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Abstract
Purpose of Review We describe different methods for microbiome assessment and analysis and highlight some of the challenges
of using omics data in epidemiologic studies of adverse pregnancy outcomes.
Recent Findings Human microbiomes are dynamic and vary by ancestry and geography. The composition and dynamics of the
vaginal microbiome have been associated with risk of preterm birth.
Summary There are several different methods for characterizing the microbiome. Choice of method depends on the research
question and resources available. Added to known challenges of conducting and analyzing epidemiologic studies are the unique
challenges associated with microbiome detection and analysis. The resulting omics assessments of human microbial communi-
ties have great potential to identify prognostics, diagnostics, and potentially therapeutics for adverse pregnancy outcomes.
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Introduction

Microbes are ubiquitous in the environment and on all living
beings. Howmicrobial we humans really are has recently been
illuminated through the application of high-throughput genet-
ic sequencing techniques not dependent on the ability to grow
organisms (omics). Results of these studies estimate that
humans have 10 times as many microbial genes as human
genes [1]. Our microbial genes (the microbiome) perform
many important functions including aiding in digestion, train-
ing our immune system, and protecting us from harmful mi-
crobes (pathogens). Microbial functions are possibly impor-
tant for—or indicators of—normal fetal growth and develop-
ment. Our purpose in this review is to highlight how

epidemiologic studies of the microbiome might contribute to
birth outcome research.

Like human organs, our microbiome responds rapidly to
changes in the environment with detectable changes in func-
tion. For example, our pancreas regulates blood glucose levels
by secreting products that either lower (insulin) or raise
(glucagon) blood glucose levels. Similarly, the gut
microbiome produces varying levels of short-chain fatty acids
depending on the amount of fiber we consume. But this anal-
ogy is incomplete: pancreatic cells are not a dynamic ecologic
community. Changes in the microbial environment may cause
changes in overall microbial biomass or in the abundance of
some microbes or in physical microbial structures (biofilms).
Effects of human diet, hygiene, contact with other humans,
and exposure to drugs, toxins, and pathogens can be read in
the structure, composition, and ongoing functions of our mi-
crobial communities. Thus, learning to read the output of our
microbes has high potential for increasing our understanding
of normal and pathogenic processes that can lead to new di-
agnostics, prognostics, and therapies. We refer the reader to
several excellent reviews that detail methods for collecting,
processing, and analyzing microbiome data (see, for example,
[2–4]) and focus here on some of the challenges associated
with designing, conducting, and analyzing epidemiologic
studies of the microbiome.
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Most birth outcome microbiome research has focused on
preterm birth and neurological disorders. The vaginal
microbiome becomes enriched for lactobacillus species over
the course of a normal pregnancy, becoming less diverse [5,
6]. The observed increase in Lactobacillus during gestation
may serve to enhance pathogen resistance—decreasing risk
of ascending infection and initiating the development of a
healthy infant gut microbiome. While more study is needed,
this finding might be used to develop indicators of risk of
preterm birth. The gut microbiome modulates immune re-
sponse and is a regulator of nervous system function.
Antibiotic use during pregnancy or labor and delivery or de-
livery by cesarean section might disrupt normal gut
microbiome development leading to increased risk of autism
spectrum and other neurological disorders [7, 8]. While large
population-based studies do not support an association of in-
fant microbiota with autism [9, 10], a recent mouse model
suggests that the maternal gut microbiome may be an impor-
tant mediator of the effects of viral infection during gestation
on infant neurodevelopmental disorders [11].

Choice of Sample

Human microbial communities include bacteria, virus, ar-
chaea, and fungi. Note that in addition to virus that infect
human cells, there are virus that infect bacteria, archaea, and
fungi present in the microbiome; viral infection may be an
important determinant of microbial population dynamics.
For microbiome studies of birth outcomes, targeted
microbiomes have included those in the vagina, gut, saliva,
uterus, and placenta. Vaginal and salivary samples are easiest
to collect. Uterine samples are more invasive, and there are
substantial concerns regarding sampling the placental
microbiome [12], because of potential contamination during
collection and processing when samples have very low bio-
mass [13]. The choice of sample depends on the research
question and hypothesized biological mechanism. For exam-
ple, for investigations of preterm birth, the vaginal
microbiome may be most relevant. Infection is a major
cause of preterm birth and the vaginal microbiome can
be a source for ascending infection [14]. Furthermore,
the vaginal microbiome changes throughout a normal
pregnancy suggesting it may be a marker of normal
fetal development [15, 16]. By contrast, the maternal
gut microbiome is of interest for investigations of ges-
tational diabetes [17, 18], as gut microbiota interact
with the breakdown of food and subsequent metabolism.
Furthermore, as the gut microbiota help prime and
shape the immune response, infant or maternal gut
microbiomes may be of interest for investigation of in-
fant immune outcomes [19].

Choice of Omics Assessments

There are several different omics techniques available for de-
scribing the genotype and phenotype of microbial communi-
ties (Table 1). Genotypic measures identify what microbes are
present, and their functional potential. Phenotypic measures
capture ongoing processes and features by measuring tran-
scripts, metabolites, and proteins. Different microbial commu-
nity compositions can provide the same functions, for exam-
ple, modulating pH. Therefore, the investigator needs to de-
cide whether to measure the microbial community composi-
tion (which microbes are present), functional potential (genet-
ic potential), or current function (what biologic functions are
ongoing at time of sampling) when selecting an omics tech-
nique. Choice of technique also has implications for study
conduct, as not all samples are appropriate for testing using
every technique. Samples might need to be aliquoted and
stored using different protocols if the intention is to test using
multiple techniques. Collection protocols should consider if
the microbial composition or response might change depend-
ing on time of day [20], gestational age [5, 6], or if the partic-
ipant has engaged in specific behaviors, e.g., brushing their
teeth prior to a saliva sample. If changes in microbiome com-
position or function are the outcome, collection of multiple
samples from the same individual at specific time points using
the same protocol is required. Table 1 provides an overview of
omics techniques by whether they measure genotype or phe-
notype, the feature sets and microbial community characteris-
tics measured, and requirements for sampling collection and
storage, price, and ease of analysis.

To measure microbial community composition, many ad-
verse birth outcomes researchers have used 16S rRNA
amplicon sequencing [21–30]. This technique sequences one
or more variable regions of the gene that codes for the ribo-
some, which is present in all bacterial cells. (Other amplicons
can be used; e.g., 18S rRNA for fungi. Alternative methods
are needed to identify virus.) Comparing observed variations
in genetic sequence to reference databases allows determina-
tion of the phylogeny of the sequence. The low-cost per sam-
ple of amplicon sequencing enables testing of larger numbers
of samples, increasing overall sample size and making it pos-
sible to test repeated measurements over the course of preg-
nancy. A disadvantage of amplicon sequencing is that taxo-
nomic resolution depends on choice of variable region for
sequencing and the quality of the reference databases.
There are several ribosomal RNA sequence databases,
including Greengenes [31] and Silva [32]; other refer-
ence databases are specifically curated for an environ-
ment of interest, such as the Human Oral Microbiome
Database for oral microorganisms [33]. However, some
sequence variants may not be resolved to the species
level, and strain variants may not be reflected in the
amplicon sequenced.
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Despite these limitations, amplicon sequencing can be very
powerful. For example, in 2016, Callahan et al. observed that
significant associations of theGardnerella genus with preterm
birth in a cohort of white women were driven by a single
sequence variant of Gardnerella vaginalis [21]. Other se-
quence variants of Gardnerella vaginalis which differed at
just one or two nucleotides in the V4 region of the 16S gene
were not significantly associated with preterm birth [21].
Amplicon sequencing has also revealed that compositionally
discrete communities can be functionally redundant. For ex-
ample, a healthy vaginal microbiome was previously pre-
sumed to be dominated by Lactobacilli. A study using
amplicon sequencing among 396 healthy white, black,
Asian, and Hispanic women found 20–30% had non-
Lactobacilli-dominated vaginal communities [34]. For these
women, bacterial taxa capable of heterolactic or homolactic
acid fermentation may be providing similar functions as
Lactobacilli [35, 36]. To test this hypothesis, additional
methods are needed as microbial functions cannot be deter-
mined using amplicon sequence data, although taxonomic in-
formation can be used analytically to guess at genetic potential
(e.g., PiCRUST). Nonetheless, 16S rRNA amplicon

sequencing is inexpensive, and resolution to the species—
and even strain level—continues to improve with longer read
length of genetic sequencing, enhanced analytics, and refer-
ence databases. Furthermore, there are user-friendly bioinfor-
matics pipelines. These features make amplicon sequencing
ideal for hypothesis-generating studies.

As the cost of sequencing and mass spectrometry has contin-
ued to fall, it has become increasingly feasible to use techniques
more discriminatory than amplicon sequencing. Shotgun se-
quencing, in which all of the DNA in a sample is fragmented,
amplified, and sequenced, simultaneously provides insight into
both microbial community composition and functional potential
(“metagenomics”). Shotgun sequencing can also be applied to
RNA, after reverse transcription to cDNA, characterizing gene
expression (“metatranscriptomics”). (Nanopore technology en-
ables sequencing of all DNA andRNAwithout reverse transcrip-
tion.) Like amplicon sequencing, metagenomics provides infor-
mation on the composition of the bacterial community, but with
increased resolution, including assessing the abundance of spe-
cific genes and biochemical pathways. Put succinctly,
metagenomics enables characterization of the functional potential
of a microbiome and metatranscriptomics the ongoing functions.

Table 1 Pros and cons of different omics techniques for describing the genotype and phenotype of microbial community characteristics, and examples
of analytic packages

Genotype Phenotype

Omic technique 16S/18S amplicon sequencing Metagenomics Metatranscriptomics Proteomics/Metabolomics
Feature set Operational taxonomic units (OTUs),

amplicon sequence variants (ASVs)
Whole or partially assembled microbial

genomes, genes, biochemical
pathways

Transcripts Proteins/Metabolites

Microbial
community
characteristic

Composition Composition
Functional potential

Current function Current function

Brief description Amplify and sequence a variable region
of the 16S rRNA gene (or ITS 18S
for fungal species). Allows for the
assessment of the relative abundance
of different bacterial (or fungal) taxa

Fragment and sequence of all the DNA
in a sample. Allows for the
assessment of the relative abundance
of bacteria, fungal and viral microbes
and of genes of interest.

Compare differences in
microbiome gene
expression (transcripts)
under a variety of
different conditions

Use nuclear magnetic
resonance
spectroscopy or mass
spectrometry to
identify proteins or
metabolites

Pro Relatively cheap, broad taxonomic
survey

Greater taxonomic and strain specificity
than amplicon sequencing. Measure
of functional potential

Transcribed genes reflect
the genotype of the
microbiome and the
expressed phenotype

Gives insight into
interactions between
the human host and
microbial
communities.

Con Taxonomic resolution is limited More expensive to sequence. Assembly
can be computationally expensive
and complex

Short half-life of
transcripts requires
care to avoid changes
to the
metatranscriptome
during sampling

Disentangling
proteins/metabolic
products of the host vs
the microbial
community may not be
possible

Examples of relevant
software packages

QIIME, Mothur, DADA2, DEBLUR,
Oligotyping

Short-read based: MEGAN,
DIAMOND, bowtie2, Humann2,
Metaphlann2

Assembly: IBAUD, MegaHit,
MetaSpades

DEseq2 metaRbolomics toolbox,
MetabNet

Important choices Variable region of 16S or 18S gene,
spike-ins to determine absolute
abundance

Host DNA depletion; de novo vs
reference based assembly

rRNA depletion Selection of a targeted
subset for analysis
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By applying metagenomics to the samples from the study
by Callahan et al. described earlier, Goltsman et al. found that
distinct strains ofG. vaginalis exhibited differential functional
enrichment, including in genes related to vitamin and cofactor
metabolism and CRISPR Cas genes [37]. Increasingly, re-
searchers incorporate multiple omics methods to capture not
only the breadth but also the depth of microbial communities
in relation to pregnancy progression and adverse pregnancy
outcomes. For example, in 2019, Ghaemi et al. published an
ambitious multi-omics analysis of longitudinal samples from
17 pregnant women, including measurements from the tran-
scriptome, microbiome, proteome, and metabolome. They
showed that by combining results from several omics mea-
surements, their ability to predict gestational age improved
[38]. In another example from 2019, Fettweis et al. used both
metagenomics and metatranscriptomics to investigate the
microbiome as a risk factor for preterm birth. They found that
the overall transcriptional rate of G. vaginalis was higher in
preterm vs term samples, suggesting that preterm birth risk
varies by the transcriptional activity of G. vaginalis [39].
While incorporating multiple omics methods provides valu-
able information, metagenomics, transcriptomics, proteomics,
and metabolomics (identified using mass spectrometry) are,
however, 3 or more times as expensive and require more com-
plex bioinformatics and statistical expertise than amplicon se-
quencing. Thus, amplicon sequencing is often applied first to
identify samples for more in-depth analysis using other
methods.

Challenges: Collection and Contamination
of Microbial Samples

Regardless of the omics measurements used, incorporating
omics assessments of microbial communities into epidemio-
logic studies can pose significant challenges. These include
challenges arising from contamination, storage and batch ef-
fects, reagent and extraction biases, and compositionality and
sparsity (reviewed elsewhere, see [3, 40]). Some of these chal-
lenges are exacerbated in adverse pregnancy outcomes re-
search, such as in the case of collecting and processing pla-
cental samples. In 2014, Aagaard et al. published results
showing the placenta, long thought to be sterile, harbored a
unique microbiome [41]. While some other studies have doc-
umented examples of a placental microbiome, and even
reported associations with preterm birth [42], other work
suggested the microbial DNA detected in such studies is
the result of contamination from other body sites [43],
during collection [43, 44], or from extraction kits
[43–45]. A recent study of more than 500 placental sam-
ples from a mix of preterm and term as well as C-section
vs vaginal deliveries found no evidence of a resident,
functional placental microbiome. The only microbial

DNA the study identified from placental samples as a true
signal, as opposed to contamination, was S. agalactiae, a
pathogen [43]. Although placental pathogens could be
important to preterm birth, the example of the purported
placental microbiome underlines the challenges of con-
tamination and the importance of good controls in
conducting studies of the microbiome in prenatal
epidemiology.

Challenges: Analysis of Microbial Omics Data

Once the samples are properly collected and processed, sig-
nificant challenges remain stemming from the structure and
type of data. Data from omics projects is high-dimensional,
that is, each sample contains many features, such as many
microbial taxa, many microbial genes, or many microbial me-
tabolites. Additionally, microbiomes are highly individual and
variable omics data are often sparse, i.e., many features are
found in a low percentage of the overall sample. Finally, be-
cause sequencing effort varies across samples, microbial
omics data are typically made to be compositional, that is,
the sum of the features within a single sample is forced to
sum to 1 or another constrained value. Although the high-
dimensional nature of microbial omics studies is beneficial
in that it provides a broad survey of the microbial community,
it can be challenging to use in epidemiological analyses.
Several approaches to address this challenge are available,
based on individual features (i.e., individual taxa, genes, me-
tabolites), data reduction (ecologic or diversity measures, or-
dination, and clustering methods), and machine learning
(Table 2).

Feature-based approaches examine associations of selected
features with an outcome or predictor of interest. Several sta-
tistical packages are available that test for the association of
each feature independently with the outcome of interest and
correct for the multiple-testing burden. Some of these tech-
niques additionally exploit the availability of feature-wide in-
formation to model false discovery rates, infer abundance
from counts, or shrink variance estimation. Alternatively, a
researcher might select key microbial taxa, genes, or metabo-
lites of interest for association testing in a candidate-feature
approach. These key features may be selected a priori based
on prior knowledge, or through a data-driven method. If sev-
eral features are of interest, such as genes related to a similar
metabolic pathway or taxa of known common pathoge-
nicity, researchers might agglomerate the features into a
weighted score.

Dimension reduction approaches assume that global micro-
bial community characteristics, rather than individual features,
are most relevant to disease processes. Ecological measures
which characterize the number of species present (richness),
their relative abundance (evenness), a joint measure of
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richness and evenness (alpha diversity), or the similarity be-
tween communities (beta diversity) can be informative.
Microbiome features also can be grouped using ordination
and data clustering methods, with the resulting groups used
in data analysis. For example, grouping of the vaginal
microbiome taxa into community states or vagitypes has pro-
vided important insights into vaginal microbiome dynamics
[46] and comparisons by ancestry [34]. As noted earlier, the
alpha diversity and vagitype classifications of vaginal
microbiome samples from the same individual can be dynam-
ic during pregnancy [5, 6].

Supervised machine learning approaches frequently devel-
op prediction models to sort samples into groups, for example,
disease and not diseased, based on available features. Some
such approaches are random forests, neural networks, and
support vector machines. Depending on the research question
and sample set, researchers might screen features for inclusion
in the algorithm.Machine learning can also be used to identify
the importance of features for classification on the outcome of
interest.

Challenges: Generalizability and Causality

Given the variability in microbiomes within and between pop-
ulations [47], a particular concern is whether findings in one
population can be generalized to others. Epidemiologic stud-
ies have identified differences in the microbiome by person,
place, and time characteristics which inform the design and

interpretation of additional epidemiology and clinical studies.
The vaginal microbiome composition varies by ancestry [5,
34]. Foundational work in healthy, non-pregnant women has
established that US African American and Hispanic women
are more likely to have a diverse microbiome than women of
European ancestry [34]. In cohorts of European ancestry, as-
sociations between low-diversity, non-lactobacilli-dominated
microbial communities and preterm birth are well replicated
[21, 26–30]. However, several studies in populations of other
ancestry have not found an association between non-
lactobacilli-dominated microbial communities and preterm
birth [22, 23, 25] or between abundance of Lactobacillus spe-
cies and preterm birth [6, 23]. Specific taxa, such as
G. vaginalis and L. iners, are also associated with preterm
birth in cohorts of European ancestry [21], but in a cross-
study comparison, Fettweis et al. confirmed that associations
between L. iners and G. vaginalis and preterm birth did not
extend to populations of African American and Hispanic an-
cestry [39]. These findings suggest that ancestry could con-
found or modify the relationship between vaginal
microbiomes and preterm birth. Therefore, ancestry should
be taken into account in the design and analysis of the vaginal
microbiome and preterm birth. As of yet, even larger studies
often lack statistical power to test for associations within sub-
groups by ancestry [30].

In addition to ancestry, the microbiome can vary by geo-
graphic region. While the effect of geographic locale on the
gut microbiome has been well documented [47], most omics
studies of the vaginal microbiome have been conducted in the

Table 2 Feature-based, data reduction, and machine-learning methods used to compare microbiome characteristics in epidemiologic studies

Technique Description Examples

Feature-based
approaches

Use individual features (e.g. taxa) to examine associations with outcome of interest

Microbiome-wide
association testing

Test for an association between each feature and the outcome of
interest, correcting for multiple testing burden or otherwise
exploiting information from the study to limit false positives

Many specific packages, such as Aldex2, DeSeq2, LefSe,
MASLIN

Candidate microbe
approach

Select for key features using either prior-knowledge or a data driven
approach

Build networks and identify features of interest based on
centrality metrics (Network hubs); select features based on
prior knowledge

Data/dimension
reduction approaches

Summarize all features into a smaller number of either continuous or categorical variables; examine associations of these summary
variables with outcome of interest

Ecological or diversity
measures

Alpha diversity: measures of the number species present (richness)
and relative abundance of species present

Beta diversity: Measures of similarity between microbiome
composition among samples

Alpha diversity: Chao1, Faith’s phylogenetic diversity index,
Simpson index, Shannon index, Rao’s quadratic entropy

Beta diversity: Bray-Curtis, Euclidean distance, Jaccard, unifrac
distance

Ordination methods Order samples characterized by feature elements such that similar
samples are grouped close together, and samples with dissimilar
features are grouped further away.

Nonmetric multidimensional scaling (NMDS); principal
components analysis (PCA); principal coordinates analysis
(PCoA), Correspondence analysis (CA)

Clustering methods Cluster samples together based on their features using a variety of
methods

Community state typing; Hierarchical clustering

Machine learning
approaches for
feature-based
classification

Split data into training and testing sets, and refine predictive models
for classifying samples based on features

Support vector machines; random forest; k-nearest neighbors;
neural networks
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USA or Canada, followed by Europe (reviewed in [24]). Few
studies have described the vaginal microbiome of pregnant
non-North American or European populations [48–51] or its
potential relationship with preterm birth [23]. Thus, work in
other populations is needed to elucidate if and how the asso-
ciation between the vaginal microbiome and preterm birth
varies by ancestry and geography.

The microbiome also varies by time. Gut [52] and salivary
[53] microbiomes are dynamic during infancy, and the gut
microbiome has a circadian rhythm [54]. The vaginal
microbiome varies by age [24], the menstrual cycle [46], and
over the course of a pregnancy [5, 6].When during pregnancy,
the vaginal microbiome is sampled and can strongly influence
whether there is an apparent association between the vaginal
microbiome and preterm birth. In 2019, we reported effect
modification of the association between vaginal community
state type and preterm birth by timing of vaginal sampling
among Peruvian women, suggesting that gestational age at
sampling might modify observed associations between the
vaginal microbiome and pregnancy outcomes [23]. This sug-
gests that longitudinal study designs with multiple samples
collected during pregnancy are optimal. Stout et al. found that
women who went on to deliver preterm exhibited significant
decreases in vaginal richness, diversity, and evenness between
the first and second trimesters, while women who delivered at
term showed no significant changes during that time period
[6]. Similarly, Fettweis et al. observed that the trajectories of
the relative abundance of key taxa of interest, including
G. vaginalis, A. vaginae, and L. crispatus, varied by preterm
birth status [39]. These temporal changes to the vaginal
microbiome over gestation also appear to vary between ances-
try groups [5, 39]. Importantly, timing of early life exposures
impacts developmental systems. For example, the effects of
viral infection during pregnancy on fetal development can
vary by trimester of infection [55, 56]. Consideration of tem-
poral variation of the vaginal microbiome over gestation is
therefore important to consider both for epidemiologic and
etiologic interpretations.

A fundamental question of all microbiome studies is cau-
sality. For preterm birth, the question is whether the vaginal
microbiome causes preterm birth or whether the vaginal
microbiome is responding to other physiologic changes asso-
ciated with preterm birth or both.While the scientific literature
does suggest an association between the vaginal microbiome
and preterm birth [26–30, 57], multiple randomized control
studies [58–60] and Cochrane reviews [61, 62] have found no
significant effect of prophylactic antibiotic interventions on
the incidence of preterm birth, and some evidence of increased
risk of adverse outcomes [63]. Antibiotics only target bacteria;
if virus, fungi, or bacteria not susceptible to the prescribed
antibiotics are the cause, this treatment would be ineffective.
Since many biologic systems regulate the progression of preg-
nancy, it is possible that a healthy vaginal microbiome is

necessary but insufficient to achieve a term pregnancy.
Under this scenario, both the vaginal microbiome and other,
perhaps, host-related systems would need to be targeted to
produce effective interventions. If the vaginal microbiome is
only a corollary of a true cause for preterm birth, it may no
longer be a target for interventions. However, the vaginal
microbiome might still be a valuable prognostic or a diagnos-
tic factor for preterm birth.

Conclusions

Microbiome research poses multiple challenges but has high
potential to contribute to our understanding of adverse birth
outcomes. One set of challenges stems from the dynamic na-
ture of microbial communities, its measurement, and summa-
rizing the resulting high dimensional data. A second set stems
from the well-understood challenges of designing and
implementing population-based studies of adverse pregnancy
outcomes. A final challenge is in assembling a multi-
disciplinary research team with appropriate expertise and in-
corporating new methodologies as they rapidly arise.
However, these challenges are not insurmountable and are
well worth the effort. While it is unlikely that all the promise
of microbiome research will ultimately be fulfilled, there is
much to learn that will certainly generate new prognostics,
diagnostics, and possibly treatments.
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