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Abstract
Purpose of the Review  The goal of this review is to highlight emerging biomarker research by the key phases of the cancer 
continuum and outline the methodological considerations for biomarker application.
Recent Findings  While biomarkers have an established role in targeted therapy and, to some extent, disease monitoring, 
their role in early detection and survivorship remains to be elucidated. With the advent of omics technology, the discovery 
of biomarkers has been accelerated exponentially, therefore careful consideration to ensure an unbiased study design and 
robust validity is crucial.
Summary  The rigor of biomarker research holds the key to the success of precision health care. The potential clinical utility 
and the feasibility of implementation should be central to future biomarker research study design.
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Introduction

With the era of multi-omics technologies blooming in the 
last two decades, precision medicine, a term that started to 
gain momentum with the US Institute of Medicine’s National 
Research Council Report in 2011 [1], is now within sight. 
Initially narrowly defined as targeted treatments, the con-
cept of precision medicine now includes tailored health care 
more broadly, based on an individual’s risk profiles, includ-
ing exposure history and/or molecular characterizations. 
There are international efforts underway to build genomic 
databases and infrastructure linkable with electronic medical 
records in the UK, France, and other countries to facilitate 

population-based precision health care [2, 3]. In particular, 
early detection and optimal management for cancer patients 
across the cancer continuum using the precision medicine 
approach have garnered substantial attention due to the con-
tinued high burden of disease and poor prognosis of most 
cancers either as years or quality of life lost after cancer 
diagnosis [4].

The promise of precision medicine heavily relies on the 
ability to accurately classify individuals into precise sub-
groups to be targeted for early detection or optimal disease 
management. While there are many different factors that can 
impact realizing the potential of precision medicine, without 
a doubt, reliable and validated biomarkers are the foundation 
needed to ensure its success. There has been a wide range 
of biomarker discovery and validation work, for various 
purposes across the cancer continuum, including exposure 
assessment, early detection, clinical management (e.g., treat-
ment selection), and survivorship. With cancer as the disease 
model, in this review, we outline the application of emerg-
ing biomarkers with examples along the cancer continuum. 
Figure 1 illustrates the utility of biomarkers in each of the 
key phases in the cancer continuum. Examples of emerging 
biomarkers are described in the following sections, followed 
by the methodological challenges and considerations.
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Biomarkers for Susceptibility and Exposures

It is widely accepted that carcinogenesis is a multi-
factorial process, which often involves both intrinsic 
susceptibility and extrinsic exposures, as well as accu-
mulations of somatic mutations that ultimately initiate 
tumorigenesis.

Intrinsic susceptibility is determined by inherited 
genomes, the variations of which range from rare muta-
tions that cause familial syndromes to common sequence 
variations. While rare mutations have higher penetrance 
and larger effect sizes, they only account for a limited 
fraction of heritability for most complex diseases such as 
cancer [5]. To capture the individual susceptibility repre-
sented by sequence variations, including both common and 
rare variants, polygenic risk scores (PRS), as the sum of 
the risk alleles weighted by their effect sizes, are the cur-
rent mainstream approach [6]. The application of PRS fol-
lowing genome-wide discovery and rigorous validation has 
shown some successes for risk prediction of several cancer 
sites, such as breast, prostate, and lung cancer [7–9]. PRS 

are now being incorporated into risk prediction models 
used to assess absolute risk trajectory in a defined time 
window (for example, 5-year risk), which could potentially 
have clinical implications regarding screening eligibility 
[8, 10]. While the National Comprehensive Cancer Net-
work currently does not recommend the routine use of 
PRS outside of clinical trials [11], in recognition of the 
rapid advances in PRS research for complex diseases, the 
International Common Disease Alliance (ICDA) outlined 
the considerations for responsible use of PRS in the clinic, 
potential benefits, harms, and possible mitigation strategy 
[12].

Extrinsic exposures can be measured in various sources 
of biospecimens, including peripheral blood, saliva, 
urine, and sputum, depending on the target molecules. 
For example, it has long been established that tobacco-
specific carcinogens such as 4-(methylnitrosamino)-1-
(3-pyridyl)-1-butanol (NNAL) can be measured in urine 
samples with a half-life of around 10–45 days, while many 
other metabolites have shorter half-life and tend to rep-
resent only recent exposures [13]. A recent multi-ethnic 

Fig. 1   Biomarker applications across the cancer continuum. Abbre-
viations: AFP, α-fetoprotein; AhRR, aryl-hydrocarbon receptor repres-
sor; BRCA​, breast cancer gene; CA125, cancer antigen 125; CA19-9, 
carbohydrate antigen 19–9; CRC, colorectal cancer; cfDNA, cell-

free DNA; ctDNA, circulating tumor DNA; CTC, circulating tumor 
cell; EGFR, epidermal growth factor receptor; ER, estrogen receptor; 
HLA, human leukocyte antigen; HPV, human papillomavirus; PSA, 
prostate-specific antigen; SEP9, septin 9; PR, progesterone receptor
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prospective study based on total nicotine equivalents 
(TNE), a sum of nicotine and its major metabolites, shows 
that the nicotine uptake may partially explain the differ-
ence in lung cancer risk across racial groups while con-
suming similar levels of cigarettes, although their rapid 
metabolism remains to be the main challenge [14]. On 
the other hand, there is growing literature that demon-
strates that aryl-hydrocarbon receptor repressor (AhRR) 
hypomethylation measured in peripheral blood is a robust 
biomarker for long-term tobacco smoking history, exhib-
iting a strong dose–response relationship with intensity, 
duration, and time since quitting, which has been repli-
cated in independent studies, including multiple racial 
groups [15–17]. AhRR hypomethylation has been shown 
to predict smoking-related morbidity and morality after 
adjusting for self-reported smoking history in multiple 
prospective cohorts [18, 19], although its clinical util-
ity remains to be determined. Exposures to specific car-
cinogens (e.g., tobacco, aflatoxin, and ultraviolet light 
exposure) can also be identified based on the somatic 
mutation signatures. This information is informative for 
understanding carcinogenesis but not applicable for risk 
assessment due to the need for tumor tissues [20].

Another prominent example of a biomarker for extrin-
sic exposure to cancer risk is the detection of the onco-
genic human papillomavirus (HPV), which is considered 
a necessary cause of cervical cancer and substantially 
increases the risk for oropharyngeal cancer (OPC) [21]. 
For cervical cancer, the standard test includes the HPV 
DNA test in conjunction with the Pap test. For OPC, it has 
been shown that HPV 16 E6 antibody can be detected in 
serum samples more than 10 years prior to cancer diag-
nosis [22]. While it is associated with an almost 100-fold 
increase in oropharyngeal cancer risk, the low incidence 
of OPC in the general population and the associated low 
positive predictive values pose challenges in using it as 
a population-wide screening tool [23]. However, a risk 
prediction model that specifically assesses absolute risks 
in the defined time window can help to determine the 
actionability depending on the individual’s risk profile. 
In addition, the recent development of HPV-seq aiming 
to detect circulating HPV DNA may further enhance the 
possibility of early detection of HPV-related cancers [24], 
although its validation in pre-diagnostic samples will be 
required.

An alternative approach of determine the extrin-
sic exposures is metabolomics, an untargeted approach 
to analyzing hundreds or thousands of small molecu-
lar metabolites by their chemical properties or atomic 
weights. A comprehensive review of metabolomics in 
cancer research was recently published, thus not included 
here [25].

Biomarkers for Early Detection

With mortality rates remaining high for many cancer types, 
early detection holds the key to improving cancer survival. 
Cancer screening programs for lung, breast, cervical, and 
colorectal cancers have been shown to reduce mortality sub-
stantially [26]. Current guidelines are typically based on age 
and smoking history (lung) and modified by family history 
(breast). Development and validation of risk prediction mod-
els based on individual’s medical history has been a very 
active area of research, and there is growing evidence that 
well-validated risk models can improve screening efficiency 
[27]. However, the role of biomarkers for early detection 
still has a long way to go. Biomarker tests that are clinically 
available, such as SEPT9 methylation for colorectal cancer 
or prostate-specific-antigen (PSA), either lack sensitivity 
(former) or specificity (latter) [28].

Liquid biopsy aims to detect circulating tumor cells (CTC) 
or tumor-derived materials from blood or other bodily fluids, 
as a potential biomarker for the early detection of cancers 
[29, 30]. In particular, research on circulating cell-free DNA 
(cfDNA), short fragments of DNA of about 150 to 200 base 
pairs in length released into the circulation through tumor 
apoptosis or necrosis, has gained momentum in recent years 
[31, 32]. While the faction of tumor-derived DNA in the total 
cfDNA is low, the abundance of cfDNA was shown to cor-
relate with the tumor burden [29, 30]. Since genetic and epi-
genetic alterations are some of the earliest events in the carci-
nogenic process, cfDNA provides the opportunity to identify 
these alterations, potentially even before clinical detection 
(e.g., symptoms, palpable lump, and visibility on imagery) 
with the minimally invasive procedure (i.e., blood draw).

Previous cfDNA research focusing on somatic mutations 
has shown low sensitivity in cancer detection because of 
their dependency on a limited set of recurrent mutations 
[31]. The sensitivity is particularly low for early-stage can-
cer with a low tumor burden. To improve the performance 
of cfDNA in cancer diagnosis, a combination of mutation 
markers with other markers has been used. A study combin-
ing mutation detection and protein markers reported sen-
sitivity between 69 and 98% across eight tumor types and 
stated specificity of higher than 95% based on a multicancer 
test panel, although the performance for the early-stage can-
cers was relatively poor [33]. Since the study was largely 
based on symptomatic patients at cancer diagnosis, it is 
unclear how the test panel will perform in the early detection 
setting, where most patients will have early-stage disease.

Epigenetic changes, particularly DNA methylation, rep-
resent another promising biomarker for early detection using 
cfDNA. It is well established that DNA methylation plays 
an important role in carcinogenesis. Aberrant promoter 
hypermethylation associated with the silencing of tumor 
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suppression genes is known to affect tumor progression, 
while global hypomethylation can lead to genomic insta-
bility [34]. There are hundreds of differentially methylated 
regions across the genome, which when used in combination 
can help to improve sensitivity. Furthermore, its cell-type-
specific nature can be used to infer tissues of origin [35]. 
Methylation based on cfDNA has moved from a few targeted 
regions to genome-wide interrogation in recent years. Based 
on 7 tumor types and healthy controls, methylation profiles 
in cfDNA were shown to be specific to the tissue of origin 
and achieved high discriminating accuracy (area under the 
receiver operating curve [AUC] > 0.90) for pancreatic can-
cer and lung cancer in the validation set, with comparable 
performance in early versus late-stage patients [36]. CfDNA 
fragmentomics is another recent topic of interest that focuses 
on fragmentation patterns of plasma cfDNA, which is known 
to be non-random and has the potential to enrich the selec-
tion of cfDNA targets that are of interest [37].

In general, these results from circulating cfDNA or cir-
culating tumor DNA (ctDNA) have been encouraging, and 
several biotechnology companies have been established in 
the recent years with the goal to bring liquid biopsy tests to 
the masses [38]. However, large scale prospective studies 
evaluating the predictive performances in real-world setting 
will be necessary before cfDNA based test for early cancer 
detection is feasible and assessment of specifically early-
stage cancers would be the key [39].

Another intriguing area of research is breathomics, which 
focuses on the analysis of volatile organic compounds 
(VOCs) in the exhaled breath for cancer detection. Initially 
started for respiratory diseases, an increasing number of 
studies have been conducted for other cancer sites, such as 
digestive tract cancers. Despite study heterogeneity, recent 
studies have shown promising predictive accuracy for dif-
ferentiating cancer samples versus non-cancer samples 
[40–42]. However, its cancer specificity and utility for early 
detection before cancer diagnosis remain to be assessed in 
prospective studies.

Biomarkers for Clinical Management

At the time of cancer diagnosis, biomarkers can be used 
to inform optimal patient management based on predicted 
clinical outcomes and treatment response. For example, 
breast cancer patients are routinely tested for the expression 
of estrogen and progesterone receptor (ER/PR) and human 
epidermal growth factor receptor (HER2) to determine treat-
ment options. In the last 10 years, oncotype-dx (a multi-gene 
panel test) has been increasingly used to predict the risk 
of recurrence to inform decisions related to the risks and 
benefits of chemotherapy in women with early-stage ER + /
HER2 − disease [43]. Similarly, epidermal growth factor 
receptor (EGFR) mutations, anaplastic lymphoma kinase 

(ALK) rearrangement, and programmed death-ligand 1 (PD-
L1) are tested among lung cancer patients to identify the 
best-suited target therapy [43]. These are encapsulated in 
the field of pharmacogenetics, which is at the forefront of 
precision medicine today.

Pharmacogenetic biomarkers include somatic charac-
terizations pharmacogenetic biomarkers directly measured 
in the tumor tissues, (e.g., EGFR and ER/PR/HER2 as 
described above), or inherited germline mutations or vari-
ations. Germline genetic variation can lead to variation in 
treatment response by influencing the pharmacokinetics 
of different therapeutic agents, leading to drug-induced 
adverse events and altered drug response. While a number 
of variants in candidate genes have been identified over the 
years (e.g., cytochrome P450 family 2 subfamily C mem-
ber 9 (CYP2C9) and warfarin, cytochrome P450 family 
2 subfamily D member 6 (CYP2D6) for tamoxifen), it is 
now possible to conduct genome-wide screens for genetic 
markers that are associated with absorption, distribution, 
metabolism, and excretion of the drug, and subsequently 
affect drug efficacy and risk of adverse effects [44]. As of 
June 2021, there are approximately 480 indications related 
to biomarkers approved by the US Food and Drug Admin-
istration (FDA) for 325 medications (among those, 110 are 
related to oncology), demonstrating the impact of precision 
medicine in current clinical practice in general [45]. While 
most drugs labeled by FDA are based on the variations in the 
somatic events, approximately half of the European Medi-
cines Agency (EMA) labels related to biomarkers refer to 
pharmacokinetic germline variations [46].

While most of the tests to identify cancer treatment 
options performed at diagnosis are based on somatic char-
acterizations, the tests to monitor cancer progression can be 
done using peripheral blood. For example, cancer antigen 
125 (CA-125) is commonly used to monitor cancer burden 
after treatment for ovarian cancer [47]. The use of periph-
eral blood for the identification of circulating proteomic bio-
markers for early detection and patient management is an 
emerging area of research that capitalizes on the advantages 
of using a non-invasive approach.

Proteomics, which characterizes protein networks 
and monitors post-translational modifications, structural 
changes, and protein–protein interactions, provides a rich 
source of information for outcome predictions to inform 
patient management. Proteomics has the potential to identify 
biomarkers for multiple cancer-related outcomes, including 
early detection, prognosis, metastasis, tumor growth, and 
aggressiveness [48–53]. For example, a recent proteomics 
study classified patients with hepatocellular carcinomas 
into subtypes with distinct clinical trajectories and underly-
ing tumor biology that could be targeted for personalized 
therapies [54]. Furthermore, investigations into the tumor 
microenvironment, more specifically the cancer-associated 
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fibroblast (CAF), through proteome approaches, have identi-
fied an increased level of nicotinamide N-methyltransferase 
(NNMT) expression as a potential biomarker of metastasis 
[55]. Identification of kinases driving tumor growth and 
aggressiveness is one example with an important clinical 
impact [56].

Circulating proteomics focuses on biofluid-based protein 
markers measured noninvasively in serum, plasma, urine, or 
salvia. With the advent of high-throughput technology based 
on nucleic acid aptamers or proximity extension assays, 
researchers can now analyze thousands of protein markers 
with as little as 30 μl of plasma or serum [57, 58]. Proteog-
enomic combines information from proteomics, genomics, 
and transcriptomics and has been increasingly recognized 
as an important field in precision oncology [59–62]. Several 
recent large-scale investigations [63, 64] using this approach 
have found that incorporating information from the circu-
lating proteome helps to fill in the gaps between genomics 
and observed phenotypes for a wide range of complex dis-
eases, including cancer. Through the assessment of protein 
quantitative trait loci (pQTL) and their associated networks, 
this integrative approach could facilitate the prioritization 
of potential drug targets for future clinical trials [63, 64].

Biomarker for Survivorship

Cancer survivorship represents a distinct phase in the can-
cer continuum after treatment and before end-of-life. This 
period largely focuses on the long-term follow-up to man-
age late effects of cancer treatment, surveillance for cancer 
recurrence, and improve the quality of life of survivors to 
overall decrease the risk of mortality [65]. Biomarkers have 
the potential to play an important role in the cancer survivor-
ship phase, particularly to detect and manage late effects of 
cancer treatment; however, this area of research is largely 
unstudied.

The benefits of cancer therapies come with a host of chal-
lenges related to the side-effects/toxicities that can persist 
into the survivorship phase (long-term effects) or present 
later as a consequence of the treatment (late effect) [66]. 
These effects can be far reaching impacting cardiovascular, 
musculoskeletal, respiratory and mental health, the endo-
crine system, reproductive organs, and immune system [67, 
68].

Late effects of cardiotoxic chemotherapy (particularly 
anthracyclines) and chest radiation include congestive heart 
failure, coronary artery disease, and scarring and inflam-
mation of the heart, which are often life-threatening. Tro-
ponin and natriuretic peptides are biomarkers of myocardial 
damage and heart failure, with the potential to detect acute 
cancer therapy-related cardiotoxicity during [69] and after 
treatment completion [70–75]. However, current evidence 
for the use of troponin or natriuretic peptides for clinical 

management of cancer survivors with long-term follow-up 
is limited and remains controversial. Some novel cardiac 
biomarkers (e.g., micro-RNAs) show promise in predict-
ing cardiac dysfunction in cancer patients after treatment 
[76–79], although this remains largely uncharted territory.

Biomarkers of bone formation, turnover and resorption, 
circulating thyroid, sex hormones, and other routine blood 
measures (e.g., lipid panels, fasting glucose) have the poten-
tial to monitor musculoskeletal, endocrine, and metabolic 
effects of cancer treatments [80]. While these biomarkers 
are often utilized in the clinical setting for screening, there 
are no established or consistent guidelines for the use of 
these biomarkers for detecting or managing survivorship 
care. Little work has been done on predicting these outcomes 
to allow for early intervention for prevention and improved 
outcomes.

The application of biomarkers for use in follow-up, long-
term surveillance, and management of late effects in cancer 
survivors has great potential. Given there are more cancer 
survivors in the population than ever before, there is a need 
for research in this space to ultimately improve outcomes 
and quality of life for survivors.

Methodological Issue

It is worth noting that the emerging examples provided in 
previous sections can often be applied to multiple phases 
in the cancer continuum. For example, in addition to early 
detection, the liquid biopsy approach can be applied to moni-
tor treatment response or minimum residual disease [29–32]. 
Regardless of the type of biomarker and the phase of the 
cancer continuum, the processes involved in the discovery 
and validation of biomarkers broadly consist of five steps: 
biomarker discovery, biomarker validity, pre-clinical vali-
dation, clinical utility assessment, and regulatory approval. 
These move from small laboratory-based studies to large 
prospective population-based studies. The reality of this pro-
cess is that it presents several methodological challenges at 
the level of the individual, biospecimen, assay, and analysis.

At the individual level, one of the most significant chal-
lenges is in minimizing the potential for selection bias in 
who participates in discovery and validation studies. The 
ultimate goal is to have biomarkers that are validated in 
population-based studies reflecting the diversity and vari-
ability (e.g., age, sex, and racial distribution) of the tar-
get population (i.e., to whom the biomarker is expected 
to apply), allowing for accurate clinical application. This 
requires reproducibility of results in multiple populations 
for external validation and ensuring transferability across 
ethnic groups, sex, age, and health systems (e.g., high versus 
low resource settings). This will be determined by the target 
population (e.g., average-risk individuals in the population 
for risk stratification or screening for high-risk individuals), 

204 Current Epidemiology Reports  (2022) 9:200–211

1 3



target outcome (e.g., any cancer, ER-positive breast cancer, 
metastasis, etc.), and the goal of the biomarker (e.g., risk 
assessment, early detection, and disease progression). In 
turn, this will inform the validation metric of interest.

At the level of the sample and experiment, it is necessary 
to determine the appropriate biospecimen for assessment 
(e.g., blood, saliva, and tumor), the timing of collection (e.g., 
fasting blood sample, time to diagnosis, pre- or posttreat-
ment), if a single measurement is sufficiently representative, 
the impact of batch effects, the minimal detectable limits 
(i.e., assay sensitivity), as well as ease of clinical interpreta-
tion of results [81]. In practice, this involves the testing and 
re-testing of samples to ensure both inter- and intra-batch 
reproducibility. To minimize the introduction of bias, sam-
ples from individuals with and without disease should be 
randomized within the same batch, and assays conducted 
in a blinded fashion. Specifically for cfDNA, guidelines for 
sample pre-analytical conditions, such as plasma prepara-
tion, cfDNA extraction, and storage condition, have been 
proposed to optimize the assay accuracy and reproducibility 
within and between labs [82]. As we move to a multi-omics 
approach for biomarker discovery and validation, standardi-
zation of sample collection, processing, and analytic pipeline 
will be necessary to ensure reproducibility and transferabil-
ity across populations and health care settings.

In addition to the considerations for patient and sample 
selection, one of the most important aspects to ensure the 
robustness of the biomarker, particularly when the discovery 
was based on a large number of analytes (e.g., metabolomics 
and proteomics), is the issue of multiple comparisons. In 
recent omics analyses, the importance of minimizing false 
positives has been well recognized with a regular adapta-
tion of variations of false discovery rates or the more con-
servative family-wise error rate, depending on the research 
hypothesis [83]. Alternative approaches, such as the Bayes 
factor, which are less susceptible to the impact of multiple 
comparisons, or other Bayesian approaches that can incor-
porate biological prior, have not been widely adapted into 
the analytical pipeline but would be a welcomed change. 
Recently, Ou et al. outline the statistical considerations to 
move biomarkers from bench to bedside [84]. Dimensional-
ity reduction techniques, such as principal component analy-
sis, t-distributed stochastic neighbor embedding, or uniform 
manifold approximation and projection, can also be used to 
mitigate the issues of multiple comparisons, in particular 
when the main interest is to identify a pattern rather than a 
few analytes [85].

It is now considered a state-of-the-art practice to build 
classification algorithms with a cross-validation approach, 
which helps to reduce (although not eliminate) model over-
optimism. However, the importance of model calibration is 
often overlooked in most disciplines. Classification accuracy 
is only reliable when it is based on a well-calibrated model, 

which is typically assessed by comparing the predictive 
probability against the observed probability [86]. To mini-
mize model overfitting, both the discriminatory ability and 
the calibration of the model should be assessed in the hold-
out testing set and, when possible, in the external validation 
set. Table 1 outlines the key methodological considerations 
for biomarker research and application.

Guidelines for Biomarker Development 
and Validation

The early detection research network (EDRN), established 
by the National Institute of Health, is perhaps one of the 
most prominent organizations providing data, funding, 
software, and guidelines (PRoBE, prospective sample col-
lection–retrospective-blinded evaluation) for biomarker 
research and reporting [81]. Specifically for liquid biopsy, 
several initiatives such as the European Liquid Biopsy Soci-
ety (ELBS), Blood Profiling Atlas in Cancer (BloodPAC), 
and CancerID were launched with the goal to define best 
practices for liquid biopsy assay development [31]. In addi-
tion, several guidelines related to risk prediction tools have 
been developed to provide a common standard for reporting 
results from risk models, which are relevant for biomarker 
applications of all purposes. For example, the TRIPOD 
(transparent reporting of a multivariable prediction model 
of individual prognosis and diagnosis) statement has been 
widely disseminated [87] and was recently updated to incor-
porate models developed based on an artificial intelligence 
approach (TRIPOD-AI) [88]. Specifically for genetics, 
the polygenic risk score reporting standard (PRS-RS) was 
recently reported as an update of the genetic risk prediction 
studies (GRIPS) statement [89].

Implications and Future Perspectives

As medical imaging modality advances, it is increasingly 
recognized that medical images (e.g., computed tomogra-
phy (CT), magnetic resonance imaging) contain a wealth 
of information that can be analyzed using deep learning 
approaches, such as convolution neural networks (CNN) 
[90]. For example, using CNNs to differentiate benign ver-
sus malignant pulmonary nodules detected on low-dose CT 
scans is an active area of research [90]. Furthermore, imag-
ing features and different layers of molecular characteriza-
tions (genetics, epigenetics, transcription, protein expres-
sion, etc.) are interconnected within a complex biological 
network. Multi-omics studies can provide a holistic picture 
of the disease pathways and help to uncover the key elements 
for precision medicine. While gaining an increasing level 
of interest in recent years, further development of robust 
analytic pipelines for the integration of data from multiple 
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omics platforms is needed to ensure reproducibility and opti-
mize discovery [91, 92].

Careful evaluation of the cost-effectiveness and ben-
efit-to-harm ratio are needed before any biomarker can 
be brought into action. Take cancer screening, for exam-
ple, biomarkers will need to be evaluated in the context 

of current screening guidelines and assess whether the 
addition of biomarkers can increase the screening effi-
ciency, either through increasing detection rate, reducing 
over-diagnosis, unnecessary follow-up, or further reduc-
tion of morality rate. In addition, it is important to evalu-
ate whether the introduction of a biomarker impacts the 

Table 1   Challenges and possible mitigation strategy in biomarker application

Considerations Challenges Possible mitigation

Individual
▪ Validity of the target population ▪ Ensure representativeness of the study population

▪ Minimize selection bias
▪ Appropriate comparison group
▪ Independent validation set

▪ Generalizability and transferability of the results ▪ Include diverse populations in the study sample, including groups with 
different ancestral backgrounds

Biospecimen
▪ Tissue specificity ▪ Select the optimal biospecimen for the intended biomarker taking into 

account of ease of collection that is fit for purpose for implementation
▪ Timing of sample collection ▪ Define optimal sample collection time point out front, instead of con-

venience sampling
▪ Pre-analytic variability ▪ Establish and share best practices and standard operating procedures 

for sample collection, preparation, and storage
Target molecule

▪ Detectability ▪ Characterize the baseline distribution and the distribution in the target 
population

▪ Assess the abundance in the target biospecimen
▪ Evaluate the dynamic nature of the molecule (clearance, half-life, etc.)
▪ Consideration of differences by biological sex, age, race/ethnicity

▪ Dynamic nature ▪ Consider sequential and repeat measurements to assess intra- and inter-
individual variability

▪ Interpretability ▪ Biological role in carcinogenesis
Assay experiment

▪ Reliability and accuracy ▪ Assess reproducibility and concordance
▪ Implement QC samples and procedures in each batch
▪ Assess minimal detectable limit

▪ Batch effect ▪ Randomize cases and controls in the experimental process in each 
batch

▪ Blinded experiment
▪ Interpretability ▪ Laboratory and clinical guidelines to ensure consistent and equitable 

outcomes (e.g., defined thresholds for action)
Data analytics

▪ Multiple comparison, false positives ▪ Address multiple comparisons in the analytical pipeline via stringent 
threshold, dimensionality reduction, or Bayesian approach

▪ External validation/replication
▪ Statistical power ▪ Ensure adequate sample size

▪ Avoid ad-hoc analyses
▪ Consortium collaboration

▪ Model over-fitting ▪ Correct for over-optimism with bootstrapping or cross-validation
▪ Performance to be evaluated in the hold-out test

▪ Model validity ▪ Model calibration as a required component of the report
▪ External validation

▪ Reproducibility ▪ Provide open-source codes and parameter setting
▪ Model implementation ▪ Assess added values of the biomarker

▪ Cost-effectiveness analysis and benefit-harm ratio
▪ Increase model interpretability to facilitate clinical translation
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screening uptake or modifies the health-related behaviors 
before mass introduction [93, 94]. The cost-effectiveness 
of the biomarker will depend on its performance and the 
necessary resources and infrastructure needed to support 
implementation. For example, a recent microsimulation 
analysis for lung cancer low-dose CT screening showed 
that a biomarker to differentiate benignly versus malignant 
pulmonary nodules with 90% specificity and 90% sensitiv-
ity can remain cost effective at the cost of $500. This cost-
effectiveness threshold changes as the balance between 
specificity and sensitivity shifts [95].

Beyond these considerations, there are multiple factors 
that will affect the success of implementation. These include 
the turnaround time of the results, proper result interpreta-
tions and risk communications, resources needed to support 
follow-up and subsequent testing such as imaging or biopsy, 
and the training of healthcare professionals to support imple-
mentation. Perhaps one of the most pressing challenges are 
social–ethical–legal considerations related to equitable 
access and portability across ancestries [96].

Conclusions

While there are a healthy plethora of emerging cancer bio-
markers, only a small fraction will survive the “death valley” 
of the translational process, either because the research labo-
ratories do not have the resources to continue supporting the 
ever-growing need for large and prospective sample series, 
or lack of industry to develop the biomarker panel to meet 
the necessary clinical standard. This highlights the need to 
promote the partnership between academia and industry to 
accelerate the translation of new biomarkers into the clinic 
while properly safeguarding the independence of discovery 
and validation work prior to commercialization, ensuring 
rigor. Ideally, a government-supported framework would 
help to accelerate these processes and maximize resource 
efficiency, particularly research investment at the discovery 
and validation stage of the biomarker development. This is 
the field that is driving the progress of precision medicine, 
and its success can only be achieved with collaborative team 
science across disciplines, from biomedical discovery to data 
science and clinical implementation.
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