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Abstract
Purpose of Review This review demonstrates the growing body of evidence connecting DNA methylation to prior exposure. It
highlights the potential to use DNA methylation patterns as a feasible, stable, and accurate biomarker of past exposure, opening
new opportunities for environmental and gene-environment interaction studies among existing banked samples.
Recent Findings We present the evidence for association between past exposure, including prenatal exposures, and DNA
methylation measured at a later time in the life course. We demonstrate the potential utility of DNA methylation-based bio-
markers of past exposure using results from multiple studies of smoking as an example. Multiple studies show the ability to
accurately predict prenatal smoking exposure based on DNA methylation measured at birth, in childhood, and even adulthood.
Separate sets of DNA methylation loci have been used to predict past personal smoking exposure (postnatal) as well. Further, it
appears that these two types of exposures, prenatal and previous personal exposure, can be isolated from each other. There is also
a suggestion that quantitative methylation scores may be useful for estimating dose. We highlight the remaining needs for rigor in
methylation biomarker development including analytic challenges as well as the need for development across multiple devel-
opmental windows, multiple tissue types, and multiple ancestries.
Summary If fully developed, DNAmethylation-based biomarkers can dramatically shift our ability to carry out environmental and
genetic-environmental epidemiology using existing biobanks, opening up unprecedented opportunities for environmental health.

Keywords DNAmethylation . Biomarker . Past exposure . Environmental exposure . Prenatal smoking . EWAS . Epigenomic

Introduction

Heritability analyses for most complex disorders show that at
least some portion of disease liability is due to environmental

factors [1], often a large component of risk. The specific health
consequences of environmental exposures have been well
established for many toxicants and outcomes [2, 3]. Yet, many
environmental risk factors have not yet been discovered, de-
spite evidence that they play a role in disease. Environmental
epidemiology’s goal of identification and characterization of
non-heritable risk factors is critical, as these factors provide
actionable insights about modifiable causes of disease that can
lead to better prediction, prevention, treatment, and policy.

A major limitation to further discovery in environmental
epidemiology has been the need for timing-specific exposure
information and prospective outcome data. This is a great
challenge, particularly for exposures influencing risk on out-
come years to decades later, and for exposures that are difficult
to measure or occur prior to feasible study enrollment, such as
prenatal or preconception exposures. Some prospective cohort
studies do begin prior to pregnancy, or early in pregnancy, and
follow new babies through life (e.g. [4–9],). However, these
study designs take years to accumulate outcomes, often with
attrition or low enrollment numbers given the timing of
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enrollment and the length of commitment. Retrospective mea-
surement of exposure is notoriously difficult, given the poten-
tial for recall bias in self-report, the lack of information in
administrative data such as electronic health records, particu-
larly for toxicants, and the short half-lives of many
toxicants—such that biomarker measurement weeks or years
later is irrelevant to amounts of exposure at the time of
vulnerability.

Thus, there is a critical need in environmental epidemiolo-
gy for measurement tools that can accurately capture past
exposure, particularly prenatal and early life exposures. One
emerging area of promise is the ability to measure toxicant
content of shed baby teeth, available at middle childhood,
but able to inform exposures that occurred in utero [10, 11].
While this is a promising avenue, it does require availability of
baby teeth and is to date, relatively expensive with few labs
able to perform detailed measurement. Among the other
emerging options is the potential for blood, or other readily
available tissue samples, to provide past exposure proxy in-
formation. This could be transformational for environmental
epidemiology and genetic epidemiology. If one can use
biosamples already in biobanks, such as UK biobank [12] or
the vast genetic consortia banks (e.g. [13],) to estimate prior
exposure with accuracy, there would be ample power to ask
environmental exposure questions not previously possible and
to truly integrate genetic and environmental information in
these large sample sets.

One promising possibility for a blood (or convenience tis-
sue)-based biomarker of past exposure that could enable en-
vironmental and gene-environmental work in existing
biosamples is the potential for DNA methylation patterns to
mark prior exposure. As we show in this review, there is now a
substantial body of evidence that DNA methylation measured
in blood, and other tissues, is associated with prior exposure,
and that this association may be strong enough to enable an
accurate predictor of exposure that is timing and toxicant spe-
cific. More work must be done to establish such biomarkers
for specific exposure, but here, we show evidence from dis-
covery epigenome-wide association studies (EWAS) for sev-
eral exposures and timing, paving the way for such biomarker
development. Such discoveries must be further evaluated in
prediction models to establish their biomarker utility. As an
example, we elaborate on the work done with the association
between prenatal smoking exposure and DNA methylation
patterns, which has moved from EWAS discovery to biomark-
er development. The results show promising accuracy, repro-
ducibility, specificity to exposure, and persistence over many
years. We also discuss DNA methylation patterns as a cumu-
lative exposure biomarker, or biomarker of aging, through
what has been termed “DNA methylation clocks”. Through
this review, we hope to present these findings as examples of
the opportunities that exist for environmental and genetic-
environmental epidemiology through DNA methylation-

based biomarkers and call for more work to be done in the
field to realize this potential.

Suitability of DNAMethylation as a Biomarker
of Past Exposure

DNA methylation is a type of epigenetic mark with several
inherent properties that make it well suited for exposure bio-
marker purposes. DNA methylation involves the covalent ad-
dition of a methyl or hydroxylmethyl group to cytosine nucle-
otides in human DNA, and thus, it is relatively stable and not
easily degraded with long-term storage. It also does not re-
quire any burdensome up front sample collection or process-
ing methods. These properties are particularly important when
considering newmethods to extract past exposure information
from existing biobanks and repositories. While chemically
stable, DNA methylation is a dynamic process that can be
modified by environmental context and over time, a critical
feature of any exposure biomarker. It provides a mechanism
for cells and organisms to respond to their environment with-
out changing the DNA sequence. Finally, because DNAmeth-
ylation is quantitative in nature, it may capture “biological
dose” and/or effects of exposure mixtures.

There are several advantages to using DNA methylation as
a biomarker of exposure relative to prospectively or retrospec-
tively collected exposure data, metabolites, gene expression,
or objective wearable devices. More traditional exposure as-
certainment methods can pose several problems. Prospective
collection of exposure data is ideal but is costly and can be
inefficient for diseases with lower prevalence rates or those
with long lag times between exposure and development of
disease. Retrospective collection of exposure data is subject
to recall bias or misclassification and is impossible to collect
for certain exposures (e.g., metal toxicants). The emergence of
objective wearable devices can overcome many of these is-
sues but have only recently come online, and thus, do not
enable utilization of existing large-scale biobanks. Use of mo-
lecular biomarkers of exposure has been mainstream for de-
cades. For some exposures, metabolites have been the gold
standard measurement tool to collect accurate highly reliable
information about exposure. For example, cotinine, a major
metabolite of nicotine, is widely recognized as the optimal
collection metric to obtain smoking status [14, 15].
Untargeted metabolomic assays also have the potential to cap-
ture exposure mixtures and quantities. However, one of the
major limitations to using metabolites as biomarkers of past
exposure is their short half-life. The half-life of most metabo-
lites, including cotinine, is on the order of hours to days
[16–18]. Metabolites collected from untargeted assays can
also be sensitive to dietary intake differences and sample col-
lection protocols that may vary within and across large
biobanks. Laboratory and analytic methods to best address
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these issues are still under development. Exposure-related
transcriptome changes have also been observed. Isolating
high-quality RNA suitable for gene expression profiling can
be challenging in an epidemiologic and biobank resource set-
ting because it is less stable than DNA and more subject to
degradation with longer-term storage or suboptimal collection
protocols. New molecular biomarkers that are long-lived, spe-
cific, stable, and that can be reliably measured in existing
banked samples are needed; as evidenced in detail below,
DNA methylation meets these criteria.

DNA Methylation Is Associated with Past
Exposure, Across Multiple Domains

With the emergence of affordable genome-scale epigenetic
technologies, it is now feasible to measure DNA methylation
in a large number of samples and perform epigenome-wide
association studies (EWAS) to discover methylation differ-
ences, at specific CpG sites in the genome, associated with
particular exposures or outcomes [19]. This technological ad-
vance, coupled with a strong interest in identifying molecular
changes related to environmental exposures has led to a rapid
increase in environmental epigenomic studies. A wide range
of exposures have now been linked to epigenetic changes in
studies where both types of data were measured at the same
time; these have been extensively reviewed elsewhere
[20–22]. In this review, we focus on EWAS showing DNA
methylation patterns, measured across the lifespan, reflect past
exposures. As summarized in Table 1, methylation changes
have been linked to past exposure, across a wide range of
environmental domains.

Prenatal Exposure to Smoking and Alcohol Several EWAS
have identified site-specific changes in DNA methylation
levels at birth related to prenatal exposure to maternal
smoking [24•, 25, 26•, 32•, 33•] and alcohol use [37]
(Table 1). Several genomic regions have shown suggestive
differences in cord blood DNA methylation levels related to
maternal drinking habits during early pregnancy [37].
However, studies of prenatal alcohol exposure and DNA
methylation are limited by sample size and window of preg-
nancy timing. Additional genome-wide significant findings
may emerge with increased sample sizes and/or more resolved
alcohol exposure metrics in the future. For prenatal smoking
exposure, site-specific changes in DNA methylation have
been detected in peripheral blood obtained from infants [27],
older children [26•, 30•, 31••, 32•, 33•], and adolescents [32•].
Associations between later life blood DNA methylation and
prenatal smoking exposure persist even after adjusting for
postnatal and personal smoking exposures [32•, 33•].
Smoking and drinking are thought to have similar social de-
terminants and correlated patterns of use; however, the

associated DNA methylation findings published to date have
not been consistent across these exposures, indicating that
DNA methylation signatures may be exposure-specific and
not merely capturing a social determinant construct [26•,
31••, 37].

Nutrition and Supplementation As shown in Table 1, a num-
ber of studies have observed DNA methylation changes in
samples collected—from birth through adulthood—related
to differences in peri- and prenatal exposure to nutrient intake
and nutritional supplements [39–46]. Differences in maternal
nutrient intake during peri-conception and pregnancy through
diet and food availability have been linked to DNA methyla-
tion changes, at specific genes, in blood and buccal samples
obtained from their offspring at birth, infancy, and childhood
[41–45]. A number of studies have leveraged data from co-
horts dating back to the 1960s when the first randomized
control trials were carried out to assess the impact of folic acid
and/or docosahexaenoic acid (DHA) supplementation on birth
and child outcomes. Saliva DNA methylation profiles collect-
ed in 47-year-old adult offspring of the Aberdeen Folic Acid
Supplementation Trial (AFAST) participants showed differ-
ences related to whether their mothers received folic acid sup-
plementation during pregnancy or were in the placebo group
[39]. A randomized controlled trial for docosahexaenoic acid
(DHA), an omega-3 fatty acid, observed differentially meth-
ylated genomic regions among infants whose mothers re-
ceived DHA relative to those that did not receive the supple-
ment. Furthermore, the methylation differences were also
shown to be present in peripheral blood samples collected at
5 years of age [46].

Prenatal Toxicant Exposures In the past year, DNA methyla-
tion changes have been linked to air pollutant exposure in the
prenatal time period (Table 1). More specifically, a multi-
study EWAS meta-analysis identified CpG loci showing sig-
nificant methylation changes in cord blood, at birth, related to
prenatal nitrogen dioxide (NO2) exposure levels. Interestingly,
prenatal NO2-associated methylation changes were also ob-
served in peripheral blood obtained from older children. The
NO2 exposure levels at the time of blood sample collection in
the older children were substantially lower than those the chil-
dren experienced during pregnancy, arguing that their pres-
ence in childhood samples was not likely due to continued
postnatal exposure or current NO2 exposure status [52].
More evidence in this area is likely to transpire as additional
studies with unified prenatal air pollutant and DNA methyla-
tion data emerge. In addition to site-specific changes in DNA
methylation, a significant global decrease in the total genomic
amount of 5-hydroxymethyl, a specific type of DNA methyl-
ation, was observed in birth and early childhood blood sam-
ples among children with elevated prenatal exposure to mer-
cury [54].
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Prenatal Exposure to Adversity Several social adversity expo-
sures have been associated with long-term changes in DNA
methylation (Table 1), although they have mainly focused on
candidate genes. For example, candidate gene-based work,
from the historic Dutch Hunger Winter study, revealed that
DNA methylation levels at the IGF2 gene locus differ signif-
icantly between individuals with prenatal exposure to the
1944–1945 famine relative to their unexposed same-sex sib-
lings [48]. These changes were detected in blood samples
provided 60 years after their prenatal exposure to famine.
Exposure to severe maltreatment during early childhood has
also been linked to methylation changes in saliva. Significant
decreases in DNA methylation at the NR3C1 gene locus were
observed among preschool age children exposed to stress/
maltreatment in the 6 months prior to biospecimen collection
compared to unexposed children with similar economic status
[51].

Maternal Conditions in Pregnancy There is also evidence that
exposure to adverse maternal health conditions during preg-
nancy is related to methylation changes at birth through ado-
lescence (Table 1). A meta-analysis of 19 cohorts reported 86
site-specific changes in DNA methylation, in cord blood, re-
lated to maternal body mass index (BMI) at the start of preg-
nancy [55]. Of those, 72 sites showed a similar association,
direction, and magnitude of effect in peripheral blood samples
obtained in adolescence [55]. DNA methylation levels among
infants born to women with an active eating disorder during
pregnancy differed from those whose mothers had an active
eating disorder (ED) prior to conception and non-ED controls
[56].

Adult Exposures and Later Measurement Several studies have
reported long-lasting DNAmethylation patterns in later adult-
hood biospecimens related to past earlier adulthood expo-
sures. Similar to prenatal exposures, most findings to date
are for behavioral and lifestyle types of exposures including
smoking and alcohol use (Table 1). This is likely due to lack of
unified exposure and methylation data in the same samples for
other, more difficult, to obtain exposures. In world-wide pop-
ulation samples, meta-EWAS have identified thousands of
loci where peripheral blood methylation levels differ by cur-
rent, former, and never smoker status [34–36]. Joehanes et al.
found that methylation values among former smokers that quit
smoking 30 years prior to collection of methylation measure-
ments in blood samples still had not reached levels compara-
ble to individuals that never smoked [35]; thus, DNA methyl-
ation changes associated with past exposures can be long-
lived. Further, smoking-related methylation values appear to
capture additional valuable information about past exposures:
time since quitting and number of pack-years smoked
[34–36]. This has important implications for the potential to
use DNA methylation signatures to serve not only as a simple

dichotomous exposure biomarker but also as a biomarker that
can be used to determine specific windows and doses of ex-
posure. Similar differences in methylation related to smoking
status, time since quitting, and pack-years have also been doc-
umented in buccal samples [34], another highly accessible and
available tissue source. However, a comparison ofDNAmeth-
ylation patterns among hundreds of former drinkers compared
to never drinkers, ~ 4 years after alcohol cessation, showed
only marginal differences between the two exposure groups
[38]. Epigenetic changes related to nutrition in adults have
also been observed (Table 1). Males exposed to a short-term
high-fat overfeeding diet showed epigenetic changes that
persisted for 6–8 weeks after the men resumed their normal
diets [47].

Longitudinal DNAm Data To date, three studies have reported
repeated measures of DNA methylation and associations with
exposure information; two were focused on DNAmethylation
signatures of prenatal smoking exposure and the third exam-
ined the effects of maltreatment. Longitudinal analysis of
methylation profiles at prenatal smoking-associated CpG sites
showed similar differences in DNAm related to prenatal
smoking status at 18 months [28], 7, and 17 years of age
[32•] even after accounting for any postnatal smoking expo-
sures in the older children [32•]. However, in adolescence,
there were three CpG sites that showed reversion back to
methylation levels observed among adolescence with no pre-
natal exposed to maternal smoking [57••]. This suggests that
signatures of prenatal exposure developed solely in cord blood
samples may fail to account for important differences in meth-
ylation stability in the postnatal period. Thus, the development
of a robust epigenetic biomarker of past exposure will need to
take this into account and evaluate methylation patterns at
multiple post-exposure time points. The third study examined
baseline and longitudinal changes in saliva methylation levels
over a period of 6 months, among preschool age children, to
assess the effects of maltreatment (at baseline) on methylation
at NR3C1 [51]. Children with no history of maltreatment
showed little variation in methylation across the two time
points. However, children with a history of maltreatment had
significantly higher levels of methylation at baseline and sig-
nificantly decreased methylation 6 months later. This suggests
looking for differences in methylation variation among ex-
posed and unexposed individuals, as opposed to mean meth-
ylation shifts, may be a fruitful and important avenue for fu-
ture studies.

Cumulative Exposures, Aging, and Epigenetic
“Clocks”

In addition to serving as a biomarker for discrete intervals of
exposure, DNAmethylation signatures have also been reported
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to capture continuous cumulative levels of exposures including
toxicant and behavioral. For example, measures of global DNA
methylation levels in LINE-1 elements were significantly de-
creased among men with increased cumulative exposure to
lead, as assayed via patella bone K-Xray which is a well-
established traditional biomarker of long-term lead exposure
[58]. In addition, several studies of adult smokers have consis-
tently demonstrated that DNA methylation patterns at specific
sites accurately reflect the cumulative amount and duration of
current and prior smoking [34–36]. A number of DNA meth-
ylation “clocks” have been developed to reflect gestational
[59–61], pediatric [62], and adult [63–68] chronologic ages, a
type of demographic exposure, that can also be thought of as a
cumulative exposure. These methylation clocks have been
widely used to predict a number of adverse health outcomes
demonstrating the utility of DNA methylation exposure bio-
markers in epidemiology studies, more broadly [69–72]. For
example, the adult-derived epigenetic clock has been shown to
better predict all-causemortality than examination of traditional
risk factors or chronological age [73].

Biomarkers Require Predictive Modeling
Beyond EWAS Discovery Analyses

EWAS findings continue to emerge and provide valuable
insights into the biologic targets of environmental expo-
sures. However, the main output from EWAS is not di-
rectly informative or useful as a predictive biomarker.
Results are typically per-CpG, rather than a collective
“signature”. Further, discovery analyses typically rely on
general associations between exposed versus unexposed
samples. A predictive modeling approach is needed to
develop a useful biomarker. Accuracy parameters such
as sensitivity, specificity, and area under the ROC curve
(AUC) are more relevant for biomarker development [74,
75]. Further, a collection of CpGs associated with the
particular exposure will necessarily have better predictive
properties than a single CpG. Selection of this collective
list, modeling of the prediction algorithm, and evaluation
of prediction performance are necessary. This approach
has been taken in the development of epigenetic clocks
described above. Choices for CpG selection include sim-
ply taking all CpGs meeting a particular statistical thresh-
old in EWAS, or building machine-learning models using
techniques such as support vector machines or elastic net
[76••]. Prediction algorithms can then include all CpGs
equally, or weighted by their association with the expo-
sure, or other characteristics. The output may be a proba-
bilistic exposure membership (dichotomous, with associ-
ated probability), or a methylation-based exposure “score”
[57••, 77].

Prenatal Smoking as an Example

For the most well-studied and replicated exposure—prenatal
smoking—work in this area has already begun and can be
used as an exemplary model for the field to be extended to
other types of exposures. The first site-specific differences in
DNA methylation related to prenatal exposure to smoking
were reported in 2012 by Joubert et al. [24], where EWAS
revealed 26 CpG sites with exposure-associated DNA meth-
ylation differences achieving genome-wide significance. Not
long after, studies emerged replicating the findings in addi-
tional birth samples and adding a hand full of new loci [25,
32•, 33•]. Many also showed similar DNA methylation pat-
terns associated with prenatal smoking exposure, but when
measured in blood samples from older children, ranging in
age from 5 to 17 years [30•, 31••, 32•, 33•], even after account-
ing for parental and personal postnatal smoking exposures
[32•, 33•].

Ladd-Acosta et al. [31••] were the first to use predictive
modeling to evaluate how well DNAmethylation levels, mea-
sured in blood samples from 5-year-old children, at the orig-
inally reported 26 CpG sites associated with prenatal smoking
exposure, could predict prenatal exposure to smoking from
childhood, rather than cord blood. Their support vector ma-
chine classifier, with 10-fold cross validation, predicted the
children’s exposure to sustained active maternal smoking in
pregnancy with 87% accuracy when compared to maternal
report of smoking during pregnancy (Table 2). Receiver oper-
ating characteristic (ROC) curves also showed that the speci-
ficity of the model was high; prediction of prenatal smoking
exposure using permuted random sets of 26 loci never
achieved greater than 60% accuracy and the prenatal smoking
classifier was not able to predict exposure to maternal alcohol
or medication use with higher than 56% accuracy [31••]. The
following year, Reese et al. [77] developed a single numeric
methylation score, based on DNA methylation measured in
blood, and showed good correspondence to prenatal cotinine
levels consistent with sustained exposure to active maternal
smoking. In an independent test set of cord blood samples, the
methylation score was able to predict prenatal exposure to
sustained smoking with 91% overall accuracy [77] (Table 2).
A recent cord blood methylation meta-analysis, spanning 13
world-wide studies and 6685 samples, showed consistency
with previous findings and expanded the set of loci signifi-
cantly associated with prenatal smoking from dozens to 2965
CpG sites [26•]. Nominally significant differences in methyl-
ation were also observed in older children (n = 3187) for every
CpG site identified at birth [26•]. More recently, Richmond
et al. [57••] developed a methylation-based smoking score
using meta-EWAS findings and evaluated its ability to predict
prenatal smoking exposure in an independent set of blood
samples collected 30 years after pregnancy (Fig. 1; Table 2).
The first score they derived was based on 568 loci that reached
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genome-wide significance in cord blood at birth (associated
with prenatal smoking exposure) and a second score was
based on 19 sites detected in blood from older children at
genome-wide significance (associated with prenatal smoking)
[26•]. Given the age of the participants at time of blood col-
lection and methylation measurements, it is possible that the
offspring themselves smoked; therefore, the authors also com-
puted a methylation score for personal (postnatal) smoking
exposure using 2623 sites identified as significantly associated
with current smoking status in a large adult smoking meta-
analysis [35]. As shown in Fig. 1 and Table 2, the classifica-
tion accuracy of the prenatal exposure methylation score,
based on 30-year-old adult blood specimens, was highest
when using the 19 locus methylation score method that had
been derived using middle childhood methylation data
(AUC = 0.72). Somewhat unexpectedly, the cord blood-
derived score had a lower overall prediction accuracy
(AUC = 0.69). This highlights the importance of including
childhood samples in discovery EWAS and for including loci
identified in childhood samples in prenatal biomarker devel-
opment, if later life biosamples are the intended use.
Importantly, they also showed that current smoking exposure
scores cannot predict prenatal smoking exposure with high
accuracy (AUC= 0.57). Thus, these classifiers appear specific
to prenatal exposure. This is consistent with previous obser-
vations that there is some, but not complete, overlap of loci

associated with prenatal smoking exposure and personal ado-
lescent or adult smoking exposures [33•, 35].

Finally, separate DNA methylation patterns have been
shown to predict prior adult personal smoking exposure. A
4-CpG model using predictive generalized linear models has
been shown to predict prior personal smoking status among
adults [78•]. The 4-locus model was highly accurate in an
independent test sample with an AUC = 0.83 [78•] (Table 2).
Furthermore, they showed DNA methylation is a better long-
term biomarker of exposure than cotinine. The prediction
model using cotinine levels was able to accurately predict
former adulthood smoking in only 47% of the samples com-
pared to 83% when DNAm was used as a biomarker of per-
sonal smoking history [78•] (Table 2). While associations be-
tween DNAm levels and specific dose, duration, and time
since quitting have been observed in adults [34–36], these
more detailed exposure classes have not been pursued in pub-
lished predictive analyses to date.

Need for Additional Evidence

The smoking exposure examples demonstrate the potential for
DNA methylation-based biomarkers of prior exposure.
Multiple studies show the ability to accurately predict prenatal
exposure based on DNA methylation measured at birth, in

Fig. 1 DNA methylation biomarkers, regardless of timing of sample
collection, can be used to predict prenatal smoking. As reported in
Richmond et al. [57••], adult biosamples can accurately predict prenatal
smoking, even after accounting for post-natal (own) smoking. Pre-

defined sets of CpG DNA methylation loci can be used for prediction.
Derived reference sets from infant cord blood and frommiddle childhood
blood are available (top). The CpG set derived from childhood samples
achieves slightly better prediction parameters (bottom)
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childhood, and even adulthood. Separate sets of DNA meth-
ylation loci can be used to accurately predict past personal
adult exposure as well. Further, it appears that these two types
of exposures, prenatal and previous personal exposure, can be
isolated from each other. There is also a suggestion that quan-
titative methylation scores may be useful for estimating dose.
If fully developed, such biomarkers, across multiple expo-
sures and DNAmeasurement windows, can dramatically shift
our ability to carry out environmental and genetic-
environmental epidemiology using existing biobanks.
However, much more work must be done. First, studies must
move from site-by-site discovery EWAS approaches to clas-
sification approaches. The field must establish best practices
for selecting CpGs that create accurate and generalizable clas-
sifiers. Multiple feature selection algorithms are available, and
multiple metrics of predictive accuracy exist. The influence of
QC pipelines on accuracy must also be considered, as has
been done in other omics classifier work [79]. Perhaps most
importantly, the accuracy and utility of DNAmethylation bio-
markers of exposure must be explored across ancestries and
tissue matrices. Because DNAmethylation at many CpG sites
is, in part, genetically controlled [80, 81], it is likely that DNA
methylation signatures of exposure may vary by ancestry.
Additionally, the effects of environmental exposures on the
epigenome can be influenced by underlying genotypes
[82–86]. Genetic heterogeneity is likely to be particularly im-
portant among genes that establish, maintain, and regulate
DNA methylation as well as for genes involved in exposure
metabolism and detoxification. Thus, studies that assess po-
tential genetic modification of epigenetic signatures of expo-
sure are also needed. Tissue type will also play a critical role.
While it is not necessary that a biomarker be on the causal path
of an exposure to the ultimate health outcome of interest, it
may still be true that different DNA methylation sites show
predictive accuracy in different cell types. This is because the
base level and variability of DNA methylation varies by cell
type, and thus, the opportunity for additional variation that
captures exposure is likely to be heterogeneous across tissue
types. This has already been established for epigenetic clocks,
where patterns from single tissue types do not fully overlap in
their age prediction accuracy [65]. These caveats to not dimin-
ish enthusiasm for this potentially influential area for epide-
miology, but do call attention to the rigorous work ahead.

Conclusions The ability to obtain measures of environmental
exposures in existing samples and biobanks will enable new
large-scale analyses to investigate modifiable environmental
risk factors for disease as well as their interaction with genes.
Both inherent properties and empiric evidence support the
potential for DNA methylation to serve as a stable, long-
term biomarker of past exposures across a range of environ-
mental domains. Predictive models and methylation-based ex-
posure scores are emerging and have shown high accuracy in

their ability to predicting former prenatal and adulthood per-
sonal smoking exposures. To fully realize the potential of
DNA methylation as exposure biomarkers, continued large-
scale EWAS and development of predictive models, across
time points, tissue types, and ancestry are needed.
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