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Abstract
Purpose of this review Alcohol-induced mortality has been increasing in the USA for over a decade, but whether increases 
are specific to particular birth cohorts remains inadequately understood, in part because estimating age–period–cohort (APC) 
models is methodologically controversial. The present study compares four different age–period–cohort models for alcohol-
induced death in the USA from 1999 to 2020.
Recent findings We utilized US vital statistics data from 1999 to 2020; alcohol-induced deaths included those fully attribut-
able to alcohol excluding poisoning. Age–period–cohort models included first derivatives, intrinsic estimator (IE), hierarchi-
cal APC, and Bayesian estimation. APC models were convergent in demonstrating that alcohol-induced death peak between 
age 45 and 60 in the USA. Models were also convergent in demonstrating a positive period effect, with deaths increasing 
across age groups particularly since 2010–2012. Models were divergent, however, in the presence and magnitude of cohort 
effects. The first derivative approach demonstrated that the peak positive cohort effect was for individuals born in the 1950s 
and peaking in the 1960s, which have higher risks of death across the lifecourse compared with other cohorts. This effect 
was less observable in other APC models. The IE model did not generate a cohort effect for those born in the 1950s–1960s, 
but did show a positive cohort effect for those born in the early to mid 1980s. Hierachical and Bayesian models also dem-
onstrated a positive cohort effect for those born in the late 1970s and early 1980s, birth cohorts who are beginning to enter 
the peak age of risk for alcohol-related deaths.
Summary Age–period–cohort models can provide useful quantitative framing in unpacking and understanding trends in 
alcohol-induced deaths, yet there are differences across methods in assumptions and modeling strategies, and thus some 
differences in results. First-derivative methods most closely approximated data visualizations and may provide the most 
robust statistical model of APC processes in alcohol-related death in the USA, especially given consistency with several 
other models. Comparison across methods is a critical strategy for triangulating evidence. Emerging evidence of a cohort 
effect for those born 1970s–1980s suggests an increased burden of alcohol-induced mortality as they enter the age band of 
highest risk in the next decade.

Keywords Alcohol · Age-period-cohort · Alcohol-related death · Time trend · United States

Introduction

Peak alcohol consumption was in 1981 at 2.76 gallons of 
ethanol per capita, and after almost two decades of decline, 
per capita consumption in the USA has increased from 2.15 
gallons per capita in 1998 to 2.38 gallons per capita 2019 
[1]. Increases in consumption are concentrated among US 
adults in mid-life [2], approximately age 30–45, and are 
especially apparent among women [3]. The consequences 
of increased consumption have a predictable increase in 
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alcohol-related deaths [4–7] Since 1999, deaths fully attrib-
utable to alcohol in the USA have increased by 51%, with 
faster increases among women than men, and with the 
majority of deaths due to liver disease and poisoning [4]. 
Deaths attributed to alcohol on death certificates underesti-
mate the total mortality in the US caused by alcohol, given 
under ascertainment, and the contribution of alcohol to inju-
ries, cardiovascular disease, cancer, and other major drivers 
of US mortality [8–10]. As such, it is critical to continue 
surveillance of these trends and implement interventions to 
reduce consumption.

Alcohol consumption and deaths induced by alcohol use 
differ substantially by age. Consumption and death have 
decreased substantially among adolescents and young adults 
[11], but accelerated during the transition to adulthood and 
in midlife [12, 13], and remained a central contributor to 
morbidity and mortality through the adult lifecourse [4, 14]. 
The variation in alcohol-related deaths by age, and the dif-
ferential variation in trends in death across time, suggests 
that there may be important age, period (temporal variation 
that is independent of age), and cohort (temporal variation 
that is age specific, i.e., an age-by-period interaction) effects 
in alcohol-related deaths, the identification of which can 
improve surveillance and intervention [15].

Understanding patterns of mortality by age, period, and 
cohort is critically important to surveillance efforts [16]. 
Variation in mortality rates over time are reflections of tem-
poral trends in causes of mortality, which may shift over 
time sufficiently to observe temporal variation [17]. In addi-
tion, the presence of strong birth cohort effects can obscure 
assessments of trends over time, even age-adjusted trends, 
given that birth cohort effects arise due to an interaction 
of age with time [18]. Further, the identification of at-risk 
cohorts implies that some groups have higher alcohol-attrib-
utable deaths through the lifecourse, and should be espe-
cially targeted for intervention and additional support. Such 
approaches have proven to be valuable for public health for 
other outcomes [19, 20].

Yet methodological assessments of age, period, and 
cohort effects, through age–period–cohort models, has 
been a source of controversy for decades [21, 22]. Consid-
ering mortality through age, period, and cohort perspec-
tives is at core a technique of data visualization [23], as 
it essentially involves a series of rates arrayed alongside a 
two- to three-dimensional space in which variation across 
time-related dimensions can be observed. Variation in the 
same series of rates can be equally attributed across age, 
period, and cohort when they are linearly aligned, because 
cohort = period − age. As such, modeling age, period, and 
cohort categories to generate estimates of the linear asso-
ciations between age, period, and cohort with any outcome, 
including mortality, are inevitably subject to numerous 
assumptions.

The inability to generate a model that assigns variation in 
linear effects of age, period, and cohort is termed “the iden-
tification problem” [24]. Throughout the past six decades, 
efforts to generate models of age, period, and cohort effects 
have focused on various aspects of the underlying data gen-
erating process, including non-linear variation [25, 26], vari-
ance and covariance matrix constraints [27, 28], mechanisms 
[29], multi-level nesting [30, 31], and other approaches [32, 
33]. Each provides one way to further visualize data, but 
inevitably requires assumptions that will privilege some 
aspect of the model and result in influence on study results 
(e.g., true period effects will be modeled as cohort effects, 
or vice versa, etc.). The assumptions required for model 
identification mean that for any particular outcome, we can, 
often do, obtain different results based on the model that 
we apply to it. Therefore, it is often recommended to have 
strong a priori or theoretical hypotheses and background 
information to inform modeling decisions when conducting 
age–period–cohort estimation.

In this paper, we present an overview of four different 
age–period–cohort models estimating alcohol-induced mor-
tality in the USA from 1999 through 2020 in order to compare 
and contrast the various modeling assumptions underlying 
each approach, and the resulting estimates. In doing so, we 
provide readers with a centralized guide to age–period–cohort 
models and assumptions that underlie them. Our data and 
code are available as an appendix to the paper (available at 
https:// github. com/ caror uth/ alcoh ol- apc. git).

Methods

We utilized US vital statistics data from 1999 to 2020. We 
focused on deaths from age 16 to 74; deaths outside of this 
range were sparse data and could be influenced by selective 
survival at the upper tail of the age distribution. Follow-
ing the approach of Shiels et al. [7], Spencer et al. [6], and 
Spilane [5], we included the following underlying cause of 
death ICD-10 code mortality from conditions that are fully 
attributable to alcohol: E24.4, alcohol-induced pseudo-
Cushing syndrome; F10.0, mental and behavioral disorders 
due to alcohol use, acute intoxication; G31.2, degeneration 
of nervous system due to alcohol; G62.1, alcoholic poly-
neuropathy; G72.1, alcoholic myopathy; I42.6, alcoholic 
cardiomyopathy; K29.2, alcoholic gastritis; K70, alcoholic 
liver disease; K85.2, alcohol-induced acute pancreatitis; 
K86.0, alcohol-induced chronic pancreatitis; R78.0, find-
ing of alcohol in blood. We did not include external cause 
codes in our analysis due to a major change in the coding of 
alcohol poisonings beginning with 2007 mortality data [34] 
that limited the utility of cross-year comparison.

Shown in Fig. 1 is the unadjusted age-specific alcohol-
induced death rates by year using this coding schema, 
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smoothed using LOESS regression. These mortality rates 
indicate a general increase over time, especially in 2020, 
and peaks of alcohol-induced death in approximately age 
45–65. We first present a method to array and visualize age, 
period, and cohort variation. We then present four different 
age–period–cohort models: first derivatives, intrinsic esti-
mator, hierarchical, and Bayesian APC. We present meth-
odological details of each model, and their results, together 
in order to provide a comprehensive overview of how 
age–period–cohort modeling generates results. The details 
of each model and key references are provided in Table 1.

Results

Data visualization of alcohol‑induced mortality in the 
USA The most central contribution of considering age, 
period, and cohort simultaneously when conceptualizing 
causes of variation in mortality or other health outcomes 
over time is through data visualization. Application of sta-
tistical models beyond data visualization often formalize 
(sometimes problematically) what we see visually when 
rates are arrayed in two and three dimensions. Numerous 
approaches to data visualization of age, period, and cohort 
effects have been developed and implemented across the 
literature, including basic two-dimensional descriptive 
approaches [23, 35, 47] to three-dimensional mapping and 
lexis surface visualizations and Lexis diagrams. We used 
the hexagonal visualization approach (hexmaps) developed 

by Jalal et al. [48] which visually arrays rates at equal 60° 
angles across age, period, and cohort axes. Results are 
shown in Fig. 2.

By age, the hexmaps indicate substantial age effects; 
across period and cohort, deaths peak in the mid-life, 
from approximately age 45 to 60 as indicated by color 
gradient with red the highest rates. We can see this in 
the hexmap, because the hexagons are in a lighter blue 
color at those ages for early periods, moving to yel-
lows, oranges, and reds in later period which is indic-
ative of higher rates in those age groups. The move-
ment from blue to yellow, to orange and red, however, 
is also indicative of a cohort effect that is visible on 
the hexmaps. The color of the hexagons become richly 
concentrated for certain cohorts; the increase in the 
cohort effect begins with those born in the late 1930s, 
and peaks among those born in approximately 1960s. 
Another cohort effect is emergent in this hexmap as 
well; for those younger cohorts born in the late 1970s 
and early 1980s, the lighter blue colors begin to emerge 
and descend vertically beginning after approximately 
2010–2012, indicating that increasingly younger age 
groups are evidencing higher rates of alcohol-induced 
mortality than their previous born cohorts. Note that 
younger cohorts are not yet in the peak age of alcohol-
induced death risk; the hexmaps indicate that deaths 
even before peak age are more rapidly accelerating than 
for cohorts at the same age in previous time periods.

Fig. 1  Unadjusted age-specific 
alcohol-induced death rates by 
period (year of data), smoothed 
using LOESS regression
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Fig. 2  Hexagonal visualization 
of alcohol-induced death rates 
in the USA from 1999 to 2020, 
across age (A), period (P), and 
cohort (C). Eeach hexagon 
represents the alcohol-induced 
mortality rate for a specific age 
group in a specific year. Equa-
tions for the center coordinates 
of each hexagon are calculated 
as x = p

√

3

2
 and y = a −

p

2
 where 

a = age and p = period
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Method 1: first‑derivative approach to the age–period–
cohort model All modeling strategies to attribute specific 
variation to age, period, and cohort effects involve a series of 
assumptions that are not necessarily based on the observed 
data, given that the linear effects of age, period, and cohort 
cannot be identified in the same model. Holford [17, 26] 
and others [35] have used an approach to handle the identi-
fication problem by first estimating linear effects of age as 
well as the general linear trend over time (not attributable to 
specific period or cohort effects). This general linear trend is 
termed “drift.” Then, the first derivatives of the drift param-
eter are fit to the model for which variation is attributable 
to period and cohort. Thus, this model essentially uses the 
non-linearity of the magnitude of change of overall tempo-
ral variation to assess the relative increase and decrease in 
linear variation over time that is associated with period and 
cohort. Model decisions can be maximized by assessing the 
change in model fit as the number of parameters in the model 
increases. For alcohol-induced deaths, model fit statistics, 
generated in the Epi package in R developed by Cartensen 
[36], are shown in Online Appendix Table 2.

The full age–period–cohort model provided the best 
fit to the data; we proceeded with generating estimates of 
age, period, and cohort effects for alcohol-induced deaths 
in these data, shown in Fig. 3. The age effect is graphed 
on the left axis per 100,000 population, and indicates that 
alcohol-induced deaths peak approximately age 45–60 in the 
USA. The next line is the cohort effect, which indicates that 
cohorts born approximately around 1960 (thus, in their 20 s 
in the 1980s during the peak per capita alcohol consumption 
in the USA in recent history) have higher alcohol-induced 
deaths compared with other cohorts, averaged across the 
lifespan. These estimates are rate ratios, and the axis for the 
rate ratios is on the right-hand axis of the graph. Finally, 
the period effect is the last line in the figure, and indicate 
that alcohol-induced deaths have been increasing across age 
and cohort relatively rapidly after approximately 2010–2012. 
In summary, these data indicate a substantial congruence 
with the descriptive data in Fig. 2, showing that alcohol-
induced deaths peak in middle age. Yet alcohol-related 
deaths are also increasing across age in the last decade as 
well (i.e., a period effect), and especially for those cohorts 

Fig. 3  Age (left line), period, cohort (middle line), and period 
(right line) effects on alcohol-induced mortality in the USA from 
1999 to 2020 as modeled by the first-derivative approach (model 
1). Age effects are depicted on the far left, and scale is on the left 
axis and expressed as the rate per 10,000 population. Cohort effects 

are depicted on the middle line, and scale is on the right axis and 
expressed as the risk ratio compared to a reference cohort (1960). 
Period effects are depicted as the far right line, and scale is on the 
right axis and expressed as the risk ratio compared to the reference 
period (2010)

166 Current Epidemiology Reports (2022) 9:161–174



1 3

born approximately around 1960, thus in the peak age of 
alcohol-related death in ~ 2005–2015 (i.e., a cohort effect).

While the first-derivative approach is a classical approach 
to APC estimation, limitations abound. The models can be 
sensitive to sparse data and outlier rates at both extremes of 
the cohort distribution, and interactions between age, period, 
and cohort cannot be readily or routinely incorporated. It 
also is currently parameterized only for some data types and 
distributions, and is most stable for rare outcomes.

Method 2: intrinsic estimator (IE) model Developed by Yang 
and colleagues [27, 37] and applied throughout the epide-
miological literature [49, 50], the IE is among a suite of APC 
methods that focus on using principal component regression 
analysis in order to identify unbiased constraints that can be 
placed on the model that do not affect parameter estimates 
of age, period, and cohort effects. In the IE formulation, 
parameter space of the age–period–cohort regression design 
matrix is decomposed into two additive components, one 
of which corresponds to the unique zero eigenvalue of the 

regression design matrix and is independent of the underly-
ing age, period, and cohort effects as it is only determined 
by the number of age groups and period groups. It is a fixed 
vector that does not affect parameter estimation, and this 
property makes it a suitable candidate for a constraint on 
model estimation. The parameter estimates for age, period, 
and cohort effects are then identified through the Moore–
Penrose generalized inverse [51].

For alcohol-induced deaths, results using the IE estimator 
are shown in Fig. 4. Results for age and period effects are 
consistent with the results from the first-derivative approach. 
Specifically, the age effect indicates a peak of alcohol-
related mortality around age 45–60, and a period effect 
indicating gradual increase across age in alcohol-induced 
deaths that begins accelerating around 2010–2012. However, 
the cohort effect is not consistent with the first-derivative 
approach. There is no peak in cohort deaths for those cohorts 
that have the highest mortality rate as observed visually in 
the hexmaps (those born in the 1950s and 1960s), and the 

Fig. 4  Age, period, and cohort effects on alcohol-induced mortality 
in the USA from 1999 to 2020, as modeled by the intrinsic estimator 
(IE) model (model 2). Each panel represents age (left panel), period 

(center panel), and cohort (right panel). Effect parameter estimates 
in each panel are identified through the Moore–Penrose generalized 
inverse
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model generates an estimate consistent with a major drop in 
alcohol-induced deaths for the youngest cohorts (who have 
not yet entered the central risk period for alcohol-induced 
alcohol-related deaths). There is a suggestion of a poten-
tial positive cohort effect for those born in the early to mid 
1980s, which is consistent with the emergent cohort effect 
for those born in the late 1970s and early 1980s observed 
in the hexmaps.

The intrinsic estimator, and aligned methods that reply on 
principal components for constraints, have been criticized in 
the literature as relying not only on unverifiable assumptions, 
but assumptions that become hidden in the model estima-
tion process [38–40]. Results can be especially biased when 
underlying true age, period, and cohort are linear, and the 
choice of model constraints still leads to non-unique solu-
tions that may impact the results. Given that the estimates of 
the cohort effect are not aligned with the visual graphs that 
we see in the hexmaps, the cohort effect estimates as esti-
mated by the IE model may indeed be biased, and attributing 
a residual age effect (i.e., that those in ages younger than 45 
have lower overall alcohol-induced deaths) to a cohort effect.

Method 3: hierarchical age–period–cohort model The hier-
archical age–period–cohort model purportedly resolves the 
identification problem by conceptualizing age, period, and 
cohort effects as two-level random effect models [24, 41]. In 
this model, age is most often conceptualized as an individ-
ual-level fixed effect, modeled as appropriate (e.g., catego-
rial, linear, quadratic, cubic, etc.). Period and birth cohort 
are modeled as intercept- or slope-varying cross-classified 
(i.e., non-nested) random effects. As such, one way to con-
ceptualize the multi-level APC model is to first envision an 
age distribution with respect to the outcome, and for the 
intercept of that age distribution, consider that entire distri-
bution as shifting across time and birth cohort. For the slope, 
consider the shape of the age distribution shifting across 
time and birth cohort [30]. Within the multi-level model, 
considering a random intercept cross-classified model, there 
are thus three error distributions with mean and standard 
deviation: the distribution of outcomes clustered with 
respect to time periods, the distribution of outcomes clus-
tered with respect to birth cohort, and the individual-level 
differences between observed and predicted outcome after 
accounting for mean differences by age. The nature of these 
distributions will differ based on the distributional assump-
tions made regarding the outcome. For alcohol-induced 
deaths, we assumed a Poisson-distributed outcome distribu-
tion with cross-classified random intercept effects for period 
and cohort. Age, period, and cohort were all included in the 
model as single-year categorical variables. The results are 
shown in Fig. 5. Similar to all other APC models, the peak of 
the age distribution for alcohol-induced deaths was approxi-
mately age 45–60. Period effects were remarkably similar 

to the IE estimator, with a gradual increase that accelerates 
around approximately 2010–2012, suggesting that there is a 
positive period effect in the past decade of alcohol-induced 
deaths that is independent of age. Cohort effects from the 
multi-level model indicate a positive cohort effect for those 
born in the early 1980s, as well as a suggestion of a cohort 
effect for those born in and around the 1960s, although not 
as strongly observed.

While the multi-level model has provided a useful ana-
lytic framework to estimate and visualize age, period, and 
cohort effects, there are limitations. In particular, Bell 
and colleagues [42, 43] and others [44] have critiqued the 
assumptions that underlie the multi-level age, period, cohort 
model as untenable. The multi-level model only models age 
as a fixed effect, which may apportion variance to random 
effects that may be inappropriate depending on the actual 
(unknowable) underlying data generating structure. This is 
especially true for linear or near-linear effects, and indicate 
that strong assumptions are needed for inference from the 
multi-level model. These assumptions are further stretched 
when the error terms for individual and period–cohort 
effects are assumed to be independent, which is unlikely for 
years and cohorts that are adjacent.

Method 4: Bayesian APC Rather than placing constraints on 
model parameters themselves as a solution to the identifica-
tion problem, the Bayesian approach to APC model achieves 
this through specifying prior probability distributions. For 
alcohol-induced deaths, we specified first-order autore-
gressive random walk smoothing priors for age, period, 
and cohort. The first-order differences of an effect are then 
restricted to zero to ensure the APC effects are identifiable. 
These first-order random walk priors assume a constant time 
trend rather than linear as with second-order random walk 
priors. Like the first-derivative approach to APC modelling, 
the Bayesian APC organizes population and mortality data 
on the Lexis diagram. Markov chain Monte Carlo simula-
tion methods are then used to estimate a hierarchical model 
with a binomial model in the first stage [45]. Results for 
this model are shown in Fig. 6. Once again, age effects peak 
around age 45–60 and we see a major increase in period 
effects around 2010–2012. The cohort effect displays a pat-
tern with two peaks, one for the cohorts born approximately 
around 1960 and the second, larger peak for the cohorts 
born in the early- to mid-1980s. Additional extensions to the 
Bayesian approach also recommend using published results 
and theoretical claims to clarify resolution to the identifica-
tion problem [46], as well as collecting primary data from a 
subject-area experts, to inform the prior distributions, which 
may be difficult to obtain. Bayesian models are sensitive to 
the choice of the prior distributions placed on parameters, 
and “non-informative” priors (such as random walks, as 
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specified by the models presented here) may have a bias if 
time trends are not constant.

Discussion

In the present analysis, we visualized age, period, and cohort 
variation in alcohol-induced deaths in the USA from 1999 
through 2020 and compared four models for estimating 
age–period–cohort effects. There was convergence as well 
as divergence across method in various associations. Meth-
ods were convergent in demonstrating that alcohol-induced 
deaths peak between age 45 and 60 in the USA, and that 
there is a positive period effect in the last decade, with accel-
erating deaths across age groups especially after 2010–2012. 
Models diverged in estimates of the cohort effect, however. 
The first-derivative approach detected that those born 
around the 1950s and 1960s had a higher rate of alcohol-
induced death compared to previous and later born cohorts, 

consistent with the hexmap visualizations. These people 
would be in their 20 s at the time of peak alcohol consump-
tion in the USA which was 1977–1986. This would also be 
consistent with the evidence that drinking pattens at younger 
ages increase the risk of developing an alcohol use disorder. 
Other methods produced estimates indicative of a cohort 
effect for those born in the late 1970s and early 1980s, which 
is also consistent, although to a lesser extent, in the data 
visualization. Nevertheless, the cohort effect for those born 
in the 1970s and 1980s, if true, is particularly concerning 
given that these cohorts are just entering the maximum age 
of risk for alcohol-induced deaths in the coming years. This 
last cohort would also have been in their 20 s around the 
period 1995–2000 which was a period of one of the low-
est per capita alcohol consumptions in since the 1970s [1]. 
In summary, age–period–cohort models can provide useful 
quantitative framing in unpacking and understanding trends 
in alcohol-induced deaths, yet there were differences across 
methods in assumptions and modeling strategies, and thus 

Fig. 5  Age, period, and cohort effects on alcohol-induced mortal-
ity in the USA from 1999 to 2020, as modeled by the hierarchical 
age–period–cohort model (model 3). Each panel represents age (left 
panel), period (center panel), and cohort (right panel). Effect param-

eter estimates in each panel are identified through a cross-classified 
random intercept model where period and cohort are cross-classified 
random effects and age is an individual-level fixed effect
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differences in results. First-derivative methods most closely 
approximated data visualizations and may provide the most 
robust statistical model of APC processes in alcohol-related 
death in the USA, especially given consistency with several 
other models.

The methodological and substantive literature on age, 
period, cohort estimation remains controversial, without 
explicit guidance on the specific methods to apply to spe-
cific types of data and questions. One reason why such con-
troversy remains is that there is still considerable ambigu-
ity on the conceptualization and operationalization of birth 
cohort as a social category or construct [52, 53]. Numerous 
sociological theories and analyses have positioned the role 
of birth cohorts as fundamentally cohesive to social and 
political experiences [54]. It is clearly meaningful to come 
of age and develop into adulthood in a time of war or peace, 
economic insecurity versus prosperity, and other broad 
population-level exposures. Such experiences shape world-
views, political party affiliations and participations, opportu-
nities, and resources in ways that Glen Elder describes as our 

“interconnected lives” as members of the same birth cohort 
[55, 56]. Health researchers have discussed birth cohort 
effects as “phenotypes,” positioning mortality autocorrela-
tions by birth cohort as potentially the result of early life 
exposures that result in variation in immunological markers 
of stress response and potentially driven by trends in pre-
natal nutrition [57]. Yet these different theories about the 
emergence of cohort effects as the intertwining of biologi-
cal and social also reflect the need for additional theorical 
development; cohort categorizations do not have distinct 
boundaries or markers, and it is unclear whether cohort is a 
“social class” like other demographic categories [54].

More broadly, there is concern that because different 
results can be obtained based on the modeling strategy used, 
it limits the usefulness of age–period–cohort models to pub-
lic health. Indeed, in the example of alcohol-induced death, 
based on the model used, we could conclude that the highest 
risk group is the oldest adults (IE model), currently mid-
dle-age adults (first-derivative approach), or young adults 
(hierarchical APC and Bayesian models). This would greatly 

Fig. 6  Age, period, and cohort effects on alcohol-induced mortality in 
the USA from 1999 to 2019, as modeled by the Bayesian age–period–
cohort model (model 4). Effects are estimated from posterior samples 

generated from a hierarchical model with a binomial model in the 
first-stage and first-order random walks as smoothing priors for the 
age, period, and cohort parameters
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impact the advice or recommendations that we as epidemi-
ologists provide to guide public health efforts in terms of 
messaging, outreach, and clinical support. While that may 
seem discouraging, it should also be noted that the validity 
of all scientific results are subject to the appropriateness of 
assumption of the statistical models that generate them. APC 
is not unique compared to any other area of health science, 
as long as we remember that all statistical models should 
be guided by theory and close examination of descriptive 
patterns before the selection of a model. In other areas of 
temporal trends, APC models may be much more closely 
aligned than we see here for alcohol-induced death; thus, it 
is not true in the absolute that APC models will generate dif-
ferent results. Rather, we note that it can occur; thus, model 
choice should be made carefully.

Cohort effects in alcohol-induced mortality documented 
here reflect trends in beverage consumption patterns and 
co-occurring morbidity and mortality in the USA. Cohort 
effect models suggest an increase in mortality for 1960s 
cohorts, and there are suggestive increases in some mod-
els for those born in the early 1980s. The reasons for the 
inconsistencies across models are due to how underlying 
variation is partitioned, as well as how relative effects are 
presented. That is, the models that demonstrate a stronger 
cohort effect for those born in the late 1970s and early 
1980s compared to those born in the 1960s may gener-
ate those associations because they are displaying rela-
tive increases rather than absolute; given that the cohorts 
born in the late 1970s and 1980s are younger, the relative 
increase in recent years is, on a multiplicative scale, higher 
than those in previous cohorts. However, caution should be 
taken in interpreting some results as they may be indicative 
of residual bias. In the IE estimate in particular, there was 
a strong negative cohort effect for those in the youngest 
cohorts, which could be indicative of residual confounding 
of the age effect, given that these young cohorts have not 
had sufficient lifecourse to generate estimates for appreci-
able alcohol-induced mortality.

The reasons for these increases may be distinct by cohort 
group. Increases in mortality due to injury among cohorts 
born around the 1960s are well documented, termed “deaths 
of despair” by Case and Deaton [14] and extending to out-
comes such as drug poisoning, suicide, and other alcohol-
related outcomes such as liver disease as well [58]. Among 
those born in the 1980s, however, available evidence has 
demonstrated clear cohort effects in heavy drinking for these 
cohorts [59, 60], especially among women, with higher lev-
els of consumption and binge drinking during the transi-
tion to adulthood and into mid-life [2] which may portend 
increased rates of alcohol-induced death given gender dif-
ferences in susceptibility to chronic effects of alcohol [61]. 
Indeed, per capita consumption has been increasing in the 
USA since approximately 1997–2000, which would fit the 

time period of when these cohorts (born in the early 1980s) 
would be accelerating their drinking during the transition 
to adulthood [1]. The reasons why these cohorts have accu-
mulated unique consumption patterns and comorbid mor-
tality outcomes remain under-investigated. The deaths of 
despair cohorts are associated with the declining robustness 
of middle-class earnings and status, and declining returns 
on education for the current cohorts of those in early and 
late middle age. Those born in the 1980s, on the other hand, 
especially women, are increasingly occupying higher sta-
tus positions and education [3, 62], and thus, increases in 
alcohol consumption may be linked to more discretionary 
leisure spending and fewer social sanctions on heavy drink-
ing. Long-term trends that contribute to changes over time in 
alcohol consumption, including the erosion of public health 
protections such as alcohol taxes [63], likely have contrib-
uted to the increases in consumption over time, coupled with 
concentration of advertising to women in middle age that 
may potentiate sale of alcohol to particular birth cohorts and 
contribute to risk.

Trends in alcohol-induced morality are the product of 
social factors that interact with alcohol consumption and 
vary across generations, given that alcohol availability, 
preferences, and norms are highly variable across gen-
eration, country, and social class [64, 65]. Substance use 
more generally has strong cohort effects, as each generation 
uses alcohol and other additive substances differently as 
information about health harms, access, and acceptability 
shift over time [66, 67]. For alcohol use, available evi-
dence indicates that cohorts born in the late 1970s and 
early 1980s have particularly heavy use of alcohol through-
out the lifecourse, which may be reflected in the emerging 
cohort as they enter the highest period for risk of alcohol-
related deaths. Further, per capita alcohol sales as well 
as self-reported alcohol consumption on national surveys 
has been increasing in recent years [1], especially among 
women, which coincides with the emerging period effect 
that is observed in several of the age–period–cohort models 
generated to account here for temporal patterns in alcohol-
related death.

In summary, age–period–cohort visualization and mod-
eling remains critical for surveillance and informing public 
health interventions; generally, modeling should be guided 
by data visualization given that the underlying assumptions 
of any one model are not verifiable. No age–period–cohort 
model will be appropriate in all circumstances; the choice 
should be based on the particular data structure and hypoth-
esis. For example, rare outcomes such as mortality may be 
better suited for the first-derivative or Bayesian approaches, 
rather than IE or hierarchical age–period–cohort model, 
unless cross-level interactions or mediation tests are indi-
cated or hypothesized. Hierarchical age–period–cohort mod-
els are flexible to a wide range of outcome distributions, 
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but are biased when age, period, and cohort effects are 
linear (as are other APC models); however, they may be 
the only model suitable for complex longitudinal structures 
(as described in this paper) or when mediation tests are 
indicated. We recommend always confirming results with 
multiple age–period–cohort models for a robustness check; 
when results diverge, they should be interpreted with more 
caution. Visually inspecting and understanding the descrip-
tive patterns of results remains a critical part of the APC 
modeling process and model selection decision; just like 
with any analysis, moving straight to a regression or other 
statistical model without fully understanding the descriptive 
nature of the trends over time can lead researchers astray.
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