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Abstract
Purpose of the Review To date, genome-wide association studies (GWASs) have identified 39 genomic loci associated with risk
of epithelial ovarian cancer at genome-wide significance level (p ≤ 5 × 10−8) and 13 additional loci using less strict thresholds.
Follow-up functional dissection of these loci to uncover the underlining mechanisms driving cancer susceptibility has been
challenging.
Recent Findings In a manner similar to how post-linkage studies led the characterization of then poorly understood cellular
pathways, functional analysis of GWAS loci is revealing new mechanisms of ovarian cancer.
Summary Here, we review recent methodological and conceptual progress relevant to the understanding of how common genetic
variation influences the risk of epithelial ovarian cancer.
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Abbreviations
CCOC Clear cell ovarian carcinoma
DDR DNA damage response
ENOC Endometrioid ovarian carcinoma
EOC Epithelial ovarian cancer
eQTL Expression quantitative trait loci
GWAS Genome-wide association studies
HGSOC High-grade serous ovarian carcinoma
LD Linkage disequilibrium
LGSOC Low-grade serous ovarian carcinoma
MOC Mucinous ovarian carcinoma
MAF Minor allele frequency
OCAC Ovarian Cancer Association Consortium
PARP Poly ADP ribosyl polymerase
S/MAR Substrate/matrix attachment region
SNP Single nucleotide polymorphism

Introduction

In 2018 alone, over 295,000 new cases and 180,000 deaths
were due to ovarian cancer, the eighth leading cause of cancer
mortality among women [1]. Epithelial ovarian cancer (EOC),
the most prevalent type of ovarian cancer, is detected at later
stages in more than 50% of the cases with poor prognosis and
low survival rates [2]. Invasive EOC is classified into five
major histological types, high-grade serous (HGSOC), low-
grade serous (LGSOC), mucinous (MOC), endometrioid
(ENOC), and clear cell (CCOC) ovarian carcinoma, and two
borderline disease histological types, serous and mucinous
[3]. These EOC histological subtypes reflect different cell
types, many of them from non-ovarian tissues, from which
each tumor originates [4]. For example, most HGSOC, the
most common EOC type, likely originates from secretory ep-
ithelial cells (or their progenitors) in distal fallopian tube pre-
cursor lesions [5, 6].

Analysis of mutations in tumor tissue has largely confirmed
the histological subtypes, which can be grouped into types I
and II [7]. Less aggressive type I tumors have slow growth and
include low-grade serous, low-grade endometrioid, mucinous,
and clear cell carcinomas and display mutations in KRAS,
BRAF, and PIK3CA but not in TP53 [8]. Highly aggressive
type II tumors are characterized by TP53 mutations and in-
clude high-grade serous, high-grade endometrioid tumors, and
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undifferentiated carcinomas, but TP53 mutation prevalence
may vary with subtype [9–13]. Type II tumors, exemplified
by HGSOC, display a high prevalence of defects in double-
strand DNA break repair pathways [13–17].

Reproductive history, age, environmental, and lifestyle fac-
tors influence ovarian cancer risk, but genetic factors are also
important contributors [18–21]. Inherited rare pathogenic var-
iants in several genes conferring either high (RR > 4; BRCA1
and BRCA2) or moderate (2 < RR ≤ 4; ATM, BRIP1, MLH1,
MSH2, MSH6, PALB2, PMS2, RAD51C, and RAD51D) life-
time EOC risk have been identified but explain less than a
third of the excess familial risk, indicating the existence of
additional unidentified genetic factors [22–28].

Because a significant part of inherited susceptibility to can-
cer is likely to be explained by common alleles with low
penetrance [2–5], investigators have expanded their search
to identify common alleles (typically minor allele frequency
[MAF] > 1%) associated with cancer risk in a significant frac-
tion of the population [29–31]. In ovarian cancer, this effort
has been spearheaded by the Ovarian Cancer Association
Consortium (OCAC), and has led to the identification ofmany
EOC susceptibility loci. Collectively, loci associated with in-
vasive EOC in women of European ancestry are estimated to
explain 6.4% of the polygenic risk [32••].

In this mini-review, we discuss the progress on the func-
tional dissection of common loci identified to date to explore
the biology of EOC. In the same manner that dissecting the
biological role of BRCA1 and BRCA2 led to understanding of
their central role in the DNA damage response (DDR) and the
discovery of synthetic lethal approaches using inhibitors of
poly(ADP-ribose) polymerase 1 (PARP1) [33–38], we expect
that identification of mechanisms driving cancer susceptibility
will open new prevention and therapeutic options. Recently,
Kar et al. published an excellent review of the state of com-
mon variation in ovarian cancer, and therefore, we will only
briefly summarize those studies covered by Kar et al. and
discuss new developments in more detail [39].

Genome-Wide Association Studies in Epithelial
Ovarian Cancer

Currently, 38 ovarian cancer risk loci, defined by common
single nucleotide polymorphisms (SNPs), have been identi-
fied by genome-wide association studies (GWAS) reaching
genome-wide significance (p ≤ 5 × 10−8) (Fig. 1; dark blue
boxes) [32••, 40–52]. Thirty were either uncovered (n = 12)
or confirmed (n = 18) in the Oncoarray meta-analysis in a
large GWAS of women of European ancestry [32••]. Two loci
were confirmed only in women of Han Chinese ancestry (Fig.
1). A recent ovarian cancer risk GWAS performed with East
Asian women identified one new locus at genome-wide sig-
nificance [52].

The conventional threshold for statistical significance used
in GWAS is justified by a simple multiple testing correction
based on the number of SNPs interrogated in the genotyping
chip, typically p ≤ 5 × 10−8 (0.05/1,000,000) [53]. However,
the threshold is arbitrary, and additional true risk loci may
remain hidden. Although large sample sizes of ovarian cancer
cases and controls have been assembled, analyses large
enough to satisfy Bonferroni corrections for multiple testing
remain challenging. Alternative procedures that incorporate
biological or clinical information are needed. An alternative
approach was used by a recent GWAS with women of East
Asian ancestry that revealed three additional loci using a
Bayesian false discovery probability (BFDP) < 10% (Fig. 1;
light blue boxes) [52, 54].

Similarly, using a less strict threshold (p < 1 × 10−6) as sug-
gestive evidence of association with EOC, 10 new loci
emerged in a GWAS of women of African ancestry, which
also replicated five previously identified in women of
European ancestry [55]. An additional new risk locus,
22q13.1, was identified in a GWAS of Japanese women
(p = 1.05 × 10−7), bringing the total number of established
and suggested EOC risk loci to 52 (Fig. 1).

These SNPs are located in the X chromosome and distrib-
uted across 17 autosomal chromosomes. Most EOC risk-
associated SNPs have small effects (typically per-allele odds
ratio (OR) < 2.0) creating a challenging scenario for their use
for risk stratification. Importantly, carriers of multiple com-
mon risk alleles may be at risk similar to carriers of BRCA
pathogenic variants for which increased screening and surveil-
lance are recommended [56, 57]. In addition to contributing to
risk stratification, GWAS-identified risk loci are expected to
reveal novel biological processes involved in cancer etiology
[58].

In order to exploit these discoveries, it is critical to identify
which SNP(s), among a set of credible candidates, are mech-
anistically driving susceptibility at the locus. During the past
several years, guiding principles for functional analysis of
GWAS susceptibility loci have emerged [58–69]. The early
observation that most associated SNPs were not in gene-
coding regions led to the overall hypothesis that trait-
associated alleles exert their effects by changing the transcrip-
tional output of target genes [58]. This hypothesis is largely
being confirmed, and functional analysis has identified several
mechanisms by which gene expression can be modified at
each locus (Fig. 1).

Post-GWAS Analysis: Establishing the Functional
Chain of Causation

One of the guiding principles of post-GWAS functional anal-
ysis is an ideal progression from statistical association to
functionality to causality. Risk-associated SNPs represent a
set of many SNPs in the locus, one (or some) of which is
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hypothesized to be causally linked to disease. Theoretically,
the identification of causal SNPs should be the first step to
define the molecular mechanisms of risk enhancement.
However, the statistical and experimental requirements to de-
termine whether a SNP is causal are still ill defined. Here, we
refer to functional SNP when it displays an allele-specific
functional effect and to credible causal SNPs when enough
collective evidence has been gathered to support a mechanistic
link but recognize that these are evolving operational
definitions.

Genotyping chip designs can minimize the number of
SNPs tested by choosing tag (or index) SNPs to represent

large regions of high linkage disequilibrium (haplotype
blocks). A drawback of this design is that very few SNPs
located at a locus are directly interrogated for association,
and it is likely that the tag SNP does not represent the func-
tional SNP causally related to cancer risk. Therefore, fine
mapping by dense genotyping and imputation is instrumental
to ensure that we are capturing most, if not all, causal SNPs.

The first step is to identify the set of candidate SNPs.When
fine mapping data is available, this set is obtained by retaining
the most highly significant SNPs at the locus. Fine mapping is
also critical to perform conditional analysis and determine
whether there are multiple independent signals at the locus.
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Fig. 1 The functional landscape of common EOC risk loci. Data
compilation of all information available for 52 independent common
SNP loci (MAF > 1%) associated with EOC risk. Each locus has a lead
SNP identified by the different studies (green boxes), the populations in
which the association was detected (dark blue boxes [p < 5 × 10−8]; light
blue boxes [BFDRP < 10%; or p < 1 × 10−6 for novel and p < 0.05 for
replicating loci in women of African Ancestry; or p = 1.05 × 10−7 for loci
identified in Japanese women]) and in which in tumor subtypes, the

association was detected (black boxes). Post-GWAS functional follow-
up information is shown in red boxes when finalized and yellow when in
progress. Mechanisms by which gene expression can be modified at each
locus are shown as the candidate target genes’ driving risk at the locus
(underlined—TWAS find; red underlined—TWAS find and GWAS
functional; asterisk indicates splicingTWAS). S/MAR scaffold/matrix
attachment region, UTR untranslated region
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Alternatively, when fine mapping data is not available, the tag
SNP at the locus is used to retrieve all other SNPs in high
linkage disequilibrium (LD; typically r2 > 0.8). However, the
likelihood of missing a true causal variant, in particular if it is
rare, is significantly higher in the latter approach.

With the candidate set defined, SNPs are then inspected for
their location in the genome in relation to chromosomal fea-
tures such as promoters, enhancers, coding regions, and splic-
ing acceptor sites. Some features can be directly deduced by
the genetic code (e.g., coding regions, splicing acceptor/donor
site) while others are inferred using chromatin modifications
previously shown to be enriched in the feature (e.g., en-
hancers) [70]. This can be manually done for individual loci
using the Human Genome Browser, but several available
pipelines allow for automatic queries of multiple SNPs
[71–74]. All SNPs located in any biological feature are
retained for further analysis.

The next series of analyses are centered on testing whether
the SNP displays allele-specific changes in the biological fea-
ture. For example, causal SNPs in coding regions are expected
to show allele-specific differences in assays for protein stabil-
ity or function (e.g., kinase activity). Causal SNPs in en-
hancers are expected to show allele-specific differences in a
transcription reporter assay or electrophoretic mobility shift
assay [75, 76•].

The set of functional SNPs (those that showed allele spe-
cific effects) and their location allow for the generation of
specific gene target hypothesis at the locus. SNPs in gene
features (e.g., coding region, splicing site, 5′ and 3′ untrans-
lated region (UTR)) strongly suggest that the gene in which
the SNP lies is the target of regulation. However, caution
should be exercised as some genic features could also act as
distant enhancers to a different target gene [77]. For SNPs in
intergenic features (enhancers), two approaches have proven
powerful to connect regulatory elements with their target
genes. The first, eQTL (expression quantitative trait loci) anal-
ysis, allows for testing risk-associated alleles for their associ-
ation with expression levels and has been instrumental in iden-
tifying regulatory region-promoter links in ovarian cancer
[76•, 78]. The other approach probes the proximity between
two linearly distant DNA regions in the 3D chromatin. They
include chromosome conformation capture and ChIA-PET
(chromatin interaction analysis by paired-end tag sequencing)
techniques [79, 80]. Because promoter-enhancer cooperativity
is achieved through physical proximity, enhancers are expect-
ed to be close to their target gene promoter.

Finally, one must establish how the target gene (or its reg-
ulation) impinges on the phenotype. This can be initially
established using adequate in vitro models that can modulate
expression of the candidate gene and be evaluated for onco-
genic phenotypes (increased cell growth, decreased apoptosis,
multi-nucleated cells, anchorage-independent growth) [47].
Organoids and in vivo models provide opportunities to

conduct in-depth experiments on the role of these risk-
associated regions [81].

Transcriptome-Wide Association Studies

Transcriptome-wide association studies (TWASs) are a gene-
centric approach that uses eQTL to impute gene expression
onto genotyped individuals followed by testing the associa-
tion with disease risk [82–84]. First, eQTL reference panels of
samples with associated genotype and gene expression data
are used to train a predictive model of expression in the gene’s
vicinity. Next, using the predictive model, expression is im-
puted in individuals of known genotype, for example, from
GWAS cohorts. Finally, statistical association between pre-
dicted gene expression and the trait is tested. From the stand-
point of uncovering biology, TWAS has the advantage to di-
rectly identify the mechanism (in this case mediator genes) by
which genetic variation modifies the phenotype.

The first TWAS for EOC was conducted with high-density
genotyping data and RNA sequencing transcriptome data
from 53 tissues from GTEx Project (https://gtexportal.org/
home/) to train predictive models of genetically regulated
expression for 17,121 genes [85, 86]. Data from 97,898
women including 29,396 HGSOC cases were analyzed, and
a total of 35 genes spanning 14 loci were associated with risk
(p < 2.21 × 10−6) [86]. Of those, 34 were within 1 Mb from
previously identified EOC susceptibility variants. Importantly,
11 genes across eight loci corroborated data from previous
functional annotation, bioinformatic prediction, or in vitro
cellular models (Fig. 1). High expression of FZD4 at the
11q14.2 locus, the only gene not located within 1 Mb from
GWAS-identified EOC risk locus, was associated with in-
creased risk of HGSOC and could constitute a novel risk locus
[86].

Of the 34 genes within 1 Mb of previously identified EOC
GWAS SNP, only three (DNALI1, HOXD3, and CCDC171)
remained statistically significant after conditioning for the top
EOC GWAS SNP. This indicates that expression for the vast
majority of genes identified by TWAS is regulated by previ-
ously identified GWAS SNPs for EOC. Interestingly, the
strength of association was only attenuated, suggesting that
the SNP(s) with the largest contribution to the regulation of
these genes have not yet been identified. At several loci, mul-
tiple genes reaching significant association were found to be
co-regulated, and further analysis to determine their individual
contribution to the phenotype will be needed [86].

Recently, more than 2000 eQTL samples of primary
HGSOC, EOC precursor tissues (ovarian and fallopian epithe-
lial cells) and other hormonal-related cancers (breast and pros-
tate cancer) were applied in a multi-tissue TWAS using the
largest ovarian cancer GWAS available with 13,037 HGSOC
cases and 40,941 controls from OCAC [87]. To train the pre-
diction model, different panels were constructed (each panel is
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defined as a tissue-state-phenotype triplet) from 84 breast nor-
mal, 654 breast tumors, 70 ovarian normal FT, 115 ovarian
normal OS, 201 ovarian tumor HGSOC, and 376 prostate
tumors. After Bonferroni correction for 66,764 total tests
(reflecting the number of genes and gene-junction models
tested), a total of 32 associations for 18 unique genes were
detected. Twenty-one out of 32 associations exhibited strong
evidence for a single shared causal variant, and only four
genes presented the possibility of joint causal variants [87].

The authors expanded their study by performing a splice-
transcriptome-wide association study (spTWAS) by integrat-
ing splicing quantitative trait loci (QTLs), thus enabling the
detection of 74 junction-level models significantly associated
with risk. Nine genes were identified in both TWAS studies
providing additional support for their role [86, 87].

What Have We Learned?

Approximately 10 years have elapsed since the identification
of the first genome-wide significant risk locus at 9p22.2 for
EOC. Data and tools for functional dissection of these loci
have been slowly built and developed by the effort of large
cancer site-specific consortia (such as OCAC) as well as the
GAME-ON (Genetic Associations and Mechanisms in
Oncology) umbrella consortium which improved the concep-
tual and technical cross-fertilization among groups working
on different cancers. Although only a few loci have been
functionally dissected and important challenges still remain,
the following themes have emerged.

The HOX Axis

The homeobox (HOX) gene family encodes transcription factors
that contain homeodomains and function in defining the metazo-
an body plan, normal vertebrate limb, and organ development
[88]. Several HOX genes have emerged as strong target gene
candidates in ovarian cancer risk. HOXD9 is the most likely
candidate at the 2q31.1, associated with serous and mucinous
subtypes [51, 78]. In addition, HOXD3 emerged in the recent
TWAS as independent of previously identified GWAS signals
and could constitute a novel risk locus [86].

Interestingly, in the female reproductive organs, several HOX
genes are expressed along the Mullerian duct tissues. For exam-
ple, HOXA9 is expressed in the fallopian tubes while the uterus
expressesHOXA10 during development [89]. Expression of spe-
cific HOX genes has been implicated in the differentiation of
cells in the reproductive tract. Inappropriate ectopic expression
of Hoxa9, Hoxa10, and Hoxa11 in tumorigenic OSE epithelial
cells in mice led to tumors with a papillary serous, endometrioid,
and mucinous phenotypes and may constitute an early step in
EOC oncogenesis [90].

Using data from only 12 genome-wide significant loci
known at the time, a HOX-centric network connecting genes

from five of the 12 serous EOC risk emerged after gene set
enrichment analysis. Six networks centered at 2q31 and
17q21.32 were significantly enriched in genes implicated in
EOC. They were centered on HOXD1, HOXD3, HOXB2,
HOXB5,HOXB6, andHOXB7 [91]. Remarkably, this network
also connected with three other loci through a small number of
genes, almost all of which represent the strongest causal gene
identified in each locus (BNC2 at 9p22,HNF1B at 17q12, and
ABHD8 at 19p13) [46, 47, 76•, 91].

In addition to HOX, other transcription factors have
emerged as target genes for several loci such as PAX8, MYC,
and BNC2 (Fig. 1). Many have been implicated in cell differ-
entiation, morphogenesis, and organogenesis of tissues and
organs in the reproductive tract, suggesting that changes in
developmental program of precursor cell types might underlie
EOC susceptibility at some loci. On the other hand, removal
of an 8q24 colorectal cancer risk locus containing a Myc en-
hancer led to a mouse with normal intestinal morphology with
no major impact on intestinal cell differentiation, despite be-
ing resistant to intestinal tumors [81]. Further studies will be
necessary to test this hypothesis in ovarian cancer.

Borderline Serous Subtype, Telomerase,
and Telomeres

Based on post-GWAS functional follow-up findings, border-
line serous EOC etiology is associated with mechanisms reg-
ulating telomere length. SNP rs7705526 intronic to TERT is
associated with borderline serous EOC at the 5p15.33 locus
(p = 1.3 × 10−15) and longer telomeres in leukocytes (p =
2.3 × 10−14) [49]. Furthermore, in vitro luciferase reporter as-
says to identify transcriptional regulatory regions in ovarian
show allele-specific activity suggesting that the mechanism
underlying risk at this locus is through changes in an enhancer
that acts on the TERT promoter [49]. TERT encodes the cata-
lytic subunit of telomerase, responsible to maintain telomere
length after replication. TERT activity is not detectable or low
in normal somatic tissue, and TERT reactivation has long been
proposed as an oncogenic process [92].

Along similar lines, a SNP at the locus 10q24.33 is associ-
ated with telomere length and with borderline serous EOC
[32••, 44, 93]. eQTL analysis indicates that OBFC1 is the
target gene (Fig. 1). OBFC1 encodes an accessory factor that
stimulates the activity of DNA polymerase-alpha-primase that
initiates DNA replication [94]. OBFC1 also participates in
telomere-associated complex that binds telomeric single-
stranded DNA [95]. The causal relevance of telomere length
for risk of cancer was tested through a Mendelian randomiza-
tion study, which showed strong association for serous low-
malignant-potential ovarian cancer with 4.35-fold risk [95%
CI; 2.39–7.94] increase (OR [95% CI] per 1-SD change in
genetically increased telomere length) [96].
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Not All Mechanisms Are Created Equal

At EOC risk loci for which functional analysis has been per-
formed, intragenic and gene proximal SNPs seem to act through
changes in promoters, splicing sites, or that affect the stability of
the transcript (5′ and 3′ UTR). For intergenic SNPs, allele-
specific changes at enhancer elements seem to be an important
underlying mechanism (Fig. 1). The recent functional analysis of
the 9p22.2 cancer susceptibility locus results supports the original
hypothesis that risk-associated SNPs in intergenic regions act by
modifying the regulation of target genes [58, 76•]. Surprisingly,
regulation of BNC2 at the locus is likely mediated by a distinct
mechanism of cis-regulation by a scaffold/matrix attachment re-
gion (S/MAR) which is likely to modulate the local chromatin
environment [76•, 97]. Although the identification of the func-
tional SNP that can modulate chromatin architecture at the
S/MAR may need further studies, the finding of credible risk
SNPs associated to S/MAR raises the possibility that such re-
gions and elements that modify chromatin 3D architecture may
contribute to the underlying mechanism of risk at other cancer
susceptibility loci.

Where Do We Go from Here?

Complementary approaches such as GWAS and TWAS, com-
bined with ever-improving haplotype imputation, are likely to
continue to drive the discovery of additional genomic loci
influencing EOC susceptibility in the near future. In particular,
effort should be directed at filling the knowledge gap between
populations of European and non-European ancestry. This gap
is most significant for populations of Hispanic ancestry and
filling it expected to have many benefits beyond Hispanic
populations for discovery of loci involved in complex traits
using multi-ethnic cohorts [98]. In addition, several case-
control studies based on germline genome sequencing are
now underway and are also likely to identify additional genet-
ic loci implicated in EOC risk.

To cope with the likely increase in the pace of discovery,
functional analysis must overcome three significant chal-
lenges. The organizational challenge is to create a network
of laboratories performing standardized high-throughput as-
says in an integrated fashion to scale up basic analysis for
hundreds of loci at a time. Although large coordinated efforts
have their drawbacks, such as difficulty obtaining sustainable
funding and issues with allocation of credit, they are also
extremely rewarding as the scientific environment is extreme-
ly dynamic and the rate of progress is much higher than what
any individual lab could accomplish over many years as ex-
emplified by the GAME-ON consortium (https://epi.grants.
cancer.gov/gameon/).

The technical challenge is to generate more complex and
genetically defined co-cultures, organoid, and in vivo models.
It is plausible that some risk loci act in a non-cell autonomous

fashion. For example, the changes in gene expression led by
risk alleles may prime the organism for cancer not by
disturbing the developmental program of a precursor cell but
rather by changing how lymphocytes may suppress a tumor in
its early stages or through communication between stroma and
tumor cells. Co-cultures, organoids, and in vivo models will
be required to tease out these paracrine effects. Furthermore,
these models, which will also be instrumental to model gene-
environment interactions in the lab, will need to take into
account genetic ancestry to correctly model risk effects in
multi-ethnic cohorts. Given the present lack of ancestral ge-
netic diversity in cancer cell lines [99], the development of
more complex representative models is going to be extremely
difficult without a concentrated effort.

Finally, a conceptual challenge is to continually expand the
repertoire of biologically plausible testable hypothesis for
each locus and develop rigorous experimental standards to
ensure that the most credible causal SNPs and genes have
been found [58]. In addition to the value of GWAS for risk
stratification at the population level, functional dissection will
add value to the individual because uncovering new mecha-
nisms will open new avenues for prevention and treatment
that could be rapidly translated to the clinic to improve EOC
outcomes.
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