP3A4 and CYP3A5 genes) profoundly af-
fects tacrolimus pharmacokinetics and dose [33]. Randomized
trials of genotype-directed tacrolimus dosing have recently
been conducted in primarily Caucasian kidney transplant pop-
ulations [34–36]. One trial demonstrated improvement in
achieving therapeutic blood concentrations on days 3 and 10
posttransplant, with fewer dose adaptations in the genotype-
directed dosing group [35], whereas a similar trial did not
[34]. There was no difference in delayed graft dysfunction,
AR, CGD, or toxicity between the groups. However, these
studies had a number of limitations; they enrolled low immu-
nologic risk patients and low numbers of patients with the func-
tional CYP3A5*1 allele who would benefit most from
genotype-directed dosing. They targeted higher trough
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concentrations than typically used in the USA, and they did not
consider important variants that have been recently identified.

In the past several years, there has been growing recogni-
tion that there is more genetic variation in the CYP3A4 and
CYP3A5 genes present in individuals with African ancestry
relative to Caucasians [37–39]. A recent GWAS of tacrolimus
trough concentrations in African American kidney transplant
recipients identified large effects of three common CYP3A5
variants (CYP3A5*3, *6, and *7) on tacrolimus metabolism
[40•]. The CYP3A5*3, a cryptic splice junction variant, is a
loss of function (LoF) variant in intron 3 of the CYP3A5 gene,
which generates splice variants containing stop codons lead-
ing to non-sense mediated decay of the CYP3A5mRNA [41],
protein truncation, resulting in an absence of CYP3A5 en-
zyme activity. The CYP3A5*6 and *7 variants also result in
a reduced or loss of enzyme function. One of these three
variants is carried by 50% of African Americans and two
LoF variants by 26%. Individuals carrying two of these vari-
ants (i.e., *3/*3, *3/*7, *3/*6) have profoundly reduced or
complete absence of CYP3A5 enzyme activity and a slow
metabolism phenotype. African Americans who do not carry
these variants are assumed to carry the CYP3A5*1 allele and
express high amounts of active CYP3A5 enzyme which con-
fers a rapid metabolism phenotype, resulting in rapid tacroli-
mus clearance. African Americans, whomore frequently carry
a CYP3A5*1 allele and have higher risk of poorer outcomes
[42, 43], may benefit most from genotype-directed dosing.

The majority of Caucasians (90%) carry two LoF variants
(mainly CYP3A5 *3/*3) and therefore have a nearly complete
absence of CYP3A5 activity. The allele frequency for the
active CYP3A5*1 variant in Caucasians is only 5.6%. The
CYP3A5*6 or *7 alleles rarely occur in Caucasians.
Therefore, most Caucasians and many African Americans
are lacking or have reduced CYP3A5 activity and are depen-
dent on the CYP3A4 enzyme for themetabolism of tacrolimus
and other drugs. The CYP3A4 genetic variant, CYP3A4*22, is
also a LoF variant that occurs more often in Caucasians and is
well known to influence tacrolimus metabolism. Individuals
who lack CYP3A5 enzyme and also carry a CYP3A4*22 var-
iant are at high risk for elevated tacrolimus concentrations and
thus toxicity. The last few years have brought understanding
that multiple variants along with well-known clinical factors
influence tacrolimus metabolism. Recently, more precise ta-
crolimus dosing models which account for genotype and clin-
ical factors such as age, drug-drug interactions, and time
posttransplant have been developed for African American re-
cipients and may improve genotype-directed dosing accuracy
[44••]. These variants may also influence the efficacy and/
or toxicity of the many other CYP3A substrate drugs used
in transplantation. This will likely be a focus of future
research since over 50% of marketed drugs are dependent
on the CYP3A4 and/or CYP3A5 enzymes for metabolism
[45].

The use of pharmacogenomics strives to reduce intra-
individual variation in drug pharmacokinetics and improve
efficacy. Furthermore, high intra-patient variability of tacroli-
mus concentrations has led to worse outcomes [46–49].
Recent data showed that high pharmacokinetic variability in
tacrolimus troughs is associated with increased risk of moder-
ate to severe fibrosis and tubular atrophy [50]. Althoughmany
factors contribute to variability including adherence, early var-
iability is related to differences in metabolism. Thus, better
outcomes likely will occur with proper tacrolimus dosing
and less intra-patient variability.

Donor Variants

Few studies have found robust donor genetic variants associ-
ated with transplant outcomes. However, variants in the
Apolipoprotein L1 gene (APOL1) have been associated with
worse outcomes in the recipients [51]. Studies have focused
on the G1 and G2 alleles of APOL1. The APOL1 G1 allele is
defined by two variants (rs73885319 and rs60910145) and the
G2 allele which is an insertion/deletion (rs71785313) variant.
In the US population, the APOL1 variants are found predom-
inantly in individuals with recent African ancestry. In one
study of African Americans, 20 to 22% carried a G1 variant,
3 to 15% carried a G2 variant, while approximately 10 to 15%
of African Americans carry two APOL1 kidney risk alleles
[52]. The high frequency of these G1 and G2 alleles of
APOL1 in populations of African descent are thought to be
due to positive selection being protective against African
sleeping sickness caused by the Trypanosoma brucei
rhodesiense [51].

It is now apparent that the variants in APOL1 help explain
the increased risk of end-stage renal disease in African
Americans compared to Caucasians [53••, 54] as well as poor
deceased donor kidney transplant outcomes [53••]. Several
single-center and multi-center retrospective studies have
shown an association of deceased donor APOL1 risk variants
with worse allograft survival [53••, 55, 56•]. In the largest
multi-center study, 1153 deceased donor kidney transplants
from 624 African American donors showed that two APOL1
risk variants were associated with increased risk of allograft
failure (adjusted HR of 2.5, p < 0.0001) [53••]. A recent case
report highlighted two kidney transplant recipients who devel-
oped glomerular disease whose donors carried two APOL1
risk variants [57].

Although there is an association between APOL1 alleles
and kidney transplant outcomes, no effect has been observed
after liver transplant. Dorr et al. reported on 639 African
American liver transplant patients, where 47% of the subjects
had one APOL1 risk allele and 14% had two risk alleles, and
that these alleles do not impact liver transplant outcomes [58].
Although not all transplant types have been studied yet, it
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seems that these APOL1 alleles cause most risk in kidney
transplantation.

Themechanism through which APOL1 risk variants impact
allograft survival is not known, and the biopsy phenotype of
APOL1-related allograft loss is not well described. Since not
every recipient of a kidney with APOL1 risk variants un-
dergoes premature allograft loss, a second hit hypothesis has
been postulated. How these second hits such as viral infec-
tions interact with APOL1 risk variants to increase risk of
allograft loss is not understood. Therefore, the NIH is plan-
ning a large, national, prospective observational study
(APOL1 Long-Term Kidney Transplantation Outcomes
Network [APOLLO]) to answer these questions.

Identifying Rare Variants

While GWASs are successful in identifying known variants
associated with outcomes [59•], DNA sequencing is quickly
becoming state of the art for identification of risk variants
[60–62]. Whole-exome, targeted, or whole-genome sequenc-
ing has been employed to detect low-frequency variants asso-
ciated with outcomes in transplantation. Larger transplant data
sets will be required, and alternative study designs, such as
extreme phenotyping sampling (EPS), will be needed to iden-
tify rare variant associations with studied outcomes. This type
of design allows for sequencing of smaller sample sizes and
lower costs [62]. There are now data emerging that these low-
frequency variants are impactful particularly towards drug
therapy. One example where sequencing is applied is for the
CYP genes. Common variants in theCYP3A4,CYP3A5, P450
oxidoreductase (POR), and cytochrome b5(CYB5A) alleles
that constitute the P450 complex that is responsible for tacro-
limus oxidative metabolism, along with clinical factors,
strongly account for about 50% of the variability in tacrolimus
troughs in African American transplant recipients [40•], but
less in white European Americans. It is likely that remaining
genetic variability yet to be identified is due to low-frequency
variants, environmental factors such as diet, and epigenetics. It
may be possible to use EPS strategies to identify low-
frequency genetic variants associated with the very highest
and lowest tacrolimus concentrations. Since these two groups
of subjects have the most extreme phenotypes, they are more
likely to carry low-frequency genetic variants. Sequences
from the subjects can then be aligned to the human reference
genome in dbSNP and rare variants identified with tools such
as Genome Analysis Tool Kit (GATK) [63, 64]. For instance,
next-generation sequencing (NGS) of extreme phenotypes has
recently identified low-frequency variants in a variety of dis-
eases including lung cancer [65], chronic obstructive pulmo-
nary disease [66], diabetic retinopathy [67], chronic
Pseudomonas aeruginosa infection in cystic fibrosis [68], se-
vere iron overload [69], and hypercholesterolemia [70]. Rare

variants were associated with LDL cholesterol levels using
NGS, with differing frequencies in African Americans com-
pared to European Americans [71•]. As with common vari-
ants, low-frequency variants will require validation.

Conclusion

As we progress in the future with clinical research, transplan-
tation is becoming more personalized and tailored for the in-
dividual patient. In the past, transplant donors and recipients
had a lower level of HLA mismatch, but immunosuppression
was often given at standard doses, with hope for optimal out-
comes. Now, as we further understand the impact of genetic
variation in donor tissues and the recipient’s genetic disposi-
tion to immune suppressant response, we and others are
implementing dosing strategies aimed to improve outcomes
[30, 44••, 72]. We are continually discovering new genetic
variants associated with immune suppressant metabolism, as-
sociated with specific outcomes, and that are enriched in dif-
ferent populations. Part of our future goal is to understand, as
best possible, the entire genomic landscape of transplantation.
We believe that the future of transplantation will be improved
as we further understand the role of these genetic variants,
gene-gene, and gene-environment interactions. Thus, we see
transplantation as becoming much more personalized along
with improved precision therapies.
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