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Abstract
Purpose of Review  Childhood central nervous system tumors (cCNSt) are the most common solid tumors in individuals 
under 20 years old, yet environmental risk factors are not well established. Therefore, we conducted an umbrella review to 
summarize the current literature on risk factors related to cCNSt.
Recent Findings  Childhood exposure to ionizing radiation from medical devices was the strongest risk factor. There was 
evidence of positive associations with several other factors, including maternal age, birth weight, and pesticide exposure. 
Conversely, maternal folic acid supplementation during pregnancy and having childhood allergic conditions were inversely 
associated with cCNSt. Few studies assessed associations by cCNSt histological subtypes and none by molecular subtypes. 
Exposure assessments were limited to data linkages, parental recall via questionnaires, or measurements at diagnosis.
Summary  Because cCNSt are highly heterogeneous, future research is needed to examine risk factors by molecular and 
histological subtypes and to apply novel, unbiased exposure assessments.

Keywords  Childhood cancer · Pediatric cancer · Brain tumors · Environmental exposures

Introduction

Childhood central nervous system tumors (cCNSt) are the 
most common solid tumor diagnosed in children and ado-
lescents [1]. Children with these tumors have relatively poor 
survival [2] compared to those with other pediatric malig-
nancies, and those who survive often have multiple chronic 
health conditions [3, 4]. Genetics explain a small propor-
tion of the variability as the few genome-wide association 
studies (GWAS) of cCNSt have identified a handful single 
nucleotide polymorphisms (SNPs) associated with inherited 
genetic risk [5–7]. These findings must also be replicated in 
larger populations and by tumor type. Additionally, because 
known cancer variants explain < 10% of diagnoses [8, 9], 
parental and childhood exposures to environmental fac-
tors are likely to play an important role in cCNSt etiology. 
Compared to adults, fetuses and children are vulnerable to 
environmental toxicants due to rapid growth during devel-
opment, are disproportionately exposed to environmental 
toxicants when considering body weight to toxicant con-
centration ratio compared to adults, and do not have a fully 
developed blood–brain barrier which may allow toxicants 
to enter the CNS [10]. Conversely, some exposures may 
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be protective and modifiable, which may inform public 
health interventions. To summarize the current literature 
on environmental risk factors of cCNSt, we conducted a 
comprehensive umbrella review of systematic reviews and 
meta-analyses published within the last five years, highlight 
existing knowledge on risk factors of cCNSt, and identify 
areas for additional characterization.

Methods

Literature Search

In accordance with Cochrane Handbook for Systematic 
Reviews of Interventions [11] and the JBI Manual for Evi-
dence Synthesis best practices [12], we conducted a sys-
tematic search using controlled vocabulary and natural 
language. The search strategy encompassed the concepts 
of CNSt, prenatal, perinatal, and environmental risk factors 
and exposures, and a pediatric population (0–19 years). The 
search strategy was executed across MEDLINE via Ovid, 
Embase via Ovid, Scopus, Web of Science Core Collec-
tion, and the Cochrane Library via Wiley. The search (May 
2022) was restricted to publications since 2017. Search and 
filter keywords are in Supplemental File 1. The protocol 
was registered a priori on June 17, 2022, in PROSPERO, an 
international database of prospectively registered systematic 
reviews (CRD42022337974).

Study Selection

The search results from all databases were compiled and 
deduplicated in Endnote X9 [13], then imported into Covi-
dence [14]. Titles and abstracts were screened independently 
by two reviewers (LAW and TTH). Conflicts were resolved 
through consensus. Studies with children < 20 years of age 
with primary cCNSt were included; adults aged ≥ 20 years 
at diagnosis or children diagnosed with secondary cCNSt 
were excluded. Systematic reviews and meta-analyses were 
the study designs of focus, but primary research is cited as 
background where necessary.

After initial title/abstract screening, full-text reports were 
screened independently by two reviewers (LAW and TTH). 
Discrepancies were resolved through consensus. Reasons for 
exclusion at this phase are reported in Fig. 1 in accordance 
with PRISMA standards.

Data Collection

Data extraction forms were developed in Covidence by 
TTH and LAW and piloted before being further refined 
by LAW, TTH, and EW. Data were extracted from each of 
the 31 included studies independently by two authors (EW 

all articles, LAW n = 16 and TTH n = 15). Data extracted 
included studies’ search strategies, exposures of interest, 
pre or postnatal exposure, and number of studies. For meta-
analyses, effect estimates (odds ratios (ORs) or relative risk 
(RR) and 95% confidence intervals (95% CI)) were extracted 
as well as any assessments of publication bias. Findings are 
presented in Table 1.

Results

Demographic Factors

Nieblas-Bedolla et al. [15] reported higher cCNSt incidence 
rates in White and Asian children compared to other race/
ethnicity groups (e.g., Hispanic and non-Hispanic Black) 
using data from 11 population-based registry studies includ-
ing Surveillance, Epidemiology and End Results (SEER). 
While differences in parental characteristics (i.e., parental 
age at first birth as discussed herein [16]) may contribute 
to the underlying racial/ethnic differences in incidence, fur-
ther research is needed to examine the extent to which these 
racial/ethnic differences are due to environmental exposures, 
sociocultural practices, and/or genetic ancestry. Parental age 
is another commonly explored risk factor for cCNSt due 
to increased germline mutations in older parental gametes 
among other mechanisms [18]. From a meta-analysis of six 
studies [19], risk of any cCNSt with each 5-year increase 
in maternal age was 1.07 (95% CI: 1.04–1.10) and varied 
by histology (ependymoma OR: 1.17, 95% CI: 1.07–1.29; 
astrocytoma OR: 1.10, 95% CI: 1.05–1.15; medulloblastoma 
OR: 1.04, 0.98–1.12). There was a null association for each 
5-year increase in paternal age and cCNSt (OR: 1.01, 95% 
CI: 0.99–1.03). Finally, parental educational attainment 
often is a proxy for socioeconomic status. In a systematic 
review by Quach et al. [20], the authors note a paucity of 
studies on this topic and highlight a single case–control 
study [21] where increasing education was inversely asso-
ciated with offspring cCNSt, particularly for 13–16 years of 
maternal education (versus > 17 years) and cCNSt (OR: 0.81, 
95% CI: 0.69–0.96); however, a protective association was 
reported for astrocytoma for < 12 years (versus > 17 years) of 
education (OR: 0.70, 95% CI: 0.51–0.95). The overall find-
ings were not replicated by Francis et al. [22] in California 
(13–15 years of maternal education cCNSt OR: 1.14, 95% 
CI: 1.01–1.28). Additional population-based studies of this 
association using more comprehensive socioeconomic status 
measures and an updated meta-analysis are necessary.

Diet

Dietary assessment is often fraught with recall bias. None-
theless, maternal dietary intake has been examined in 
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various studies of cCNSt risk. In a meta-analysis of 12 stud-
ies by Zumel-Marne et al. [23], maternal meat consump-
tion, including cured meats, was positively associated with 
offspring cCNSt (OR: 1.51,95% CI: 1.32–1.73). For meat 
intake during childhood, the meta-analyzed OR of two stud-
ies was 1.27 (95% CI: 0.89–1.82) [23]. Meta-analyses for 
other dietary components were not available, but there was a 
reported increased association of cCNSt with maternal con-
sumption of French fries, bacon, non-cured meat, fresh fish, 
and hot dogs, or dietary N-nitroso compounds, as detailed 
by Zumel-Marne et al. [23] and Quach et al. [20]. Concern-
ing gene by environment interaction, one study reported 
that maternal meat consumption during pregnancy among 
children born with glutathione S-transferase variation was 
positively associated with cCNSt [24].

Maternal Folate Intake

Folate can be ingested via folic acid supplementation or die-
tary intake and regulates DNA synthesis and repair thereby 
preventing DNA damage that can lead to tumor formation 

[25]. Two meta-analyses have summarized studies of mater-
nal folate intake and cCNSt. In a meta-analysis of six studies 
from Wan Ismail et al. [26], the association between mater-
nal folic acid supplementation and cCNSt was null (OR: 
1.02, 95% CI: 0.88–1.19). Even though the included studies 
focused on supplementation, they likely did not uniformly 
and completely account for background folic acid fortifica-
tion of flour, which varies by country [27]. In the meta-
analysis by Chiavarini et al. [28], total maternal folate intake 
from 32 studies resulted in a protective association with off-
spring cCNSt (OR: 0.77, 95% CI: 0.67–0.88), which was 
present in selected cCNSt histological subtypes (embryonal 
tumors OR: 0.70, 95% CI: 0.54–0.90; miscellaneous intrac-
ranial/spinal tumors OR: 0.82, 95% CI: 0.68–0.99; low-
grade gliomas [one study] OR: 0.55, 95% CI: 0.39–0.79), 
except astrocytoma (OR: 0.93, 95% CI: 0.63–1.38). When 
the authors considered folate source, they observed a pro-
tective association with dietary folate (OR: 0.76, 95% CI: 
0.53–1.07) and folic acid supplementation (OR: 0.77, 95% 
CI: 0.66–0.90), contradicting the null findings by Wan Ismail 
et al. [26]. Folate intake preconceptionally or prenatally 

Fig. 1   Flow diagram of system-
atic literature review and screen, 
following PRSIMA guidelines

Records identified from:
Ovid MEDLINE (n=341)
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reduced cCNSt risk by > 20% [28]. Overall, the Chiavarini 
et al. [28] findings from the 32 studies in their meta-analysis 
suggest total folate intake may be a modifiable risk factor 
for cCNSt.

Birth Order

Higher birth order is hypothesized to reduce cancer risk 
by (1) increasing immune function following acquisi-
tion of infections from older siblings, (2) decreasing fetal 
maternal hormone exposure in higher birth order children 
with low interpregnancy intervals [29], and (3) increas-
ing frequency of microchimerism whereby maternal cells 
remain in the child [30] at higher concentrations in later 
born children. Nguyen et al. [31] conducted a meta-anal-
ysis of 16 case–control and three cohort studies for birth 
order and cCNSt. Compared to first born, higher risk of 
cCNSt was observed among second born (OR: 1.04, 95% 
CI: 1.01–1.07), but not third born (OR: 0.98, 95% CI: 
0.90–1.06), and an inverse association among fourth born 
(OR: 0.85, 95% CI: 0.78–0.92). More work is needed to 
characterize the relationship between birth order and age at 
diagnosis to properly estimate associations between birth 
order and cCNSt.

Sibship Size

Higher sibship impacts cCNSt risk via increased exposure to 
infectious agents, though studies are limited. As reviewed by 
Han et al. [32], increasing sibship elevated the risk of cCNSt 
in a Swedish registry study of 13,613 children (two siblings 
RR: 1.26, 95% CI: 1.10–1.45; three siblings RR: 1.41, 95% 
CI: 1.21–1.65; ≥ 4 siblings RR: 1.27, 95% CI: 1.06–1.52) 
[33]. The association varied by histology (ependymoma ≥ 4 
siblings RR: 1.83, 95% CI: 1.12–3.00; astrocytoma three sib-
lings RR: 1.36, 95% CI: 1.06–1.74). However, these analyses 
were not adjusted for maternal age at birth, which could 
drive underlying associations as it is a cCNSt risk factor as 
discussed above.

Seasonality of Birth

Often used as a proxy for prenatal exposures to pesticides 
or patterns of infectious diseases [34], seasonality of birth 
has been explored in association with cCNSt as reported by 
Georgakis et al. [34]. A meta-analysis was not performed 
as risk estimates were not uniformly available; however, in 
studies with risk estimates, results were inconclusive and 
varied by country and cCNSt histology. In a recent pooled 
analysis by Karalexi et al. of 16 cancer registries from 14 
South and Eastern European countries [35], there was an 
elevated incidence of cCNSt in winter-born children (inci-
dence rate ratio (IRR): 1.06, 95% CI: 0.99–1.14) and this 

was significant for embryonal tumors (IRR: 1.13, 95% CI: 
1.01–1.27) and among males with embryonal tumors (IRR: 
1.24, 95% CI: 1.05–1.46). For girls, there was a higher inci-
dence of astrocytoma for those born in spring (IRR: 1.23, 
95% CI: 1.03–1.46). These findings remain to be validated 
in other populations.

Birth Weight

Low and very high birth weight is an established risk factor 
for various childhood malignancies [36] that may increase 
the risk of cCNSt by (1) higher cell counts in larger baby’s 
brains increasing mitotic events leading to more somatic 
mutations [37] or (2) altering maternal hormones and growth 
factors encouraging rapid fetal growth [38, 39], which could 
permit carcinogenesis. As detailed by Quach et al. [20], in a 
2008 meta-analysis [40], high birth weight (> 4000 g) was 
associated with astrocytoma (OR: 1.38, 95% CI: 1.07–1.79), 
and medulloblastoma (OR: 1.27, 1.02–1.60), but not epend-
ymoma (OR: 1.15, 95% CI: 0.65–2.04). The high birth 
weight findings were confirmed in a 2017 meta-analysis [41] 
and birth weight < 2500 g was also associated with medullo-
blastoma/PNET (OR: 1.19, 95% CI: 1.02–1.39). The results 
suggest birthweight may underly etiologic heterogeneity by 
cCNSt histology.

Breastfeeding

Breastfeeding may confer long-term health benefits to the 
mother, such as reduced risk of developing breast [42] and 
ovarian [43] cancers. Additionally, it is hypothesized that 
breastfeeding bolsters immune function in offspring, thereby 
limiting the likelihood of developing cancer. However, stud-
ies in breastfed offspring have largely been equivocal. In 
a 2021 meta-analysis of seven studies [44], there was no 
association between breastfeeding and cCNSt (any versus 
non/occasional OR: 0.96, 95% CI: 0.83–1.10; longest versus 
shortest duration [six studies] OR: 0.95, 95% CI: 0.79–1.14). 
There was no variation in risk by histology. More detailed 
approaches to testing the breastfeeding hypothesis are 
needed, but results thus far suggest a limited role for breast-
feeding in cCNSt risk reduction.

Drinking Water

Contaminated tap water is hypothesized to impact disease 
etiology in humans. As children undergo rapid growth until 
puberty, they may be particularly susceptible to carcinogenic 
contaminants in tap water. Studies of drinking water and 
cCNSt are few, and results have been mixed. As reviewed by 
Zumel-Marne et al. [23], studies examining well water dur-
ing pregnancy and cCNSt were null but varied by location 
(Seattle OR: 2.6, 95% CI: 1.3–5.2; Los Angeles County OR: 
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0.2, 95% CI: 0.1–0.8) suggesting regional variation in well 
water composition may be important; however, the study 
did not adjust for important risk factors beyond age, sex, 
and region.

Nitrate and nitrite, byproducts of agricultural runoff and 
industrial waste, are ground water contaminants. These com-
pounds may to impact carcinogenesis by forming nitrosa-
mines and nitroso compounds upon metabolization, which 
are considered probable carcinogens (Group 2A) by the 
World Health Organization [45]. In a meta-analysis of three 
studies by Picetti et al. [46], there was an elevated, non-
significant risk of cCNSt (RR: 1.16, 95% CI: 0.64–2.11) 
per 10 mg/L increase in nitrate in drinking water. Larger, 
population-based studies covering this topic are necessary.

Postnatal Allergies

Allergic conditions, including asthma and eczema, have 
been examined in association with cCNSt as summarized 
by Quach et al. [20]. Mechanisms underlying allergies and 
cancer posit the presence of allergies may protect from can-
cer as the immune system is in an elevated state of surveil-
lance and can disrupt carcinogenic processes before tumor 
detection [47]. In the study of asthma, eczema, and cCNSt 
[48], asthma protected against cCNSt (OR: 0.55, 95% CI: 
0.33–0.93) while a suggested protective effect was observed 
for eczema (OR: 0.52, 95% CI: 0.17–1.57). Although the 
asthma findings agree with a meta-analysis of allergies and 
adult glioma [49], confirmatory pediatric studies with com-
plete allergic history, including maternal allergies during 
pregnancy, and adequate sample sizes are needed.

Head Injuries

Head injuries potentially inflict damage to the brain tis-
sue and impact cCNSt development. As Quach et al. [20] 
reported, the summation of existing studies are inconclusive. 
A Children’s Oncology Group study concluded there was 
no association between head injury and medulloblastoma/
PNET development, but sample size was limited thereby 
impacting their precision (OR: 0.78, 95% CI: 0.40–1.50) 
[50]. Studies concerned with the severity of injury, timing, 
and histologic types of cCNSt are necessary; however, they 
could be confounded by CT scan exposure as discussed 
below.

Air Pollution

Air pollutants can cross the placenta leading to oxidative 
stress, neurotransmitter imbalance, neuroinflammation, 
and mitochondrial dysfunction in the developing brain 
impacting neurodevelopment and contributing to carcino-
genesis [51, 52]. Two systematic reviews identified four 

studies (three case–control, one ecologic) that examined 
air pollution and cCNSt [23, 53]. The four studies con-
sidered different exposure time points (i.e., pregnancy, 
first year of birth, childhood) and exposures (i.e., proxim-
ity to highways or specific air pollutants: 1,3-butadiene, 
benzene, diesel particulate matter, acetaldehyde, polycy-
clic aromatic hydrocarbons, ortho-dichlorobenzene). As 
reviewed in Zumel-Marne et al. [23] and a study identified 
in Buser et al. [53], air pollutants during pregnancy were 
associated with PNET (OR range: 2.23–3.04 [54, 55]; 
most precise OR [acetaldehyde]: 2.30, 95% CI: 1.44–3.67) 
and medulloblastomas (OR range: 1.30–1.44; most pre-
cise OR [polycyclic aromatic hydrocarbon]: 1.44, 95% CI: 
1.15–1.80) [54, 56].

There is suggestive evidence that childhood expo-
sures to air pollutants may elevate overall risk of cCNSt, 
as air pollution exposure in the first year of life has 
been associated with cCNSt (OR range: 1.78–3.27 [47, 
50]; most precise OR [1,3-butadiene]: 3.15, 95% CI: 
1.57–6.32). Another study [57] identified by Buser et al. 
[53] reported mixed findings in which those in the 2nd 
quartile of exposure to diesel particulate matter at diag-
nosis had significantly higher risk (IRR: 1.20, 95% CI: 
1.06–1.37) but not those in the 3rd or 4th quartile of 
exposures (3rd vs 1st IRR: 1.03, 95% CI: 0.90–1.18; 4th 
vs 1st IRR: 0.90, 95% CI: 0.78–1.04). We summarize 
the literature by major histological subtypes. For astro-
cytomas, Zumel-Marne et  al. [23] reported increased 
risk with airborne lead exposure during first year of 
life (OR: 1.40, 95% CI: 0.97–2.03), Danysh et al. [57] 
reported increased risk with 1,3-butadiene or diesel par-
ticulate matter at diagnosis with non-juvenile pilocytic 
astrocytoma (IRR range: 1.22–1.69; most precise IRR 
[medium vs low diesel particulate matter]: 1.42, 95% CI: 
1.05–1.94), and Raaschou-Nielsen et al. [56] reported 
null associations with benzene during childhood (RR: 
1.0, 95% CI: 0.7–1.3). The literature with medulloblas-
tomas is inconclusive as Raaschou-Nielsen et al. reported 
null associations with benzene (RR: 1.0), von Ehrenstein 
et al. did not identify any significant associations with 
air pollutants but consistently reported elevated ORs with 
polycyclic aromatic hydrocarbons (PAHs) including ben-
zene (OR range: 1.08–1.50; most precise OR [dibenz[a,h]
anthracene]: 1.20, 95% CI: 0.84, 1.72), and Danysh et al. 
reported significant with exposure to diesel particulate 
matter in the 2nd quartile (vs 1st) (IRR: 1.46, 95% CI: 
1.01–2.12) but not in the 3rd or 4th quartile of exposures 
(3rd vs 1st IRR: 0.95, 95% CI: 0.63–1.45; 4th vs 1st IRR: 
1.25, 95% CI: 0.83–1.88) [57]. For ependymomas, only 
Zumel-Marne et al. reported elevated risk with mother 
lived within 500 m of a major roadway at birth (OR: 3.08, 
95% CI: 0.91–10.42) [23]. Additional, larger studies are 
warranted to confirm these observations.
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Metals

Metals can cross the placenta and blood–brain barrier 
[58, 59] leading to oxidative stress and epigenetic altera-
tions [60], which may lead to carcinogenesis. A systematic 
review identified one study of cCNSt cases (n = 4) that had 
higher levels of cadmium during childhood across blood, 
urine, scalp hair, and nails [23]. Meng et al. meta-analyzed 
three case–control studies of parental lead exposure during 
pregnancy (residential or occupational) [61] and reported 
elevated the odds of offspring cCNSt (OR: 1.17, 95% CI: 
0.99–1.34). Larger studies of parental and childhood metal 
exposures and cCNSt are needed.

Parental Smoking

Smoking exposes individuals to several carcinogens and 
maternal smoking during pregnancy adversely affects off-
spring development [62]. Three publications were identi-
fied summarizing the literature on maternal smoking during 
pregnancy, passive smoke exposure during pregnancy for 
mothers, and offspring postnatal exposure.

The systematic review by Quach et al. [20] identified a 
2002 meta-analysis, where maternal smoking during preg-
nancy did not impact offspring cCNSt risk (RR: 1.05, 95% 
CI: 0.90–1.21) [63]. Zumel-Marne et al. [23], published an 
updated meta-analysis, including 20 articles of maternal 
smoking during preconception or pregnancy and reported 
an elevated risk of offspring cCNSt (OR: 1.09, 95% CI: 
1.00–1.18).

Zumel-Marne et al. also meta-analyzed 17 studies exam-
ining between maternal passive smoking exposure during 
pregnancy and cCNSt where maternal exposure signifi-
cantly increased offspring cCNSt risk (OR: 1.32, 95% CI: 
1.12–1.55) [23]. Oldereid et  al. [64] published a meta-
analysis examining paternal smoking during pregnancy, a 
proxy for maternal exposure to passive smoke and/or pater-
nal smoking during conception, and offspring cCNSt risk. 
From the meta-analysis of 14 case–control studies, they 
reported a significantly increased risk for paternal smoking 
during pregnancy and offspring cCNSt (OR: 1.12, 95% CI: 
1.03–1.22) [64]. Of these three publications, only Zumel-
Marne et al. considered offspring exposure to passive smoke 
and found that two reported no association and one reported 
a significantly increased risk of cCNSt following passive 
smoke exposure [23].

Ionizing and Non‑ionizing Radiation

We identified 16 meta-analyses or systematic reviews exam-
ining radiation exposure and cCNSt risk. Nine examined 
ionizing radiation, six examined non-ionizing radiation, and 
one summarized ionizing and non-ionizing radiation. Below 

we summarize the literature on radiation and cCNSt by type 
of radiation and timing of exposure.

Ionizing radiation can remove electrons from atoms 
when it passes through the body, potentially altering the 
cells within the body, which may lead to tumor develop-
ment [65]. Sources of ionizing radiation can be natural (e.g., 
radon, cosmic, solar) or man-made (e.g., medical examina-
tion devices). Prenatal exposure to ionizing radiation was 
identified in four studies [66–69] that examined exposure 
to ionizing radiation from X-rays or CT scans during preg-
nancy. Overall, there was weak evidence that prenatal expo-
sure was associated with cCNSt risk in offspring (RR range: 
1.13–1.33; most precise RR: 1.13, 95% CI: 0.91–1.39; ERR/
Gy: 70, 95% CI: − 229, 369) [66–69].

We identified eight publications on childhood expo-
sure to ionizing radiation, radon (one article) and medi-
cal examination devices (e.g., X-rays and CT scans [seven 
articles]). The radon systematic review summarized two of 
eight publications reporting higher risk of cCNSt [70]. One 
measured radon in water (RR: 1.28, 95% CI: 1.00–1.62) 
[71] and the other had relatively low exposure levels (mean 
radon = 27 Bq/m3) that likely failed to represent the target 
population (OR: 3.85, 95%CI: 1.26–11.85) [72].

Medical examination devices emit different doses of ion-
izing radiation that varies by body location [73]. X-rays emit 
the lowest doses, ranging from 0.001 mSv (bone density test) 
to 0.4 mSv (mammogram) [73]. CT scans emit higher doses, 
ranging from an average of 2 mSv (head scan) to 16 mSv 
(angiogram) [73]. Quach et al.’s [20] reported that X-rays 
taken during childhood were not associated with cCNSt (OR 
range: 0.5–2.5) [50], which was confirmed in Abalo’s et al.’s 
meta-analysis (ORpooled = 0.93, 95% CI: 0.68–1.28) [68]. 
Conversely, there is evidence that postnatal CT scans signifi-
cantly increased the risk of cCNSt (ERR range: 7.9–9.1 Gy; 
most precise ERR: 7.9 Gy, 95% CI: 4.7–11.1; RR range: 
1.54–2.29; most precise RR: 1.54, 95% CI: 1.66–2.93) [68, 
74–76]. Two publications examined radiation dose and 
cCNSt risk. Hauptmann et al. systematically reviewed two 
studies, both which reported an elevated cCNSt risk, but 
only one [77] was significant (ERR/mGy: 0.023 to 0.019, 
95% CI: 0.008–0.043) [78]. In the meta-analysis of three 
studies, Little et al. reported an ERR/Gy of 6.81 (95% CI: 
0.58–13.04) per unit of absorbed dose of radiation and risk 
of cCNSt [66]. In summation, dose of ionizing radiation 
exposure during childhood is a strong risk factor of cCNSt.

Non-ionizing radiation does not have enough energy to 
remove electrons from atoms and cause DNA damage, but 
the International Agency of Research on Cancer (IARC) has 
classified it as a possible carcinogen [79, 80]. Sources of non-
ionizing radiation include microwaves, wireless devices, and 
infrared radiation in heat lamps [65]. Prenatal exposure to 
non-ionizing radiation was assessed in one meta-analysis and 
two systematic reviews. Zumel-Marne et al. identified three 
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studies that examined electric blanket use during pregnancy 
with non-significant associations with astrocytomas, medul-
loblastomas, and PNET (OR range: 1.2–2.02) [23]. Similar 
results were observed with electrically waterbeds [23].

Maternal occupational exposure to extremely low fre-
quency (ELF) radiation may be associated with risk of off-
spring cCNSt. Carpenter et al. identified two studies [81], 
which were included in Su et al.’s meta-analysis that reported 
maternal and paternal exposure to ELF-magnetic fields (MF) 
were associated with cCNSt (maternal OR: 1.16, 95% CI: 
1.06–1.26; paternal OR: 1.15, 95% CI: 0.98–1.34) [82].

Five systematic reviews were identified summarizing the 
literature on postnatal exposure to non-ionizing radiation 
and cCNSt risk. Zumel-Marne et al. [23] included seven 
studies, of which three had limited evidence of childhood 
exposure to ELF-MF affecting risk of cCNSt [83–85], two 
reported null findings of childhood use of electric blankets 
or heated waterbeds and cCNSt [86, 87], and two evaluated 
radiofrequency radiation (including mobile phone use) and 
reported elevated but non-significant risk of cCNSt [88, 89]. 
Buser et al. identified two additional studies that examined 
electric or magnetic fields in relation to cCNSt, and neither 
study reported an association [53]. In Roosli et al.’s system-
atic review, a study reported notable increases in cCNSt risk 
with wireless phone use < 20 years of age for astrocytoma; 
however, the incidence of astrocytoma, which has remained 
stable, does not match the higher prevalence of wireless 
phone use in children < 20 years old [90]. Overall, there is 
lacking evidence that postnatal exposure to non-ionizing 
radiation impacts cCNSt risk.

Pesticides

Pesticides contain a mixture of chemicals that may alter the 
developing brain and be carcinogenic [91, 92]. We identified 
six publications on pesticides and cCNSt risk, of which four 
examined prenatal exposure and six examined childhood 
exposure. For prenatal exposures, Quach et al. [20] identified 
a 2011 meta-analysis [93] that reported only paternal pre-
natal exposure was associated with cCNSt (OR: 1.49, 95% 
CI: 1.23–1.79). The three other studies were meta-analyses 
and reported significantly increased risk of cCNSt with any 
parental exposure (OR range: 1.31–1.73) [23, 94, 95]. Van 
Maele-Fabry et al. [94] reported prenatal residential pes-
ticide exposure increases glioma risk (OR: 1.31, 95% CI: 
1.08–1.59) but not embryonal tumors (OR:1.04, 95% CI: 
0.69–1.57). Elevated cCNSt risk was observed with prenatal 
exposure to herbicides (OR: 1.28, 95% CI: 0.97–1.70) and 
insecticides (OR: 1.26, 95% CI: 1.04–1.54) [95].

Childhood exposure to pesticides was associated with 
cCNSt (RR: 1.16, 95% CI: 1.01–1.32) as reviewed by 
Quach et al. [20] from a single meta-analysis [93]. Iqbal 
et  al. [96] identified three meta-analyses on residential 

pesticide exposure and offspring cCNSt and one meta-anal-
ysis on parental occupational exposure in their systematic 
review. There was an elevated risk with residential expo-
sure to pesticides but only two studies had significant esti-
mates (OR range: 1.11–1.35; most precise OR: 1.26, 95% 
CI: 1.10–1.45) [93, 97, 98], and one [99] had a null find-
ing with parental occupational exposure during childhood. 
Buser et al. [53] identified two studies in which exposure to 
crops, a proxy for pesticide exposure, was associated with 
cCNSt risk (OR: 1.22, 95% CI: 1.15–1.29) [100] and the 
other reported higher urinary levels of pyrethroids in chil-
dren with cCNSt [101] (4th vs 1st quartile OR: 3.60, 95% 
CI: 1.87–6.93) [53]. Finally, we identified two additional 
meta-analyses that reported significant risk with childhood 
exposure to pesticides and cCNSt (OR range: 1.31–1.34, 
most precise OR: 1.34, 95% CI: 1.15–1.56) [23, 95]. In 
summary, there is evidence that exposure to pesticides may 
increase risk of cCNSt, but the exposure mechanism, spe-
cific chemical(s), and susceptibility window is inconclusive.

Farm Residence and Exposures

In addition to pesticide exposures, living on a farm can 
expose parents and children to zoonotic viruses, bacteria, 
endotoxins, inorganic dust, and chemicals from fertiliz-
ers [102]. These exposures could be associated with risk 
of cCNSt if exposures to viruses and bacteria induces a 
stronger immune response or can increase risk if exposures 
cause DNA damage [102, 103]. Zumel-Marne et al. summa-
rized the literature on living on a farm and/or with farm ani-
mals and cCNSt risk and reported an elevated risk of cCNSt 
for offspring (OR: 1.17, 95% CI: 0.69–1.98) of mothers who 
lived on a farm during pregnancy [23]. Zumel-Marne et al. 
[23] found three studies reporting elevated risk of cCNSt 
with mothers’ contact with animals during pregnancy (OR 
range: 1.4–5.1; most precise OR: 1.4, 95% CI: 1.0–1.9) 
[104–106]. Zumel-Marne et al. [23] also meta-analyzed 
studies of living on a farm during childhood and cCNSt (OR: 
1.28, 95% CI: 0.98–1.68). Because living on a farm is linked 
to several exposures the literature on living on a farm and 
risk of cCNSt is inconclusive.

Parental Occupation

Occupational exposures may impact DNA and epigenet-
ics in sperm [107] or various molecular mechanism in the 
developing fetuses [52]. Zumel-Marne et al. [23] reviewed 
14 studies encompassing a range of parental occupations 
such as agricultural farming, aerospace activities, and 
health services in association with cCNSt. Studies differed 
by occupations included, how exposure was assessed, tim-
ing of exposure (i.e., before conception, during pregnancy, 
childhood), and parent. Because some studies have already 
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been included in the meta-analyses we have discussed herein 
(e.g., parental occupation to pesticides), we refer readers to 
the Zumel-Marne et al. [23] article for more details. Overall, 
findings for parental occupational exposure and cCNSt are 
inconclusive due variation across studies.

Discussion

While cCNSt are the most common solid malignancies diag-
nosed in children, there is limited evidence about their etiol-
ogy beyond genetic predisposition and radiation exposure, 
which we reported on herein. Other endogenous and exog-
enous factors that increase cCNSt risk included, increas-
ing maternal age, race/ethnicity, maternal meat intake dur-
ing pregnancy, increasing sibship size (may be associated 
with maternal age), high and very low birth weight, pater-
nal smoking and maternal passive smoke exposure during 
pregnancy, childhood ionizing radiation exposure, pesticide 
exposure (parental and childhood). Conversely, factors with 
strong evidence for reducing risk of cCNSt included folic 
acid supplementation during pregnancy, increasing birth 
order of the child, and the presence of allergic conditions 
during childhood. Conflicting reports were present for paren-
tal education, seasonality of birth, tap water contamination, 
air pollution, radon, and living on a farm.

Our umbrella review identified some limitations of the 
individual studies. First, cCNSt are highly heterogeneous in 
terms of their histological and molecular subtypes. Several 
individual studies performed analyses by histological sub-
types, when possible, but this approach is largely lacking 
due to sample size challenges and lack of data. As molecular 
subtypes are relatively recent categorizations, none of the 
publications reported associations by molecular subtypes. 
In order to understand the etiology of cCNSt, the field must 
evolve to consider such heterogeneity by not only histology, 
but molecular subtypes [108, 109]. As molecular subtypes 
are being used in the clinic for diagnosis and treatment, we 
strongly encourage such information be recorded by state 
cancer registries enabling researchers to assess this informa-
tion in their registry linkage studies of prenatal and demo-
graphic characteristics for cCNSt.

Second, exposure assessment methods in some of these 
studies were limited to linking residential addresses to area-
based exposure estimates, using data collected from regis-
tries, or asking parents to recall exposures. Novel molecu-
lar methods to assess exposures (e.g., metabolomics, DNA 
methylation risk scores) are available to objectively measure 
prenatal and childhood exposures in matrices like primary 
teeth and newborn dried blood spots [110]. Further, link-
ing risk factor information for exposures outlined herein to 
somatic mutational signatures in human cancers [69] may 
allow us to use not only survey or registry data but somatic 

data to understand etiologic heterogeneity. Third, cCNSt is 
more common in males than females. Environmental risk 
factors may vary by sex and should be investigated in strati-
fied analyses.

Future directions of research into risk factors for cCNSt 
should encompass both genomic and novel exposure assess-
ment methods. Studies without molecular subtype informa-
tion contribute to only incremental in progress in preven-
tion. This review highlights some intervenable pathways to 
reduce cCNSt risk such as maternal pregnancy folic acid 
supplementation, pesticide use reduction, and limited use of 
radiation in medical settings. While histologic and molecular 
diversity of cCNSt creates logistical challenges in conduct-
ing properly powered studies into etiologic heterogeneity, 
large consortia of researchers from around the world remain 
crucial in removing these barriers and moving us toward 
better epidemiologic knowledge of cCNSt risk factors and 
ultimately prevention.
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