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Abstract
Purpose of Review Disparities in prevalence of obesity in the USA continue to increase. Here, we review progress and highlight
gaps in understanding disparities in obesity with a focus on the Hispanic/Latino population from a systems epidemiology
framework. We review seven domains: environment, behavior, biomarkers, nutrition, microbiome, genomics, and
epigenomics/transcriptomics. We focus on recent advances that integrate at least two or more of these domains, and then provide
a real-world example of data collection efforts that encompass these domains.
Recent Findings Research into discrimination-related DNA methylation patterns and how microbiome profiles are related to
eating and physical activity behaviors is furthering understanding of why disparities in obesity persist. Environmental and
neighborhood level research is uncovering the importance of exposures such as air and noise pollution and systematic or
structural racism for obesity and related outcomes through behaviors such as sleep.
Summary Obesity disparities and the biological processes associated with them must be better contextualized within the social,
economic, and political environments that contribute to them. One avenue for accomplishing this is by modeling relationships
between within-body mechanisms and omics and beyond-body mechanisms and exposures. However, data integration across the
various domains and data collection are significant challenges for generating a comprehensive systemsmodel for obesity disparities.
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Introduction

The prevalence of obesity and associated outcomes are in-
creasing worldwide, and the World Health Organization rec-
ognizes obesity as one of the greatest public health challenges
of the twenty-first century [1]. In the USA, these trends have
disproportionately affected underserved populations with low
socioeconomic status (SES) and diverse race/ethnicity, includ-
ing Latinos [2]. The 2015–2016National Health and Nutrition
Examination Survey estimated that 47% of Hispanics were
obese, compared to 37.9% of non-Hispanic Whites. While
the prevalence of obesity has remained steady over the past
decade for some populations, i t is increasing in
other populations such as Mexican Americans [3]. The
Hispanic Community Health Study/Study of Latinos
(HCHS/SOL) reported a diabetes prevalence of 16.9% that
varied among ancestry groups and was as high as 18.3% in
Mexican Americans, who also had a metabolic syndrome
prevalence of 35.0% [2, 4]. Comparatively, diabetes preva-
lence is estimated at 11.3% among US adults overall [5].

Obesity, insulin resistance, type 2 diabetes, and metabolic
syndrome are complex diseases made more so when viewed
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through the lens of health disparities. Recent developments in
environmental monitoring, high-throughput omics technolo-
gies, behavioral and life course monitoring, biomarkers, etc.
are expanding our understanding of how the human genome
and human body fit into a larger system of factors that play a
complex role in the development of obesity and associated
outcomes. These efforts have identified novel therapeutic tar-
gets such as endocrine disruptors, effects of gut microbiota on
obesity, epigenetic and transcriptomic regulation of obesity, and
larger-scale sociological and built environment impacts on obe-
sity. At the same time, increased specialization in each of these
fields makes devising cumulative measures or systematic
models that integrate and span these advances all the more
challenging. Systemsmodels for obesity are not new in the field
(for classic examples, see the Foresight or Glass and McAtee
models [6, 7]). However, wheremodels stress integration across
levels, published research has a large disconnect between so-
ciological aspects of researched systems that focus on humans
as decision-making agents within a broader socio-political and
economic context and internal pathways that make up the bio-
logical obesity system. There is a fundamental gap in knowl-
edge about how the various risk factors for obesity integrate and
interact with one another [8]. When integration does occur,
most prominently through gene × environment studies, focus
is often placed on two factors in the system with little done to
integrate the resulting relationship into the larger system.

Narrowing efforts to a single or two related risk factors is a
significant problem for understanding health disparities. Race
and/or ethnicity are not a single covariate to be controlled for,
but rather a complex set of factors ranging from genetic varia-
tion to access to care to environmental and/or political injustice.
In other words, it is too simplistic to consider race or ethnicity
as a cause of obesity and must instead look at the number of
regulating factors that influence risk in sub-populations. To
study obesity and related diseases through the perspective of
health disparities, we must adopt a systems approach that can
accommodate and integrate many data dimensions and types,
assess multi-level effects, incorporate spatial and temporal
changes, consider synergistic or attenuating effects, and account
for socio-political and environmental context [7, 9]. Multi-level
and complexmodels are better suited to arriving atwhy race and
ethnicity matter for obesity disparities.

Here, we review progress and highlight gaps in understand-
ing disparities in obesity from a systems epidemiology frame-
work drawing on numerous omics, behavioral, environmental,
and sociological fields. Understanding obesity disparities with
a systems approach is daunting for several reasons, one of the
largest being choosing which of the many risk factors of obe-
sity to include. Figure 1 illustrates the risk factors focused on
in this review in larger bubbles (environment, behavior, bio-
markers, nutrition, microbiome, genomics, epigenomics/tran-
scriptomics). This is not an exhaustive list, but rather reflects
areas where recent advances have been made in relationships

between factors (e.g., linkages between microbiome and nu-
trition, or epigenomics and environment). We then provide a
real-world example of using a systems epidemiology ap-
proach for data collection, processing, and analysis of a cohort
of individuals in a study entit led Nucleotides to
Neighborhoods, which focuses on obesity and disparities be-
tween Hispanic/Latino and non-Hispanic/Latino individuals.

Advances and Gaps for an Obesity Disparities
Systems Epidemiology Model

Genomics, Epigenomics, and Transcriptomics

Genetic variants play a large role in obesity and type 2 diabe-
tes with studies finding Hispanic/Latino specific effects on
variants on metabolic syndrome components and regulation
of weight, sleep duration, and total energy expenditure [10,
11]. Assessment of genotypic interactions with nutrients [12],
behaviors [13••], environment [14•], and the microbiome
[15•] shows that these interactions have the capability to mod-
ify obesity and related outcomes. Research into the interplay
between lifestyle, environment, microbiome, and genetic fac-
tors is limited in Hispanic/Latino populations with some focus
on hepatic fat and diet [16]. One study has assessed the effects
of physical activity and sedentary behavior on genetic variants
on obesity in Hispanics/Latinos finding that increased physi-
cal activity and reduced sedentary time attenuates genetic as-
sociation with obesity [17••]. A challenge for genomic re-
search in Hispanic/Latinos is the admixture of the population,
which sees a large genetic diversity with European, African,
and Indigenous American ancestry [18].

Epigenomic mechanisms are of significant interest in obe-
sity because they modify gene activity without changing the
underlying DNA sequence. Research in this area has exploded
in recent years, with a large focus on DNAmethylation. DNA
methylation generally silences gene activity, can be dynamic
or static throughout adult life, and can be passed on to off-
spring [19]. Significant research has been conducted on
changes in DNA methylation in obese individuals and type
2 diabetics [20, 21], with some research specifically in
Hispanic/Latino cohorts [22–24]. In animals and humans, a
number of behaviors influence DNA methylation including
nutritional changes (high-fat diet, low-protein diet, high-
nutrient-specific diet), physical activity, stress, smoking/
alcohol consumption, and working habits [25]. Few of these
studies specifically examine behaviors and methylation as re-
lated to racial disparities; however, racial discrimination has
recently emerged as a measure of interest in this realm. In a
study of Latina mothers, perceived everyday discrimination
was significantly associated over time with DNA methylation
of stress-related genes [26•]. This research could identify a
functional mechanistic link between stress, inflammation,
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and obesity in minority populations. Psychosocial factors may
also play a role at the neighborhood level, with limited re-
search into socioeconomic status (SES) showing that living
in lower SES neighborhoods is associated with greater meth-
ylation of stress-response and inflammation-related genes
even after accounting for individual SES [27••].

Other areas of promising research for relationships
linking obesity, behaviors, and environment to genome func-
tion include epigenomic marks such as chromatin accessibil-
ity, histone modifications, and transcriptomic features such as
microRNAs (miRNAs). External stimuli driven by environ-
mental changes can affect histone modifications and chroma-
tin accessibility both globally and at individual genomic loci,
and these effects are largely mediated through the activity of
chromatin modifiers, transcription factors, and DNA binding
proteins. The downstream consequences of these effects are
then reflected via the transcriptome in gene expression levels
and the proteome.

Olden et al. dub this system a ‘biosensor’ that could poten-
tially trace cumulative environmental exposures over the
lifecourse and may be a key in better understanding of
ethnic/racial health disparities [28]. Relative to DNA

methylation, these epigenomic featrues can provide a more
temporal link between environmental changes, genome func-
tion, and gene expression, representing a read-out for rapid
changes in environment or behavioral change through the
course of an intervention. Like DNA methylation, research
connecting these epigenomic and transcriptomic factors with
more than one domain of the model in Fig. 1 is
currently sparse, especially with regard to neighborhood,
socio-cultural, or higher level factors. Future research should
focus onmechanistic pathways other than stress response such
as obesity [29], include contexts or expand into neighborhood
characteristics such as green space, social cohesion, and built
food environments, as well as include ethnically diverse
cohorts.

Microbiome and Nutrition

Research over the past decade has demonstrated that the hu-
man microbiome plays a key role in human health and disease
[30]. Although many recent studies link microbial composi-
tion to specific phenotypes, we still lack sufficient understand-
ing of how microbial diversity is reflected in various ethnic

Fig. 1 A systems epidemiology
approach for understanding
obesity disparities including
seven risk factor domains
(environment, behavior,
biomarkers, nutrition,
microbiome, genomics, and
epigenomics/transcriptomics).
Example measures for these
domains are represented in
smaller bubbles of the same color
(e.g., biomarkers are measured
through urine, blood, and clinical
assessments). Additional domains
and measures could be built into
and/or swapped out of the model,
as needed for a given study
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populations [31] and the relative importance of lifestyle,
health conditions, and diet in shaping this diversity. In relation
to obesity, the clearest role the microbiome plays is through
the gut and diet [32], while an emerging secondary role may
be through a gut and physical activity connection [33••].
While some studies have shown dramatic changes in the gut
microbiome due to dietary changes, these changes are short-
term upon reversion to the original diet, which may explain
why dietary intervention is not typically successful in treating
obesity [34, 35]. Long-term diet, unlike short-term diet, has
been shown to have an effect on the microbiome that is large
compared to other factors even including antibiotic use [36],
underscoring the importance of adequate nutritional environ-
ments to support long-term healthy dietary choices.
Neighborhood SES was found to be associated with variabil-
ity of microbiome diversity even when accounting for indi-
vidual behaviors [37]; however, there has been no research of
yet exploring relationships between built food environment,
food related behaviors or diet, and gut microbiome. Recent
research has also demonstrated an association between in-
creased exposure to air pollution, gut microbial taxa, and
fasting glucose levels in overweight and obese adolescents
[38•]. Beyond the gut microbiome, the oral microbiome also
holds a promising avenue for linking microbial communities
to inflammatory conditions including obesity and diabetes,
while also being easier to collect than gut microbial samples.
Research into ethnic differences in oral microbiome are na-
scent, although one study has linked lower bacterial diversity
in the oral microbiome to increased age as well as length of
US residency and acculturation measures among recent
Mexican American immigrants [39•].

Biomarkers

A primary defect associated with obesity is insulin resistance,
which is increasingly being shown to be an essential biomark-
er for modeling the systems pathways of obesity as well as a
potential intervention point and metric for intervention effica-
cy. Recently, a greater focus is being placed on changes that
are tissue specific: for example, measures of adipokines
adiponectin and leptin can be used as biomarkers of adipose
tissue insulin resistance [40]. Insulin resistance results in im-
paired insulin action in adipose tissue and is thus strongly
correlated with decreased adiponectin and increased leptin.
Leptin resistance is linked to increased appetite and highly
correlated with obesity [41]. However, these associations
can change with alterations of diet, nutrition, and exercise;
findings suggest that DNA methylation around leptin-
associated loci resulting from behavioral changes constitutes
a significant determinant of leptin expression [42].
Environmental and pollution-related exposures have also been
shown to influence insulin resistance, pro-inflammatory im-
mune activation, hepatic endoplasmic reticulum stress, and

other metabolic-related biomarkers, likely through
epigenomic processes [43••]; however, behavior as both po-
tentially mediating and moderating of these relationships has
not been examined sufficiently. Additionally, how disparities
in obesity-related biomarkers are attributable to genetic, be-
havior, environment, nutrition domain variation is
understudied. Likely, these disparities are underestimated by
the traditionally narrow focus of any given study population
and the lack of concurrently measured, intertwining domains.

Behaviors and Environment

Behavior is the primary linking factor between environment
and biological pathways, and increasingly specific health-
related behaviors are being incorporated into models of obe-
sity disparity that seek to understand genetic, epigenetic/
transcriptomic, microbiome, and biomarker processes as seen
in previously cited literature. In a recent systematic review,
researchers found that behaviors including physical activity,
smoking, alcohol consumption, and dietary patterns contrib-
uted to the socioeconomic gradient in cardiometabolic disor-
der inequities with some variation in geographies, gender, and
age [44]. A newly emerging area for behavioral research and
obesity disparities is in circadian rhythm, specifically sleep.
Multiple social and environmental predictors have been found
to affect sleep including discrimination, nighttime noise, and
pollution—all factors that minorities are likely to be more
exposed to [45, 46••]. Hispanics/Latinos have been found to
have shorter sleep and more sleep disturbed breathing than
non-Hispanic Whites [47], with associations found between
poorer/less sleep, insulin resistance, hypertension, and obesity
[48•, 49, 50]. These poorer sleep patterns have been linked to
perceived social environment/neighborhood safety and higher
levels of objective measures of traffic-related air pollution [51,
52•].

There is a large body of evidence showing that exposures
and features of environments influence obesity and related
morbidities [53–55]. At the same time, numerous studies have
demonstrated major environmental disadvantages for
Hispanic/Latino neighborhoods that can be linked to obesity
including disparities in air pollution, water quality,
walkability, green space, crime, traffic safety, pollution, isola-
tion, and disorder [56–59]. Of recent interest is an increase in
studies measuring neighborhood-level racial discrimination or
structural racism and effects on health outcomes [60]. A study
looking at racial inequalities in SES including poverty, unem-
ployment, and homeownership found that inequality was as-
sociated with higher prevalence of obesity, while inequalities
in median income, college graduates, and unemployment
were associated with fewer fresh food stores and more fast
food outlets [61•]. Bailey et al. map out a number of possible
pathways between racism and ill health including economic
injustice and social deprivation, environmental and
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occupational health inequities, psychosocial trauma, targeted
marketing of health-harming substances, inadequate health
care, state-sanctioned violence and alienation from property
and traditional lands, political exclusion, maladaptive coping
behaviors, and stereotype threats [62•]. There is a critical
need to advance the methods by which epidemiological
research can consider obesity disparities as a system in
order to incorporate such understandings and measures of sys-
temic racism [63].

Data Collection and Integration in Systems
Epidemiology

In developing an effective model for a systems approach to
understanding obesity disparity, there must be consideration
of how domains or pieces of the system will be operational-
ized through data collection. Often, epidemiological studies
will generate measures of health and disease at the level of
the individual looking at biological mechanisms in the body,
behaviors the individual undertakes, and exposures the indi-
vidual is subjected to. Problems with this approach stem
from how environment is defined and how we conceptualize
interactions with the environment, most problematically lead-
ing to trying to fit course level concepts into an individual-
level model [64]. For example, instead of building a model
that includes regional supplemental nutrition policy and num-
ber of times the participant uses food stamp benefits, only
nutritional metabolomics for an individual are employed in
an analysis. This process has been named molecularization,
or “the social processes and transformations through which
phenomena (diseases, identities, pollution, food, racial/ethnic
classifications) are re-defined in terms of their molecular com-
ponents and described in the language of molecular biology”
[65]. This is a significant problem for health disparities
research where complex social phenomena and population-
level experiences are often fundamentally important for situ-
ating and understanding a biological pathway [66].

One way of being more representative of behaviors within
their contexts is through better methods of measurement.
Definitions of behavior or environmental exposure that lack
specificity and variability have been tied to contradicting or
counterintuitive results, have been shown to underestimate
effects, and are questionable in terms of how effectively they
can measure the target association [67]. Self-reported behav-
ioral data has been repeatedly shown to be an inaccurate and
unreliable measure of health related behaviors, resulting in an
inability to evaluate current and changing behaviors, effects of
interventions, and relationships between behaviors and health
outcomes [68]. Ethnic differences in self-reported data have
not always borne out when objective measures are used. For
example, self-reported leisure time physical activity shows
racial disparities [69]. Accelerometers, however, have

detected fewer differences, not only potentially due to self-
report biases, but also due to the pre-existing cultural biases
in the questions themselves. New accelerometer processing
methods are providing more informative patterns of behaviors
beyond total amount exercised such as bouts, or specific be-
haviors from machine learned models [70]. Greater precision
of objective measures also means we can discover associa-
tions in smaller samples [71].

Global Positioning System (GPS) devices can obtain accu-
rate representations of a person’s movements and trajectories
by recording latitude and longitude at varying time intervals
(down to the second) while a person engages in their daily
routine, and ascertain if an individual is indoors or outdoors
[72]. Coupled with Geographic Information Systems (GIS),
which represent layers of neighborhood and environmental
data such as air quality, sidewalk density, poverty, and food
stores, GPS is able to create representations of individuals’
daily exposures to environments based on where somebody
is and how much time they spend there, as compared to home
or neighborhood measures [73, 74]. Accelerometry coupled
with GPS and GIS data results in dynamic exposure measures
that can assess where individuals are exposed, for how long,
and during what behaviors [73]. Wearing such sensors can
be burdensome for participants, so it is promising that large
studies of daily mobility patterns have demonstrated that peo-
ple are largely habitual, and 1 to 2 weeks of sensor data can
account for the vast portion of types of environments that an
individual is typically exposed to [75]. Furthermore, as
smartphones continue to penetrate the population, eventually
we will move toward monthly, yearly, and life course metrics
of total exposures. Dynamic exposures that track an individ-
ual’s actual movement and exposure will enhance our ability
to accurately understand the associations between environ-
ments, behaviors, and epigenome/microbiome by accurately
classifying people’s engagement with environments rather
than relying on static home/neighborhood associations.
Integration of these sensors into epidemiology studies is an
important step for accurately quantifying behavior and
environment.

With the collection of heterogenous data types, studies that
include multiple domains must decide when data integration
should occur: before the modeling process, during intermedi-
ate steps, or late in the process after modeling each individual
component [76]. Data integration before a modeling process
will inherently need to reduce, simplify, or flatten data to
achieve a uniform format across all data types. For example,
physical activity data might be averaged for an individual and
combined with a single alpha diversity metric of microbiome.
The drawback of this approach is that the inherent richness of
each data type is significantly reduced. Conversely, late-stage
integration requires expert knowledge across multiple do-
mains. There has been progress in methods for integration of
heterogenous omics data [77•, 78]. For example, LUCID
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estimates latent unknown clusters from diverse omics data,
accounting for differential patterns across data types while
jointly estimating subgroups relevant to the outcome of inter-
est [79]. However, these methods cannot currently include
behavioral data generated from sensors, daily recalls, or most
biomarkers due to mismatches between data dimensions. An
area of inquiry for this problem may be in computer science
with statistical relational learning and other forms of artificial
intelligence that deal with heterogenous data types.

The Nucleotides to Neighborhoods Study

The Nucleotides to Neighborhoods study (N2N) was a
pilot study of 209 individuals living in San Diego

County. Participants were a subset of a larger cohort study
examining environmental effects on cancer-related bio-
markers [80]. All N2N participants provided informed
consent, including separate consent for DNA analyses.
N2N participants were selected based on obesity status
and were asked to complete additional data collection to
fulfill all seven domains of the systems model outlined in
Fig. 1. Participants from the larger cohort were evenly
recruited from four different types of census tracts (highly
walkable, low access to fast food restaurants; high walk-
able, high fast food; low walkable, low fast food; and low
walkable, high fast food) to ensure environmental vari-
ability in home locations of the cohort. The N2N sample
follows the distribution of 48, 55, 59, and 47 participants
in each neighborhood type, respectively. N2N participants

Table 1 Outcomes measured in the neighborhoods to nucleotides sample (n = 209) across seven domains

Domain N2N measures Outcomes

Genomic SNPs Illumina Infinium CoreExome-24 BeadChip Kits (> 500,000 SNPs
at single-nucleotide resolution), further SNP imputation using
1000 Genomes Database (UofMichigan). Due to small sample
size of cohort, we used published GWAS studies to identify smaller subsets of SNPs
for index-based risk scores (e.g., obesity risk).

Epigenomic/transcriptomic DNA methylation Illumina Infinium MethylationEpic BeadChip Kits (> 850,000
methylation sites at single-nucleotide resolution)

mRNA and miRNA Illumina Next Generation Sequencing HiSeq4000

Microbiome Diversity 16S rRNA gene amplicon sequencing for calculating alpha diversity
(diversity within each sample) such as the Shannon index

Dissimilarity Metrics of beta diversity such as UniFrac calculated from the 16S
rRNA data

Taxonomy Assignment of each 16S rRNA read to a bacterial taxon, at multiple
levels (typically from the phylum to the genus)

Nutrition 24 h recall Nutrition Data Systems for Research 24 h food recalls (total calories,
fats, fiber, number of food types, e.g., vegetables or fruit)

Food frequency VioScreen food frequency questionnaire (instances of food types eaten
over past weeks/months)

Biomarker Clinical BMI, waist-hip circumference, medications

Urine Metabolomics

Blood Metabolomics, hormone, adipokines, biomarkers of inflammation,
glycemic regulation, lipid metabolism, liver health

Behavior Accelerometer Physical activity (bouts, total duration, daily patterns), sedentary
behavior (bouts, total duration, daily patterns), sleep time, sleep
quality, machine learned behaviors (biking, running, walking, in
vehicle)

GPS Time spent indoor/outdoor, dynamic exposure measures to all
environmental features (e.g., total air pollution participant is
exposed to measured by movement)

Self-report Questionnaires on health, physical functioning, sleep, etc.

Environment Pollution and hazards Air pollution, noise pollution, light pollution, water quality

Socio-demographic Diversity, language, crime, poverty, advantage

Built environment Walkability, recreation, built food environment, transit, road safety,
green space

Self-report Feelings of safety, neighborhood cohesion, access to food environment,
perceptions of walkability
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are on average 60 years of age, 49% female, 34%
Hispanic, 30% lean/normal, 41% overweight, and 29%
obese. Figure 1 shows measures that participants were
asked to contribute, which are briefly described here.

Once enrolled in the study, participants were asked to
wear an accelerometer on the hip and wrist, and a GPS
device on a belt with the hip accelerometer for 14 days
with a minimum of 10 h of wear time per day. They were
asked to complete a sleep log daily during their 2-week
participation. Participants came in for a clinic visit after
1 week, before which they were asked to fast for 12 h in
preparation for a 40-mL blood draw and urine sample
collection. At the visit, blood pressure, height, weight,
hip and waist circumference were recorded. Plasma and
buffy coat from blood drawn into EDTA tubes was isolat-
ed by centrifugation at 4 °C, then aliquoted and stored at
− 80 °C. A medical history form including current medi-
cation was completed, and demographic characteristics
were collected via self-report survey. Additional self-
report surveys assessed health conditions, depressive
symptoms, quality of life, sleep quality, and neighborhood
perceptions. Participants completed two 24-h dietary as-
sessments (one weekend, one weekday). Participants sep-
arately consented to participate in the American Gut
Project (AGP) [81] and were given stool collection kits
with detailed instructions. Kits were returned to the AGP
and participants took an online food frequency question-
naire associated with the AGP.

Table 1 illustrates the outcomes obtained from each of the
domain measures for the N2N study. A significant challenge
for the study was to come up with hypotheses that could le-
verage at least two or more domains of data. Examples of the
types of questions that we are asking with the data set are (1)
does GPS-based environmental exposure to air pollution cor-
relate with alpha diversity in the gut microbiome and, if so, are
there significant differences between Hispanic and non-
Hispanics that can be explained by differences in exposure
levels? (2) does objectively measured physical activity play
a mediating role in the effect of genetic variants on insulin
sensitivity? (3) do circadian sleep and eating cycles differ
between Hispanic and non-Hispanic participants, and if so,
are these differences associated with biomarkers like
inflammation? Results from this study are forthcoming with
several publications in preparation.

Several lessons were learned from the pilot N2N study.
As expected, data collection for a study with this many
domains is a significant challenge. Participants that
were willing to undergo one aspect of data collection were
sometimes less open to others. For example, some partic-
ipants who gave blood during the clinical visit were not
willing to have DNA analysis completed. Another issue
was that data processing required six different lab teams,
thus proper instrument or bio-sample handling and

delivery from the collection team to each lab required
significant logistical planning and quality control checks.
This is an essential factor to consider when planning for
budget and funding for such projects. These challenges all
limited the sample size of the study, which for a tradition-
al epidemiological study is considered small. In that re-
gard, being a part of an already ongoing and successful
cohort study was an essential aspect for successful recruit-
ment. This model has been successfully utilized in large
ethnic cohort studies like HCSC SOL and the Multi-
Ethnic Study of Atherosclerosis (MESA), both of which
have added domains such as objectively measured behav-
ior, environment, and epigenetics.

Conclusions

The links between the domains discussed in this review are
extensive, and research into their role in obesity, diabetes, and
other complex disease has only begun to scratch the surface.
Of note is the current dearth of studies that assess these rela-
tionships for specific ethnic groups, particularly when envi-
ronmental disparities are so closely tied to ethnic and racial
disparities. Furthermore, it is not enough to simply put race or
ethnicity into modeling frameworks. A deeper understanding
of why these factors are playing a role in biological mecha-
nisms is essential, which can only be accomplished with data
collection on a systems level that can account for interactions
with other biological systems as well as behaviors occurring
within environmental and political contexts. One of the largest
gaps in current research is linkages between environmental
disparities/associated behaviors (e.g., nutritional decisions
made in context of food environments) and epigenomic and
microbiome pathways (e.g., fiber content as important for
microbiome diversity). However, progress is being made for
incorporating measures that model the real-world experience
of racial and ethnic minorities into epidemiological studies
such as individual discrimination and structural racism.
Developing research cohorts and studies that have the neces-
sary data domains for studying these complex pathways will
remain a challenge from both a funding and logistical organi-
zational standpoint. A probable best path forward will be
expanding data domains in existing cohort studies.

The specific epigenomic and microbiome factors that affect
obesity in Hispanics/Latinos are still largely uncharacterized,
and the potential reversibility of these changes is largely un-
known. By conducting research to identify these changes, and
more specifically changes impacted by behaviors and environ-
ments, we can begin to design clinical trials to assess how
effectively lifestyle or environmental interventions may de-
crease or reverse obesity. Importantly, epigenomic and
microbiome pathways that include environments and behav-
iors can provide compelling evidence for supporting both
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individual and environmental-level strategies for reducing dis-
parities through nutrition, sleep, physical activity, circadian
rhythm alignment, land use, emissions, transportation, and
other environmental public policy. A more comprehensive
approach may provide evidence that environmental changes
could have far-reaching and lasting impact on entire popula-
tions. Finally, a systems epidemiology approach should also
aid progress in precision medicine efforts to identify individ-
uals at heightened risk who can be targeted for intervention.
Being able to identify and model these factors would give us a
more accurate appraisal of individual disease risk and how to
more effectively treat obesity and diabetes.

Funding Information Funding for this research was provided by a grant
from the National Institutes of Health, National Cancer Institute (R01
CA179977). The content is solely the responsibility of the authors and
does not necessarily represent the official views of the National Institutes
of Health. The Nucleotides to Neighborhoods study was a Demonstration
Project in Systems Biomedicine supported by a grant from the University
of California San Diego Center for Computational Biology and
Bioinformatics and San Diego Center for Systems Biology.

Compliance with Ethical Standards

Conflict of Interest Marta M. Jankowska, Kyle Gaulton, Rob Knight,
Kevin Patrick, andDorothy D. Sears each declare no potential conflicts of
interest.

Human and Animal Rights and Informed Consent This article does not
contain any studies with human or animal subjects performed by any of
the authors.

References

Papers of particular interest, published recently, have been
highlighted as:
• Of importance
•• Of major importance

1. WHO (World Health Organization) (2013) WHO obesity and over-
weight fact sheet no 311. Obes Oveweight Fact Sheet.

2. Daviglus ML, Talavera GA, Avilés-Santa ML, et al. Prevalence of
major cardiovascular risk factors and cardiovascular diseases
among Hispanic/Latino individuals of diverse backgrounds in the
United States. JAMA. 2012;308:1775. https://doi.org/10.1001/
jama.2012.14517.

3. Hales CM, Carroll MD, Fryar CD, Ogden CL (2017) prevalence of
obesity among adults and youth: United States, 2015–2016.

4. SchneidermanN, LlabreM, Cowie CC, et al. Prevalence of diabetes
among Hispanics/Latinos from diverse backgrounds: the Hispanic
community health study/study of Latinos (HCHS/SOL). Diabetes
Care. 2014;37:2233–9. https://doi.org/10.2337/dc13-2939.

5. U.S. Centers for Disease Control and Prevention (2011) National
diabetes fact sheet: national estimates and general information on
diabetes and prediabetes in the United States, 2011. US Dep Heal
Hum Serv Centers Dis Control Prev 3:1–12. https://doi.org/201

6. Butland B, Jebb S. Kopelman P, et al. Foresight Tackling Obesities:
Future Choices. Project Report. London; 2007.

7. Glass TA, McAtee MJ. Behavioral science at the crossroads in
public health: extending horizons, envisioning the future. Soc Sci
Med. 2006. https://doi.org/10.1016/j.socscimed.2005.08.044.

8. Adela Hruby, PhD M, Frank B. Hu, MD, PhD M (2015) The epi-
demiology of obesity: a big picture. Pharmacoeconomics 33:673–
689. https://doi.org/10.1007/s40273-014-0243-x.

9. Mabry PL, Kaplan RM. Systems science: a good investment for the
public’s health. Health Educ Behav. 2013;40:9S–12S. https://doi.
org/10.1177/1090198113503469.

10. Fowler SP, Puppala S, Arya R, et al. Genetic epidemiology of car-
diometabolic risk factors and their clustering patterns in Mexican
American children and adolescents: the SAFARI study. Hum
Genet. 2013;132:1059–71. https://doi.org/10.1007/s00439-013-
1315-2.

11. Comuzzie AG, Cole SA, Laston SL, et al. Novel genetic loci iden-
tified for the pathophysiology of childhood obesity in the Hispanic
population. PLoS One. 2012. https://doi.org/10.1371/journal.pone.
0051954.

12. Mathers JC. Nutrigenomics in the modern era. In: Proceedings of
the Nutrition Society; 2017.

13.•• Klimentidis YC, Raichlen DA, Bea J, et al. Genome-wide associa-
tion study of habitual physical activity in over 377,000 UK biobank
participants identifies multiple variants including CADM2 and
APOE. Int J Obes. 2018;42:1161–76. https://doi.org/10.1038/
s41366-018-0120-3. First GWAS study to examine genetic
heritablility of habitual exercise (measured with both self
report and actigraphy).

14.• Robinette JW, Boardman JD, Crimmins EM (2019) Differential
vulnerability to neighbourhood disorder: A gene×environment in-
teraction study. J Epidemiol Community Health 73:. https://doi.org/
10.1136/jech-2018-211373. Examines effects of genetic markers
of type 2 diabetes and self-reported perceptions of environmen-
tal disorder on type 2 diabetes outcomes finding positive
associations.

15.• Le Roy CI, Beaumont M, JacksonMA, et al. Heritable components
of the human fecal microbiome are associated with visceral fat. Gut
Microbes. 2018;9:61–7. https://doi.org/10.1080/19490976.2017.
1356556. Builds on previous research in the TwinsUK cohort
demonstrating that heritable micorbial OTUs are associated
with accumulation of visceral fat phenotype.

16. Davis JN, Lê KA, Walker RW, et al. Increased hepatic fat in over-
weight Hispanic youth influenced by interaction between genetic
variation in PNPLA3 and high dietary carbohydrate and sugar con-
sumption. Am J Clin Nutr. 2010. https://doi.org/10.3945/ajcn.2010.
30185.

17.•• Moon JY, Wang T, Sofer T, et al. Objectively measured physical
activity, sedentary behavior, and genetic predisposition to obesity in
U.S. Hispanics/Latinos: results from the hispanic community health
study/study of Latinos (HCHS/SOL). Diabetes. 2017. https://doi.
org/10.2337/db17-0573. First study to examine interactions
between accelerometer measured physical activity/sednetary
behavior and genetic variants on obesity in a large Hispanic/
Latino cohort.

18. Conomos MP, Laurie CA, Stilp AM, et al. Genetic diversity and
association studies in US Hispanic/Latino. Populations:
Applications in the Hispanic Community Health Study/Study of
Latinos. Am J Hum Genet; 2016. https://doi.org/10.1016/j.ajhg.
2015.12.001.

19. Bird A. DNA methylation patterns and epigenetic memory. Genes
Dev. 2002;16:6–21. https://doi.org/10.1101/gad.947102.

20. Muka T, Nano J, Voortman T, et al. The role of global and regional
DNA methylation and histone modifications in glycemic traits and
type 2 diabetes: a systematic review. Nutr Metab Cardiovasc Dis.
2016;26:553–66. https://doi.org/10.1016/j.numecd.2016.04.002.

21. Van Dijk SJ, Molloy PL, Varinli H, et al. Epigenetics and human
obesity. Int J Obes. 2015.

Curr Epidemiol Rep (2019) 6:476–485 483

https://doi.org/10.1001/jama.2012.14517
https://doi.org/10.1001/jama.2012.14517
https://doi.org/10.2337/dc13-2939
https://doi.org/201
https://doi.org/10.1016/j.socscimed.2005.08.044
https://doi.org/10.1007/s40273-014-0243-x
https://doi.org/10.1177/1090198113503469
https://doi.org/10.1177/1090198113503469
https://doi.org/10.1007/s00439-013-1315-2
https://doi.org/10.1007/s00439-013-1315-2
https://doi.org/10.1371/journal.pone.0051954
https://doi.org/10.1371/journal.pone.0051954
https://doi.org/10.1038/s41366-018-0120-3
https://doi.org/10.1038/s41366-018-0120-3
https://doi.org/10.1136/jech-2018-211373
https://doi.org/10.1136/jech-2018-211373
https://doi.org/10.1080/19490976.2017.1356556
https://doi.org/10.1080/19490976.2017.1356556
https://doi.org/10.3945/ajcn.2010.30185
https://doi.org/10.3945/ajcn.2010.30185
https://doi.org/10.2337/db17-0573
https://doi.org/10.2337/db17-0573
https://doi.org/10.1016/j.ajhg.2015.12.001
https://doi.org/10.1016/j.ajhg.2015.12.001
https://doi.org/10.1101/gad.947102
https://doi.org/10.1016/j.numecd.2016.04.002


22. Mamtani M, Kulkarni H, Dyer TD, et al. Genome- and epigenome-
wide association study of hypertriglyceridemic waist in Mexican
American families. Clin Epigenetics. 2016. https://doi.org/10.
1186/s13148-016-0173-x.

23. Kulkarni H, Kos MZ, Neary J, et al. Novel epigenetic determinants
of type 2 diabetes in Mexican-American families. HumMol Genet.
2015. https://doi.org/10.1093/hmg/ddv232.

24. Carless MA, Kulkarni H, Kos MZ, et al. Genetic effects on DNA
methylation and its potential relevance for obesity in Mexican
Americans. PLoS One. 2013. https://doi.org/10.1371/journal.
pone.0073950.

25. Alegría-Torres JA, Baccarelli A, Bollati V. Epigenetics and life-
style. Epigenomics. 2011;3:267–77. https://doi.org/10.2217/epi.
11.22.

26.• Santos HP, Nephew BC, Bhattacharya A, et al. Discrimination ex-
posure and DNA methylation of stress-related genes in Latina
mothers. Psychoneuroendocrinology. 2018;98:131–8. https://doi.
org/10.1016/j.psyneuen.2018.08.014. Study considers percieved
descrimination and its association with DNA methylation over
time in a Hispanic/Latino cohort.

27.•• Smith JA, Zhao W, Wang X, et al. Neighborhood characteristics
influence DNA methylation of genes involved in stress response
and inflammation: The Multi-Ethnic Study of Atherosclerosis.
Epigenetics. 2017. https://doi.org/10.1080/15592294.2017.
1341026. An excellent example of a study that integrates
neighborhood, epigenomics, and biomarker outcomes to
understand health disparities. The study considers several
components of neighborhood context and finds several
influence DNA methylatoin on stress and inflammation-
related genes after accounting for individual covariates.

28. Olden K, Lin YS, Gruber D, Sonawane B. Epigenome: biosensor of
cumulative exposure to chemical and nonchemical stressors related
to environmental justice. Am. J: Public Health; 2014.

29. Giurgescu C, Nowak AL. Gillespie S, et al. Neighborhood
Environment and DNA Methylation: Implications for
Cardiovascular Disease Risk. J. Urban Heal; 2019.

30. Cho I, Blaser MJ. The human microbiome: at the interface of health
and disease. Nat Rev Genet. 2012. https://doi.org/10.1038/nrg3182.

31. Fortenberry JD. The uses of race and ethnicity in human
microbiome research. Trends Microbiol. 2013;21:165–6.

32. Castaner O, Goday A, Park YM, et al. The gut microbiome profile
in obesity: a systematic review. Int J Endocrinol. 2018. https://doi.
org/10.1155/2018/4095789.

33.•• Mitchell CM, Davy BM, Hulver MW, et al. Does exercise Alter gut
microbial composition? A systematic review. Med Sci Sports
Exerc. 2019.A first review of interplay between gut microbiome
and physical activity finding that results are currently mixed
partially due to lack of consistency in physical activity measure-
ment methods.

34. David LA, Maurice CF, Carmody RN, et al. Diet rapidly and repro-
ducibly alters the human gut microbiome. Nature. 2013;505:559–
63. https://doi.org/10.1038/nature12820.

35. Voreades N, Kozil A, Weir TL. Diet and the development of the
human intestinal microbiome. Front Microbiol. 2014;5. https://doi.
org/10.3389/fmicb.2014.00494.

36. Xu Z, Knight R. Dietary effects on human gut microbiome diver-
sity. Br J Nutr. 2014;113(Suppl):1–5. https://doi.org/10.1017/
S0007114514004127.

37. Miller GE, Engen PA, Gillevet PM, et al. Lower neighborhood
socioeconomic status associated with reduced diversity of the co-
lonic microbiota in healthy adults. PLoS One. 2016. https://doi.org/
10.1371/journal.pone.0148952.

38.• Alderete TL, Jones RB, Chen Z, et al. Exposure to traffic-related air
pollution and the composition of the gut microbiota in overweight
and obese adolescents. Environ Res. 2018. https://doi.org/10.1016/
j.envres.2017.11.046. First paper to show how air pollution may

be influencing obesity in adolescents through a gut microbiome
mechanism.

39.• Hoffman KL, Hutchinson DS, Fowler J, et al. Oral microbiota
reveals signs of acculturation in Mexican American women.
PLoS One. 2018. https://doi.org/10.1371/journal.pone.0194100.
Novel approach for understanding how acculturation may be
influencing health by assessing oral microbial diversity.

40. Chen M-W, Ye S, Zhao L-L, et al. Association of plasma total and
high-molecular-weight adiponectin with risk of colorectal cancer:
an observational study in Chinese male. Med Oncol. 2012;29:1–7.
https://doi.org/10.1007/s12032-012-0280-2.

41. Dash S. Causes of severe obesity: genes to environment. In:
Sockalingam S, Hawa R, editors. Psychiatric Care in Severe
Obesity. Cham: Springer; 2017. p. 21–36.

42. Martinez JA, Milagro FI, Claycombe KJ, Schalinske KL.
Epigenetics in adipose tissue, obesity, weight loss, and diabetes.
Adv Nutr An Int Rev J. 2014;5:71–81. https://doi.org/10.3945/an.
113.004705.

43.•• Dang J, YangM, Zhang X, et al (2018) Associations of Exposure to
Air Pollution with Insulin Resistance: A Systematic Review and
Meta-Analysis. Int J Environ Res Public Health 15:. https://doi.
org/10.3390/ijerph15112593. Excellent review of current
research linking air pollution to insulin resistance.

44. Petrovic D, de Mestral C, Bochud M, et al. The contribution of
health behaviors to socioeconomic inequalities in health: a system-
atic review. PrevMed (Baltim). 2018;113:15–31. https://doi.org/10.
1016/j.ypmed.2018.05.003.

45. Slopen N, Lewis TT, Williams DR. Discrimination and sleep: a
systematic review. Sleep Med. 2016.

46.•• Jackson CL (2017) Determinants of racial/ethnic disparities in dis-
ordered sleep and obesity. Sleep heal. https://doi.org/10.1016/j.sleh.
2017.08.001. Thoughtful review and framework for
undersatnding how racial and ethnic disparities in sleep are
influencing obesity, associated mechanisms, and enironmental
causes.

47. Chen X, Wang R, Zee P, et al. Racial/ethnic differences in sleep
disturbances: the multi-ethnic study of atherosclerosis (MESA).
Sleep. 2015;38:877–88. https://doi.org/10.5665/sleep.4732.

48.• Knutson KL, Wu D, Patel SR, et al. Association between sleep
timing, obesity, diabetes: the hispanic community health study/
study of latinos (hchs/sol) cohort study. Sleep. 2017. https://doi.
org/10.1093/sleep/zsx014. One of the first larger studies to
utilize accelerometer measured sleep and relate both sleep
disturbances and length of sleep to obesity and diabetes in
Hispanic/Latinos.

49. Ramos AR, Weng J, Wallace DM, et al. Sleep patterns and hyper-
tension using Actigraphy in the Hispanic community health study/
study of Latinos. Chest. 2018. https://doi.org/10.1016/j.chest.2017.
09.028.

50. Loredo SJ, Weng HJ, Ramos AR, et al. Sleep patterns and obesity:
Hispanic community health study/study of Latinos Sueño Ancillar
study. Chest. 2019;156:348–56. https://doi.org/10.1016/j.chest.
2018.12.004.

51. Billings ME, Gold DR, Leary PJ, et al. Relationship of air pollution
to sleep disruption: the multi-ethnic study of atherosclerosis
(MESA) sleep and MESA-air studies. Am J Respir Crit Care
Med. 2017;195:A2930.

52.• Simonelli G, Dudley KA, Weng J, et al. Neighborhood Factors as
Predictors of Poor Sleep in the Sueño Ancillary Study of the
Hispanic Community Health Study/Study of Latinos. Sleep.
2017;40. https://doi.org/10.1093/sleep/zsw025. This study
extends literature showing negative health effects of adverse
neighborhood factors and finds that percieved safety, violence
and noise had impacts on length and quality of sleep in a cohort
of Hispanic/Latinos.

Curr Epidemiol Rep (2019) 6:476–485484

https://doi.org/10.1186/s13148-016-0173-x
https://doi.org/10.1186/s13148-016-0173-x
https://doi.org/10.1093/hmg/ddv232
https://doi.org/10.1371/journal.pone.0073950
https://doi.org/10.1371/journal.pone.0073950
https://doi.org/10.2217/epi.11.22
https://doi.org/10.2217/epi.11.22
https://doi.org/10.1016/j.psyneuen.2018.08.014
https://doi.org/10.1016/j.psyneuen.2018.08.014
https://doi.org/10.1080/15592294.2017.1341026
https://doi.org/10.1080/15592294.2017.1341026
https://doi.org/10.1038/nrg3182
https://doi.org/10.1155/2018/4095789
https://doi.org/10.1155/2018/4095789
https://doi.org/10.1038/nature12820
https://doi.org/10.3389/fmicb.2014.00494
https://doi.org/10.3389/fmicb.2014.00494
https://doi.org/10.1017/S0007114514004127
https://doi.org/10.1017/S0007114514004127
https://doi.org/10.1371/journal.pone.0148952
https://doi.org/10.1371/journal.pone.0148952
https://doi.org/10.1016/j.envres.2017.11.046
https://doi.org/10.1016/j.envres.2017.11.046
https://doi.org/10.1371/journal.pone.0194100
https://doi.org/10.1007/s12032-012-0280-2
https://doi.org/10.3945/an.113.004705
https://doi.org/10.3945/an.113.004705
https://doi.org/10.3390/ijerph15112593
https://doi.org/10.3390/ijerph15112593
https://doi.org/10.1016/j.ypmed.2018.05.003
https://doi.org/10.1016/j.ypmed.2018.05.003
https://doi.org/10.1016/j.sleh.2017.08.001
https://doi.org/10.1016/j.sleh.2017.08.001
https://doi.org/10.5665/sleep.4732
https://doi.org/10.1093/sleep/zsx014
https://doi.org/10.1093/sleep/zsx014
https://doi.org/10.1016/j.chest.2017.09.028
https://doi.org/10.1016/j.chest.2017.09.028
https://doi.org/10.1016/j.chest.2018.12.004
https://doi.org/10.1016/j.chest.2018.12.004
https://doi.org/10.1093/sleep/zsw025


53. Leal C, Chaix B. The influence of geographic life environments on
cardiometabolic risk factors: a systematic review, a methodological
assessment and a research agenda. Obes Rev. 2011;12:217–30.
https://doi.org/10.1111/j.1467-789X.2010.00726.x.

54. Sallis JF, Floyd MF, Rodriguez DA, Saelens BE. The role of built
environments in physical activity, obesity, and CVD. Circulation.
2012;125:729–37. https://doi.org/10.1161/CIRCULATIONAHA.
110.969022.

55. Feng J, Glass TA, Curriero FC, et al. The built environment and
obesity: a systematic review of the epidemiologic evidence. Health
Place. 2010;16:175–90. https://doi.org/10.1016/j.healthplace.2009.
09.008.

56. Lovasi GS, HutsonMA, Guerra M, Neckerman KM. Built environ-
ments and obesity in disadvantaged populations. Epidemiol Rev.
2009;31:7–20. https://doi.org/10.1093/epirev/mxp005.

57. Piccolo RS, Duncan DT, PearceN,McKinlay JB. The role of neigh-
borhood characteristics in racial/ethnic disparities in type 2 diabe-
tes: results from the Boston area community health (BACH) survey.
Soc Sci Med. 2015;130:79–90. https://doi.org/10.1016/j.
socscimed.2015.01.041.

58. Wen M, Maloney TN. Latino residential isolation and the risk of
obesity in Utah: the role of neighborhood socioeconomic, built-
environmental, and subcultural context. J Immigr Minor Health.
2011;13:1134–41. https://doi.org/10.1007/s10903-011-9439-8.

59. Fields R, Kaczynski A, Bopp M, Fallon E. Built environment as-
sociations with health behaviors among Hispanics. J Phys Act
Health. 2013;10:355–42.

60. Paradies Y, Ben J, Denson N, et al. Racism as a determinant of
health: a systematic review and meta-analysis. PLoS One. 2015.
https://doi.org/10.1371/journal.pone.0138511.

61.• Bell CN, Kerr J, Young JL. Associations between obesity,
obesogenic environments, and structural racism vary by county-
level racial composition. Int J Environ Res Public Health. 2019.
https://doi.org/10.3390/ijerph16050861. One of the first studies
to implement a county level measure of racial inequality by
SES level across the United States to find that inequality was
associated with obesity and obesogenic environments.

62.• Bailey ZD, Krieger N, AgénorM, et al. Structural racism and health
inequities in the USA: evidence and interventions. Lancet. 2017.
An important piece that lays out various ways that structural
racism impacts health inequalities, but also ways to assess and
measure strucutral racism in epidemiological studies and
interventions.

63. Castle B, Wendel M, Kerr J, et al. Public Health’s approach to
systemic racism: a systematic literature review. Disparities: J.
Racial Ethn. Heal; 2019.

64. Müller R, Hanson C, Hanson M, et al. The biosocial genome?
EMBO Rep. 2017;18. https://doi.org/10.15252/embr.201744953.

65. Darling KW, Ackerman SL, Hiatt RH, et al. Enacting the molecular
imperative: how gene-environment interaction research links bod-
ies and environments in the post-genomic age. Soc Sci Med.
2016;155:51–60. https://doi.org/10.1016/j.socscimed.2016.03.007.

66. Senier L, Brown P, Shostak S, Hanna B. The socio-exposome:
advancing exposure science and environmental justice in a
postgenomic era. Environ Sociol. 2017;3. https://doi.org/10.1080/
23251042.2016.1220848.

67. Liu C,Maity A, Lin X, et al. Design and analysis issues in gene and
environment studies. Environ Health. 2012;11:93. https://doi.org/
10.1186/1476-069X-11-93.

68. Kerr J, PattersonRE, Ellis K, et al. Objective assessment of physical
activity: classifiers for public health. Med Sci Sports Exerc. 2016.
https://doi.org/10.1249/MSS.0000000000000841.

69. Troiano RP, Berrigan D, Dodd KW, et al. Physical activity in the
United States measured by accelerometer. Med Sci Sports Exerc.
2008;40:181–8. https://doi.org/10.1249/mss.0b013e31815a51b3.

70. Ellis K, Kerr J, Godbole S, et al. Hip and wrist accelerometer algo-
rithms for free-living behavior classification objectivemeasurement
of physical activity. Med Sci Sports Exerc. 2016;48:933–40. https://
doi.org/10.1249/MSS.0000000000000840.

71. Dodge HH, Zhu J, Mattek NC, et al. Use of high-frequency in-
home monitoring data may reduce sample sizes needed in clinical
trials. PLoS One. 2015:10. https://doi.org/10.1371/journal.pone.
0138095.

72. Krenn PJ, Titze S, Oja P, et al. Use of global positioning systems to
study physical activity and the environment: a systematic review.
Am J PrevMed. 2011;41:508–15. https://doi.org/10.1016/j.amepre.
2011.06.046.

73. Jankowska MM, Schipperijn J, Kerr J. A framework for using GPS
data in physical activity and sedentary behavior studies. Exerc Sport
Sci Rev. 2015;43:48–56.

74. Berrigan D, Hipp A, Hurvitz PM, et al. Geospatial and contextual
approaches to energy balance and health. Ann GIS. 2015;21:157–
68. https://doi.org/10.1080/19475683.2015.1019925.

75. Rainham D, McDowell I, Krewski D, Sawada M. Conceptualizing
the healthscape: contributions of time geography, location technol-
ogies and spatial ecology to place and health research. Soc SciMed.
2010;70:668–76. https://doi.org/10.1016/j.socscimed.2009.10.035.

76. Kim D, Joung JG, Sohn KA, et al. Knowledge boosting: a graph-
based integration approach with multi-omics data and genomic
knowledge for cancer clinical outcome prediction. J Am Med
Inform Assoc. 2015. https://doi.org/10.1136/amiajnl-2013-002481.

77.• Huang S, Chaudhary K, Garmire LX. More is better: recent prog-
ress in multi-omics data integration methods. Front Genet. 2017. A
good review of varoius methods for heterogenous data integra-
tion methods in the omics sciences.

78. Pastrello C, Pasini E, KotlyarM, et al. Integration, visualization and
analysis of human interactome. Biochem Biophys Res Commun.
2014.

79. Peng C, Wang J, Asante I, et al. A latent unknown clustering inte-
grating multi-Omics data (LUCID) with phenotypic traits.
Bioinformatics. 2019. https://doi.org/10.1093/bioinformatics/
btz667.

80. Jankowska MM, Sears DD, Natarajan L, et al. Protocol for a cross
sectional study of cancer risk, environmental exposures and life-
style behaviors in a diverse community sample: the Community
of Mine study. BMC Public Health. 2019;19. https://doi.org/10.
1186/s12889-019-6501-2.

81. McDonald D, Hyde E, Debelius JW, et al American Gut: an Open
Platform for Citizen-Science Microbiome Research. Science (80- ).

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Curr Epidemiol Rep (2019) 6:476–485 485

https://doi.org/10.1111/j.1467-789X.2010.00726.x
https://doi.org/10.1161/CIRCULATIONAHA.110.969022
https://doi.org/10.1161/CIRCULATIONAHA.110.969022
https://doi.org/10.1016/j.healthplace.2009.09.008
https://doi.org/10.1016/j.healthplace.2009.09.008
https://doi.org/10.1093/epirev/mxp005
https://doi.org/10.1016/j.socscimed.2015.01.041
https://doi.org/10.1016/j.socscimed.2015.01.041
https://doi.org/10.1007/s10903-011-9439-8
https://doi.org/10.1371/journal.pone.0138511
https://doi.org/10.3390/ijerph16050861
https://doi.org/10.15252/embr.201744953
https://doi.org/10.1016/j.socscimed.2016.03.007
https://doi.org/10.1080/23251042.2016.1220848
https://doi.org/10.1080/23251042.2016.1220848
https://doi.org/10.1186/1476-069X-11-93
https://doi.org/10.1186/1476-069X-11-93
https://doi.org/10.1249/MSS.0000000000000841
https://doi.org/10.1249/mss.0b013e31815a51b3
https://doi.org/10.1249/MSS.0000000000000840
https://doi.org/10.1249/MSS.0000000000000840
https://doi.org/10.1371/journal.pone.0138095
https://doi.org/10.1371/journal.pone.0138095
https://doi.org/10.1016/j.amepre.2011.06.046
https://doi.org/10.1016/j.amepre.2011.06.046
https://doi.org/10.1080/19475683.2015.1019925
https://doi.org/10.1016/j.socscimed.2009.10.035
https://doi.org/10.1136/amiajnl-2013-002481
https://doi.org/10.1093/bioinformatics/btz667
https://doi.org/10.1093/bioinformatics/btz667
https://doi.org/10.1186/s12889-019-6501-2
https://doi.org/10.1186/s12889-019-6501-2

	Neighborhoods to Nucleotides—Advances and Gaps for an Obesity Disparities Systems Epidemiology Model
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Advances and Gaps for an Obesity Disparities Systems Epidemiology Model
	Genomics, Epigenomics, and Transcriptomics
	Microbiome and Nutrition
	Biomarkers
	Behaviors and Environment

	Data Collection and Integration in Systems Epidemiology
	The Nucleotides to Neighborhoods Study
	Conclusions
	References
	Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance





