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Abstract
Purpose of Review  In this paper, we review the linkage disequilibrium score regression (LDSR) statistical method for com-
puting correlation and shared heritability between complex polygenetic traits.
Recent Findings  Applications of the LDSR method have been prominent and wide ranging, building off the abundance 
of GWAS summary statistic data available both publicly and privately. LDSR has provided insight into the shared genetic 
architecture of many complex diseases, including anxiety disorders, psychiatric disorders, neurologic disorders, and many 
cancers including lung, breast, and pancreatic cancer. A recent HDL method development complements LDSR for more 
precise genetic correlation that estimates utilizing summary statistics with smaller sample sizes.
Summary  Genetic correlation analysis provides a powerful tool for rapidly studying many potential genetically influenced 
factors to identify novel host factors that influence disease development. The LDSR method is a useful and effective approach 
for determining the genetic correlation between traits. The method is computationally efficient and robust to some sources 
of spurious association.

Keywords  Linkage disequilibrium score regression · Genetic correlation · Shared heritability · Linkage · Genetic 
epidemiology · Cancer · GWAS

The Need for Genetic Correlation  Many human  
conditions and diseases are not single gene  
disorders but rather occur because of multifactorial 
biological processes [1]. For Mendelian-inherited 
diseases, understanding mutations that occur in 
a specific genetic sequence can fully explain the 
phenotypes observed in a human condition [2]. 
Examples of Mendelian-inherited diseases include 
sickle cell hemoglobinopathies [3], cystic fibrosis 
[4], and Duchenne muscular dystrophy [5]. Such 

direct mutation to phenotype relationships have made 
Mendelian disease processes easiest to diagnose, study, 
and develop treatments for their mitigation [6]. Such 
benefits are not afforded to polygenetic diseases, where 
multiple genetic regions are implicated in disease state 
progression [1]. The question arises—how do you 
study complex polygenetic diseases like lung cancer, 
bipolar disorder, or schizophrenia? Or, more broadly, 
what is the best way to understand complex human 
traits such intelligence, BMI, or genetically derived 
contributions to physical fitness? When a phenotype 
develops because of hundreds, or thousands, of small 
genetic effects scattered across the genome, it becomes 
challenging to investigate.

Approaches to studying polygenic traits have evolved [1]. 
Historically, multifactorial traits were studied with randomized 
controlled trials (RCT) and longitudinal studies [7]. In these 
efforts, cohorts were identified based on an exposure and fol-
lowed for a duration of time to observe outcome differences 
between the cohorts that may arise. This forward in time analy-
sis allowed for causal inferences to be made to help understand 
what exposures, or inherited traits, may cause a phenotype 
outcome of interest [8]. The longest active such studies is the 
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Framingham Heart study [9] which has been ongoing since 
1948. The study has been a success and has led insights on 
the effect of diet, exercise, and medications on the develop-
ment of hypertensive and arteriosclerotic heart disease [10]. In 
total, however, the study has cost $50 million and has required 
dedicated research personal oversight throughout its duration 
[11]. Cost and duration limitations prevent prospective RCT or 
longitudinal studies from being universally applicable, despite 
their utility. As a compromise, study methods have been devel-
oped to observe exposures and outcomes at a single time point, 
allowing for associative insights to be gained [7].

In 2000, the limitations of observational studies changed 
with the sequencing of the first human genome [12]. With 
increasing access to sequencing, a new concept could be 
applied to observational studies. As an individual’s geno-
types are set at conception, by also annotating genotype, a 
proxy of time could be reintroduced to observational studies. 
Studying the genetic differences between individuals and 
their trait outcomes allows for concurrent sampling, with an 
understanding that “genetics came first” [13]. To clarify, if 
genetic regions were associated with an outcome, then you 
could be confident that it was not the outcome that led to 
those genotypes being present, avoiding reverse causation 
biases [14]. The end-to-end total base pair count for the 23 
human chromosomes measures nearly 3 billion [15]. Despite 
year over year decreasing costs, full genome sequence-based 
association analysis remains untenable computationally and 
economically [16]. Instead, single nucleotide polymorphism 
genetic annotation or “SNP” genotyping occurs, where indi-
viduals are strategically sampled at ½–10 million base pair 
positions. The SNP are selected to serve as tags or prox-
ies that provide maximal information about nearby genetic 
variations. A single nucleotide polymorphism is a journaled 
substitution that occurs at a specific base pair in the genetic 
sequence [17]. With SNP genotyping, it became possible 
to measure effects occurring at millions of SNP sites [18] 
on the development of traits or human disease states with 
genome-wide association analysis (GWAS) [19]. Because 
of the low cost and high reliability of this clever analytical 
strategy, large numbers of samples could be queried, so that 
even small effects on risk could be identified.

While discovery of new variants influencing disease risk 
or trait variability has been a boon for understanding the 
genetic architecture of thousands of conditions, the avail-
ability of these scans has also supported novel strategies 
for evaluating similarities in the genetic architectures for 
multiple conditions. Conditions and traits could be geneti-
cally compared at genome-wide SNP sites for a compre-
hensive comparison of the shared genetic factors that may 
exist between two phenotypes. This concept of looking 
for shared trait genetics is known as “genetic correlation” 
and can be statistically measured to assess overall genetic 
similarity or differences between traits [20]. This method 

has proven highly fruitful for identifying sets of genetically 
similar conditions that may have similar causes. New metrics 
including “shared heritability” [21] of traits and compar-
ing genetic predisposition for trait development could be 
obtained through genetic correlation associative analysis [1]. 
Multiple methods for genetic correlations have been devel-
oped, including ones that look at individual level data, as 
well as ones that work on aggregated data or the “summary 
statistic” outputs from GWAS analysis [22]. In this paper, 
I will introduce the linkage disequilibrium score regression 
(LDSR) method [23••, 24••] to measure shared heritabil-
ity and genetic correlation between traits. I will discuss its 
statistical framework, advantages and disadvantages, major 
applications, and emerging methods resulting as a conse-
quence of LDSR in the field of genetic epidemiology.

Genome‑Wide Association Studies  The LDSR method uses 
GWAS summary statistics as input data [25]. In a GWAS 
[26], genetic variants across the whole genome are tested 
for association with a trait outcome of interest. The resulting 
per SNP effect estimates after GWAS analysis are reported 
and can be converted into SNP z-scores which we will be 
used in LDSR [27]. GWAS can be conducted on any reliably 
measured trait for which SNP sequencing has occurred. The 
trait studied can be binary, such as the “yes/no” outcome of 
lifetime development of lung adenocarcinoma. Traits stud-
ied with GWAS can also be quantitative, on a continuous 
scale, such as for an individuals measured body mass index 
(BMI). How association is tested for across the genome at 
each variant site changes given the type of the outcome. 
However, in general, an association test is performed at each 
SNP location across all participants in the GWAS, with and 
without the phenotype. If 11 million SNP are included in the 
GWAS, then an association testing is conducted 11 million 
times, once at each SNP variant, to determine if the allele 
ratios observed correlate with the expression of the studied 
phenotype. The output of these 11 million association tests 
is reported as the summary statistics of a GWAS.

In Fig. 1A–C, we present via visual abstract the method of 
obtaining z-scores for SNP measured for different traits. As a 
concrete example, we have included two large and publicly 
available GWAS consortiums and follow them throughout as 
an exemplary analysis. To demonstrate LDSR between two 
traits, we will introduce the TRICL-OncoArray Consortium 
[28, 29], which is the largest GWAS meta-analysis of lung 
cancer outcomes available to date. TRICL-OncoArray con-
ducted a GWAS on 29,266 lung cancers cases and 56,450 
non-cancer controls to identify SNP of interest related to 
lung oncogenesis. Additionally, we introduce and will fol-
low traits from the United Kingdom Biobank [30] (UKB), 
which obtained 500,000 + volunteers at 22 sites in the UK, 
measuring 400 + physical, biomarker, and lab-related “traits” 
and conducting GWAS for each to determine genetic regions 
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of interest. In our figure example, we will investigate the 
genetic correlation between the binary trait of “overall” lung 
cancer from TRICL-Oncoarray and the continuous trait of 
BMI from UKB.

SNP Association Testing  In Fig. 1B, we define how asso-
ciation tests differ regarding the outcome of interest. At 
any given location, a diallelic SNP can take three differ-
ent combinations: homozygous recessive, heterozygous, 
or homozygous dominant. When conducting GWAS on a 
binary outcome trait, an odds ratio is calculated at each SNP, 
measuring the odds of the trait outcome being present based 
on the number of alleles each study participant has given 
the trait outcome. Afterwards, one can view the summary 
statistic report from GWAS and quickly ascertain the odds 
of disease per SNP based on the number of a risk alleles that 
are present. A different approach is taken when performing 
SNP association tests for quantitative traits. Rather than con-
ducting an odds ratio, with quantitative traits, a regression 
is performed. The number of the “effect” or “risk” alleles is 
placed on the x axis (“CC,” “CT,” “TT”), and the quantita-
tive trait on the y axis, and a regression is performed. The 
beta value of the regression is reported as the per SNP effect 
estimate in GWAS summary statistics. Odds ratio and beta 
effect estimates can then be normalized to a directly com-
parable “z-score.” For binary traits or diseases, the log of 
the odds ratio, divided by the standard error of the estimate, 
is the corresponding per SNP z-score [27]. For quantita-
tive traits, a z-score is obtained simply by dividing the beta 
effect estimate by the standard error [27]. These z-scores 

ultimately will be multiplied across traits and will serve as 
the “dependent variable” in LDSR.

Linkage Disequilibrium Scoring  If the product of SNP 
z-scores across traits is the dependent variable in LDSR, 
what is the independent? The answer is the per SNP link-
age disequilibrium score, or LD score. Genetic “linkage” 
is a term used to describe inheritance patterns of genetic 
sequences [31] on a chromosome during gamete forma-
tion or “gametogeneis” [32]. Linkage is the consequence of 
meiosis during cell division, where sequences of DNA that 
are physically close to each other on a chromosome are more 
likely to be inherited together in the offspring [18]. Specifi-
cally, during prophase 1 of gametogenesis, “crossing over” 
occurs to introduce genetic variation in the offspring [33]. 
This is where sister chromosomes align and switch parallel 
genetic segments with each other, known as recombination 
[34]. The functional consequence of recombination is that 
genetic regions that are close in proximity to each other are 
less likely to be separated during recombination, and are 
thus “linked.” Genetic linkage can be quantified at each base 
pair position, describing this probability of separation of a 
SNP from its neighbor during crossing over as a “linkage 
score” [35]. A linkage score of “0” indicates “linkage equi-
librium,” implying statistical independence of an allele from 
a certain neighbor on the same chromosome [36]. When two 
loci are closely located, the probability that crossover will 
occur between alleles is low. Common causes for association 
of alleles at two different loci include bottlenecks, where 
limited numbers of individuals propagated communities, 
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chr rs number e.a. eaf beta se z # pop

1 rs2977608 A 0.264 -0.175 0.583 -0.300 3.795 51,453

1 rs12562034 A 0.115 0.229 0.200 1.145 1.748 51,453

1 rs7518545 A 0.109 -0.173 0.583 -0.297 1.999 51,453

1 rs115616822 A 0.010 0.001 0.009 0.111 2.783 51,453

1 rs112618790 T 0.074 0.006 0.009 0.667 2.635 51,453

1 rs143626389 A 0.027 0.014 0.010 1.400 4.116 51,453

1 rs72631888 C 0.013 -0.023 0.023 -1.000 2.587 51,453

1 rs4246504 A 0.015 -0.057 0.066 -0.864 8.403 51,453

1 rs72631889 T 0.030 0.000 0.012 0.000 6.396 51,453

1 rs71628924 C 0.031 0.004 0.008 0.500 0.982 51,453

h1
2h2

2
Genetic Correlation rg =

N is the sample size per study per SNP i
M is the total number of SNPs

i is LD Score per SNP i
g is genetic covariance
is intercept of regression

Shared Heritability h2 = E[z1z1]

Fig. 1   A graphical abstract annotating the workflow for conducting 
linkage disequilibrium score regression. In this figure, we include two 
exemplary consortia data, from the TRICL-OncoArray consortium 

and the UKB. The actual values in parts B and C provided are modi-
fied for teaching purposes
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migration among communities, and population expansion 
[37]. Population demographics have resulted in genome-
wide associations within human populations. Because SNP 
loci that are closely located are unlikely to experience cross-
overs, these associations have persisted. Moreover, crossover 
does not occur randomly in the genome but is facilitated by 
PRDM9 [38], a zinc finger protein that recognizes specific 
chromosomal positions. Because crossover is non-random, 
the human genome comprises sets of correlated alleles at 
different SNP that are called haplotype blocks. Interestingly, 
the sequences that PRDM9 recognizes for crossover vary 
between African and non-African populations [39]. Because 
of the older origins in African-descent populations and dif-
ferences in sites for recombination, haplotype blocks are 
smaller and may occur at different locations that are present 
in European-American descent populations [38]. Therefore, 
studying correlations in traits requires that African-descent 
and other populations are separately considered.

To assess overall linkage of a SNP with its neighbors, the 
LD score for a position can be calculated as a cumulative 
association metric indicating that alleles in the neighboring 
genomic sequence are inherited together more often in a 
study population than would be expected due to crossing 
over driven independence [36]. We will use LD score in the 
statistical measurement of genetic correlation between traits. 
Specifically, we will use LD score per SNP as the independ-
ent variable in a regression model. In Supplementary Fig. 1, 
we provide the full derivation for how to calculate the link-
age disequilibrium metric (r2) between a SNP and one of 
its neighbors. In brief, calculating the LD r2 value between 
two SNP occurs by looking at the allele frequencies and the 
haplotype frequencies at each SNP and seeing if a differ-
ence exists in their observed values other than what would 
be expected based on equilibrium level crossing over events 
[36]. To calculate a total LD score for a given SNP, then, 
one simply sums up all LD r2 values for the SNP with each 
of its neighbors in a predefined sampling “window” on the 
chromosome. Ultimately, we will use this LD score (sum 
of all neighbor LD r2 values) as the dependent variable in 
a regression. The LD score, acting as the independent vari-
able, serves to annotate and account for genetic homogene-
ity that exists only due to a lack of recombination (high LD 
score), and not due to significant association with a studied 
trait or outcome of interest [24••].

Summary Statistic Harmonization  Ultimately, the goal of 
LDSR is to measure a genetic correlation between two traits, 
which necessitates bringing together two, often independ-
ent, GWAS summary statistic files for joint analysis. To do 
this, “harmonization” steps must be conducted [27]. We 
have already mentioned the calculation of z-scores from 
odds ratios or beta effect estimates, to have the same unit 
of comparison. An important next consideration includes 

identifying the reference and effect alleles utilized per 
GWAS. It is common for a different reference allele to be 
used, leading to inversed effect estimates that will need to 
be corrected. Linkage between SNP can be exploited to 
maximize information available for LDSR method afford-
ing for the imputation of additional SNP for analysis. The 
long-term consequence of linkage disequilibrium evolu-
tionarily is that genetic regions, also known as haplotype 
blocks, are conserved within populations [40]. It is possible 
to use haplotype and genetic reference information to safely 
impute base pair information around directly observed SNP 
instances [41]. SNP imputation is routinely conducted in 
genetic correlation analysis [42, 43]. During harmoniza-
tion, it is a best practice [24••, 44] to identify an imputation 
quality threshold, such as conducted with an INFO score, 
and only use SNP from the two studies that meet a shared 
benchmark. Only including SNP with an INFO score greater 
than 0.9 is standard [45]. Additional harmonization proce-
dures include filtering SNP included to only those which 
exist in a suitable large reference panel, such as HapMap3 
[46]. SNP not included in HapMap3 can be removed, and 
the HapMap3 reference allele can additionally be used as 
the standard. It is also best practice to set a minor allele and 
maximal frequency threshold, such as 0.5 > MAF > 0.01, 
and remove SNP that do not meet the criteria between the 
two datasets [47, 48]. Finally, LD scores either need to be 
calculated or appended to your GWAS summary statistics. 
Given the study population of origin, linkage disequilibrium 
scores can directly be annotated from a suitable reference. In 
our example of using TRICL-OncoArray consortium and the 
UKB, these studies are in individuals of European ancestry 
samples. Precomputed LD scores from a suitable dataset, 
such as the 1000 genomes European ancestry samples [49], 
may be obtained and joined to these summary statistic data. 
The related LDSR package has software to assist with these 
steps, and an annotated GitHub “wiki” page which can assist 
in incorporating suitable reference panels [50]. In Table 1, 
we have included example output after GWAS summary 
statistic harmonization for one of our example datasets that 
TRICL-OncoArray lung cancer. Once the summary statistics 
are harmonized, they have SNP-based LD scores as well 
z-scores as can be observed in Fig. 1C.

Linkage Disequilibrium Score Regression  We have now dis-
cussed all the relevant pieces to conduct LDSR. To obtain 
the genetic correlation between two traits, such as overall 
lung cancer and BMI, you first calculate genetic covariance. 
Genetic covariance is obtained as the slope of the regression 
of the product of SNP z-scores against the per SNP linkage 
disequilibrium score for two traits using post-GWAS sum-
mary statistics. This is a slight simplification as in reality, the 
linkage disequilibrium score, which serves as the independ-
ent variable of the regression is normalized by the sample 
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sizes of the GWAS studies being used, as well as the total 
number of SNP being included in the analysis [24••]. The 
LDSR regression equation slope, or genetic covariance, can 
be viewed in Fig. 1D. With a second normalization step, this 
genetic covariance estimate can be modified to a genetic cor-
relation estimate by dividing the genetic covariance by the 
square root, of the product squared heritability of each indi-
vidual trait [24••]. The heritability of a trait can be thought 
of as the amount of variance observed in a trait that can be 
explained through genetics [21]. In general, it is calculated 
in the same way as genetic covariance (Fig. 1D), however 
for the dependent variable, is the z-score of the trait squared, 
rather than the product of the z-scores per SNP between two 
traits [51]. To be precise, then, the heritability we estimate 
as part of the LDSR method is the proportion of the variance 
in a trait that can be explained by SNP which have been fil-
tered down to be in common with the LD score standardized 
reference [52]. Dividing the genetic covariance between two 
traits by the square root of their product squared individual 
heritabilities yields the estimate of cross-trait genetic cor-
relation [24••]. In conclusion then, we can calculate genetic 
correlation by normalizing the genetic covariance by each 
trait’s heritability [53]. These equations can be viewed in 
Fig. 1D.

In reality, the actual package implementation of LDSR 
is a little more complicated than a simple regression. SNP 
utilized in GWAS that have high LD scores may be cor-
related with each other, which could inflate genetic corre-
lation estimates inappropriately. Spurious association also 
could arise as a result of E[z1z2] of SNP with high LD scores 
having higher variance than with low LD scores, known as 
heteroscedasticity. The full LDSR method accounts for these 
concerns by performing a weighted regression. Specifically, 
LDSR utilizes variable SNP weighting, adding an additional 
weight term of heteroscedasticity/LD score per SNP. During 
model fitting, SNP weights are correspondingly increased 
based on their heteroscedasticity and decreased by their LD 

score to mitigate these concerns [24••]. A second concern 
for the LDSR exists regarding the upward or downward 
“pull” that large E[z1z2] would have on the regression slope 
(ρg) and intercept terms. A few extremely large SNP E[z1z2] 
outliers could greatly increase final genetic correlation esti-
mates between two traits. The solution that LDSR takes to 
avoid this problem is to perform two sequential weighted 
regressions [24••]. First, a weighted regression is performed 
with large E[z1z2] removed. This first regression is used 
to identify the regression intercept, without large E[z1z2] 
bias. The intercept from this first regression is captured 
and fixed as a constant in a second, subsequent regression 
where all E[z1z2] are used. The slope of the second regres-
sion then serves to estimate the genetic correlation between 
two traits, not skewed by disproportionately large E[z1z2]. 
A full discussion of conducting LDSR [54], including file 
formats, preprocessing steps, and troubleshooting, can be 
found online [55]. For your reference, we have included 
Table 2 an example of the output that is created when using 
the LDSR method. Following the example initiated earlier, 
Table 2 presents the output from comparing overall lung 
cancer from the TRICL-OncoArray Consortium to BMI and 
fitness related traits.

Advantages of LDSR  When conducting GWAS population 
stratification [56] and cryptic heritability [57], both have 
the potential to inflate per SNP effect estimates. Population 
stratification occurs when similarities in allele frequencies 
exist within subpopulations of a study due to non-random 
mating within population subgroups [56]. Cryptic heritabil-
ity occurs when individuals in cohort are related to each 
other [57]. However, LD score not z-scores is the independ-
ent variable in LDSR [24••]. While population stratification 
[58] and cryptic heritability may inflate z-scores, they will 
have no effect on LD term [24••]. Instead, the inflation from 
these confounding biases gets captured as part of the inter-
cept term of the regression. The LDSR intercept (minus one) 

Table 1   Example summary statistic output from GWAS summary statistics. This excerpt is  taken from a GWAS of overall lung cancer, con-
ducted and made available by the TRICL-OncoArray consortium

chr:pos rs number CHR Position Refer-
ence 
allele

Effect allele EAF OR Std error P value N study N cases N controls

1:768,253 rs2977608 1 768,253 C A 0.263621 0.972829 0.018705 0.140837 7 25,252 51,026
1:768,448 rs12562034 1 768,448 G A 0.115154 0.991593 0.024271 0.72795 7 25,252 51,026
1:769,963 rs7518545 1 769,963 G A 0.109147 0.992248 0.025075 0.756273 7 25,252 51,026
1:773,106 rs115616822 1 773,106 G A 0.010418 1.0525 0.087128 0.55702 6 24,118 50,077
1:777,232 rs112618790 1 777,232 C T 0.073764 0.980984 0.033359 0.564932 7 25,102 51,047
1:823,790 rs143626389 1 823,790 G A 0.027093 0.952242 0.053516 0.360495 6 24,118 50,077
1:837,214 rs72631888 1 837,214 G C 0.013284 1.030088 0.071702 0.679282 6 24,118 50,077
1:848,223 rs4246504 1 848,223 G A 0.015336 0.964539 0.06255 0.563794 6 24,118 50,077
1:851,390 rs72631889 1 851,390 G T 0.030402 0.969281 0.0494 0.527662 6 24,118 50,077
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can be used to estimate the contributions that population 
stratification and cryptic relatedness have on genetic covari-
ance estimates [24••]. Thus, the LDSR method is robust and 
mostly mitigates inflation in associations otherwise expected 
by these two GWAS confounding study variables [24••]. 
Another advantage of LDSR is that it estimates genetic cor-
relation from summary statistic data from GWAS, not the 
individual level data used to conduct the GWAS originally. 
This is helpful as many GWAS summary statistic data files 
are made publicly available online, while the individual 
data is not. This has positioned the LDSR method to be 
widely incorporated, drawing meaningful insight from the 
vast amount of available trait-specific GWAS results [59]. 
Finally, LDSR is computationally very efficient [24••]. The 
only inputs for LDSR are summary statistic files, as well as 
precomputed LD scores per chromosome. The method itera-
tively conducts weighted regressions on these data. Using a 
MacBook Pro with 2.6 GHz 6-core Intel Core i7 and 16 GB 
of 2400 MHz DDR4 onboard memory, it takes roughly 12 s 
to conduct LDSR between two traits after all files are prop-
erly formatted and this script is executed.

Disadvantages of LDSR  LDSR is limited by the quality of 
underlying GWAS it incorporates [60]. Oftentimes, GWAS 
occurs in volunteers and a healthy volunteer bias may exist 
[61]. Thus, heritability estimates measured with LDSR of 
traits may not reflect a general population. Furthermore, her-
itability estimates are highly influenced by the robustness 
and consistency of the trait’s measurement [52]. Increasing 

the variability by which a trait is measured will decrease the 
heritability estimate as a result [62]. This fact is part of what 
explains why anthropomorphic traits (height, weight, etc.) 
demonstrate consistent and high heritability—they are both 
very heritable but also very accurately measured routinely 
[63]. The power to detect genetic correlation or measure 
trait heritability with LDSR will be directly influenced by 
how well that trait is routinely captured in your underlying 
GWAS [64]. Diving further, as LDSR is calculated using 
GWAS summary statistics, it does not have access to indi-
vidual level data [65]. To achieve the same standard error 
estimates with summary statistic data, we need a much 
larger sample size than would be necessary when working 
with individual participant genotype level date. As a rough 
guide, it has been proposed that LDSR can only meaning-
fully be performed if the underlying GWAS sample sizes 
have enough power to detect a h2 of ≥ 0.2 [65]. In practice, 
this corresponds to needing an underlying GWAS trait sam-
ple size of at least 4500 individuals to have 80% power to 
detect h2 equal to 0.2 with nominal significance [65]. Addi-
tional limitations include the need for reference LD scores, 
limiting LDSR use from being applied to GWAS of recently 
admixed populations [61]. This often this leads to European 
only analysis.

Aside from intrinsic methodological limitations, we feel 
that some anecdotal observations are also worth noting. Due 
to the computational efficiency with which LDSR oper-
ates, the method is attractive for large multi-trait screening. 
It is not uncommon to compare hundreds of traits with a 

Table 2   Example LDSR 
output from genetic correlation 
analysis between TRICL-
OncoArray lung cancer 
outcomes with UKBB fitness-
related traits. Full comparative 
analysis published in Pettit et al. 
2021. UKB trait names are in 
bold. “rg” stands for pairwise 
genetic correlation. “se” stands 
for standard error of rg. “z” 
stands for z-score for rg. “p” 
stands for p-value for rg. “h2 
obs” stands for observed scale 
heritability for trait. “h2 obs 
se” stands for standard error 
of observed scale heritability 
for trait. “h2 int” stands for 
single-trait ld score regression 
intercept for trait. “h2 int se” 
stands for standard error of 
single-trait ld score regression 
intercept for trait. “gcov int” 
stands for cross-trait ld score 
regression intercept. “gcov int 
se” stands for standard error of 
cross-trait ld score regression 
intercept

rg se z p h2 h2 se h2 int h2 int se gcov int gcov int se

Body mass index
   Lung cancer 0.20 0.03 5.96 2.61E-09 0.25 0.01 1.07 0.02 0.01 0.01
   Adenocarcinoma 0.10 0.04 2.75 5.91E-03 0.25 0.01 1.07 0.02 0.00 0.01
   Small cell 0.24 0.05 5.09 3.54E-07 0.25 0.01 1.07 0.02 0.02 0.01
   Squamous cell 0.27 0.04 6.11 9.91E-10 0.25 0.01 1.07 0.02 0.01 0.01

Body fat percentage
   Lung cancer 0.17 0.03 4.99 6.11E-07 0.23 0.01 1.07 0.02 0.01 0.01
   Adenocarcinoma 0.07 0.04 1.82 6.95E-02 0.22 0.01 1.07 0.02 0.01 0.01
   Small cell 0.21 0.04 4.74 2.13E-06 0.22 0.01 1.07 0.02 0.02 0.01
   Squamous cell 0.23 0.04 5.21 1.85E-07 0.22 0.01 1.07 0.02 0.01 0.01

Waist circumference
   Lung cancer 0.19 0.03 5.59 2.27E-08 0.20 0.01 1.06 0.02 0.01 0.01
   Adenocarcinoma 0.09 0.04 2.44 1.48E-02 0.20 0.01 1.06 0.02 0.00 0.01
   Small cell 0.21 0.05 4.54 5.56E-06 0.20 0.01 1.06 0.02 0.02 0.01
   Squamous cell 0.27 0.05 5.98 2.23E-09 0.20 0.01 1.06 0.02 0.00 0.01

Weight
   Lung cancer 0.14 0.03 4.30 1.68E-05 0.26 0.01 1.09 0.02 0.01 0.01
   Adenocarcinoma 0.06 0.04 1.57 1.16E-01 0.26 0.01 1.08 0.02 0.00 0.01
   Small cell 0.18 0.04 4.16 3.14E-05 0.26 0.01 1.09 0.02 0.02 0.01
   Squamous cell 0.22 0.04 5.07 4.04E-07 0.26 0.01 1.09 0.02 0.01 0.01
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potential outcome of interest to check for genetic correlation 
and shared heritability [66]. The literature has examples of 
both reporting of nominal and adjusted p significance val-
ues to account for multiple comparisons testing [67]. While 
either is acceptable if explicitly notated, it is best practice 
to provide a Bonferroni adjusted p-values when reporting 
significance of trait genetic correlations to account for all 
comparisons made during the study investigation [22, 67]. 
As mentioned, these shared heritability estimates are limited 
to the information captured in the underlying SNP-based 
genotyping methods [21]. A final, and important, limita-
tion of LDSR is that it only compares the genetics of two 
traits, but does not capture potential confounding, mediat-
ing, or colliding effects that additional traits may have on 
two phenotypes being studied. Collider bias, which occurs 
from unforeseen study conditioning or selection by a third 
trait, can lead to apparent strong genetic correlation results 
when truly none exists [68, 69]. Mitigating such biases is a 
capability of multivariate Mendelian randomization methods 
[70] that is not yet developed at the summary statistic level 
for complex polygenic traits and LDSR genetic correlation 
analysis.

Applications of LDSR  The LDSR method has been widely 
applied, capitalizing on the ever increasing publicly avail-
able GWAS summary statistic information that are published 
for complex traits. Examples of GWAS meta-analyses for 
polygenic traits for which LDSR can and have been applied 
include addressing anxiety disorders [71], PTSD [72], psy-
chiatric disorders including attention-deficit/hyperactiv-
ity disorder [73], schizophrenia/bipolar [74], autism [75], 
neurologic disorders [76], educational attainment [77], 
acne [78], and many cancers including the lung [29], breast 
[79], and pancreas [80]. A full listing of available GWAS 
for analysis can be found in the NHGRI-EBI catalogue of 
published GWAS [81]. These disease-specific resources are 
ripe for pairing with biobanks and public consortia of gene-
trait phenotypic modeling. A prominent example resource 
includes the UKB [30, 82]. Preprocessed UKB trait sum-
mary statistic files can be downloaded [83] directly from the 
Neale lab. A US counterpart, the All of Us study is building 
a 1,000,000-volunteer consortium combining genetic and 
phenotypic data [84]. As of the spring of 2022, the All of Us 
data has 340,000 samples and 450,000 participants [84] and 
is in the beta phase of testing with some research applica-
tions available. An additional resource is the Million Veteran 
Program [85, 86] which capitalizes on large Veterans Affairs 
healthcare system in the USA which already has a few prom-
inent examples [87, 88] of utilization. Increasing access to 
privately held sequencing data for traits is emerging, and 
LDSR studies are being conducted utilizing 23andMe data 
[89, 90]. Stand-alone websites to guide implementation and 
use of LDSR exist, with LDhub [91] demonstrating notable 

ease of use [92]. With burgeoning resources, it is not surpris-
ing that in the last year, we have gained novel insight into 
the shared genetic architectures of the placenta [93], obe-
sity [94], polycystic ovary syndrome [94], cross-population 
associations [95], hypertrophic and dilated cardiomyopathies 
[96], carpal tunnel syndrome [97], osteoarthritis [98], and 
others with LDSR.

Emerging Methods and Future Directions  A recent method 
improves upon LDSR through increasingly precise, and with 
less variance, genetic correlation estimations between two 
traits. The high-definition likelihood inference of genetic 
correlations, or HDL [99] method, was published in 2020 
[99]. HDL produces congruent genetic correlation estimates 
as conducted by LDSR. However, by more fully accounting 
for LD across the genome, the HDL method is able to reduce 
the variance of genetic correlation estimates by 60%, which 
otherwise could only be accomplished by doubling underly-
ing GWAS sample sizes with LDSR. Overall, the method is 
more computationally intensive, and with the same compu-
tational platform previously described, it takes roughly four 
minutes to compute genetic correlations between traits. This 
modest increase in processing time may make the method 
overall less attractive for large multi trait scans; however, 
its increased ability to measure significant correlation with 
smaller GWAS samples will ensure its future adoption. HDL 
will serve as an excellent method to confirm or rule out 
genetic correlation associations identified with LDSR that 
may be of borderline significance due to LDSR limitations. 
For a full introduction to the HDL method, we refer you to 
the original paper [99], and GitHub “wiki” page [100] for 
accessing the computational tool.

Finally, it would be interesting to understand the genetic 
correlation that exists between traits independent of poten-
tial third trait confounding. Finishing out our example, it 
would be interesting if an LDSR method could determine 
the genetic correlation between BMI and lung cancer inde-
pendent of the effects of smoking. There is room for method 
development of a multi-trait linkage disequilibrium score 
regression, which could work with summary statistics and 
produce contingent genetic correlation estimates to remove 
or partially mitigate the effects that may exist with other 
related traits. In general, these and other future develop-
ments of LDSR will be most useful for traits that are poly-
genic. For traits or disease processes where a handful of 
significant SNP can describe the large amount proportion of 
heritability of the trait, then Mendelian randomization [101] 
and related methods [102] are more useful for modeling trait 
relationships. While this type of multi-trait modeling can be 
conducted with Mendelian randomization for strong SNP 
derived traits [101], no methods exist for genetic correlation 
analysis with complex traits to conduct such contingency 
analysis using summary statistic GWAS data. Despite these 
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avenues for future investigation, LDSR will continue to have 
substantial utility for estimating heritability and for gaining 
novel insight into understanding complex polygenic trait 
relationships.
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