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Abstract

Purpose of Review To discuss the methodological challenges in developing risk prediction models in perinatal epidemiology and
barriers to their implementation in clinical practice.

Recent Findings In perinatal epidemiology, risk prediction models have been created to examine the risk of adverse health
outcomes in pregnancy, delivery, and post-partum periods. However, only a limited number of prediction models are being used
to guide clinical decisions.

Summary The accuracy and utility of prediction models for clinical decision making are contingent on the use of robust methods to
develop risk prediction models and appropriate metrics to assess their performance and clinical impact. In order to increase the
transportability (i.e., generalizability) of prediction models, careful consideration of the patient populations represented in the data
used to develop and externally validate prediction models and the mechanism for data collection are needed. The era of big data
provides researchers the opportunity to leverage existing databases, such as birth and pregnancy registries, through linkage to
electronic health records, disease registries, and census data in order to enrich the breadth of clinical and sociodemographic infor-
mation available for prediction modeling. However, these data sources introduce new challenges that require thorough assessment to

evaluate their impact on the accuracy of resulting prediction models and their transportability to the general population.
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Introduction

Since the introduction of the first risk prediction tool for cardio-
vascular disease in 1976 [1], there has been a steady rise in the
number of prediction models in various fields of clinical epide-
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miology including cardiology, oncology, and pediatrics. In the
field of perinatal epidemiology, the motivation for prediction
modeling has been to identify women at highest risk of a neg-
ative health outcome to guide prevention strategies for the moth-
er and infant. More specifically, prediction modeling has en-
abled physicians to provide individualized care to women and
their infants through evidence-based decision making [2].
Prediction models have been broadly used in various fields
of perinatal epidemiology to predict treatment success for
women undergoing fertility treatments [3], predict complica-
tions of pregnancy (e.g., preeclampsia [4] and fetal growth
restriction [5]), predict outcomes at delivery (e.g., vaginal
birth after a cesarean section [6]) and in the post-partum period
(e.g., post-partum hemorrhage [7] and neonatal mortality in
preterm infants [8]), and to rule out women at risk of an ad-
verse outcome [9]. More recent literature has examined the
association between pregnancy-related exposures and long-
term outcomes in mothers and children [10, 11]. Despite the
increasing number of risk prediction models being developed,
few models are of sufficiently high quality or easily imple-
mented in routine clinical practice [2, 12, 13<]. This discrep-
ancy can be attributed to a number of factors including (1)
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inappropriate methods for model development and validation;
(2) the choice of data sources and populations for model de-
velopment and validation; (3) absence or imprecision in the
measurement of important predictors; and (4) lack of external
validation. The implications of these factors for the implemen-
tation of prediction models in routine practice will be
discussed in further detail in this review.

From Development to Use in Clinical Practice

Prior to implementation of prediction models in clinical prac-
tice, researchers need to (1) develop and internally validate the
model; (2) perform external validation; and (3) assess the clin-
ical impact of the model (Fig. 1). All three components are
needed to provide clinicians an objective measure for risk
stratification above clinical judgement [14].

Development and Internal Validation

The first step in model development is the identification of
potentially relevant predictors based on substantive knowl-
edge and the existing literature. Considerations for selection
of candidate predictors are discussed below. Once a list of
candidate predictors has been created, data reduction is per-
formed to remove predictors with narrow distributions (limit-
ed ability to explain variation in outcome) or a large degree of
missingness to increase model validity and parsimony [15].
Collinearity between predictors should be assessed and mini-
mized either by choosing predictors based on objective
criteria, which may include clinical relevance, availability,
reliability, or cost of measurement. A full model is then esti-
mated using variables not previously eliminated (i.e., the
strength and direction of association between each predictor
and outcome is estimated). Ideally, continuous variables are
modeled using restricted cubic splines or other smoothing

functions such as fractional polynomials, and categorical var-
iables are modeled using indicator variables. When fitting the
model, shrinkage methods should be considered when dealing
with small sample sizes to reduce the potential for model
overtit [16, 17]. The final step of model development involves
further data reduction for which various methods have been
proposed [18]. A well-established approach to data reduction
is the stepdown approach of Harrell et al. [15, 17]. The benefit
of this approach is that it is done independently of the out-
come, which reduces systematic bias and avoids using p values
for variable selection, which tend to result in model overfit and
poor model performance [15, 17].

Assessing Model Performance

Once the final model is established, its predictive performance
is examined using measures of accuracy and validity.
Performance can be grouped into three main categories, (1)
discrimination, (2) calibration, and (3) risk stratification.
Although risk stratification is not commonly used to examine
model performance, its addition provides a comprehensive as-
sessment since it evaluates a model’s capacity to appropriately
stratify patients. The utility of all three metrics to assess the
performance of prediction models is illustrated by the stillbirth
calculator to identify the risk of stillbirth in women [19] and the
fullPIERS model to identify the risk of adverse maternal out-
comes in women with preeclampsia [20]. Although both
models were found to perform well based on standard metrics
of discrimination and calibration, risk stratification allowed in-
vestigators to identify optimal thresholds (based on the rate of
false positive and true positive predictions) to assist clinicians
in their choice of treatment options for these women.
Discrimination refers to how well the model discriminates
between individuals with and without the outcome [18]. A
commonly used method to assess discrimination is the

Fig. 1 Steps to building a risk
prediction model
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Abbreviations: RCTs: randomized controlled trials.
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estimation of the area under the receiver operating curve (AUC)
or the c statistic [21], in which a value of 1 refers to perfect
discrimination, and 0.5 is equivalent to random chance. If the
prediction model involves time-to-event data, standard metrics
pose problems due to unobserved event times as a result of right
censoring [22]. Moreover, the presence of censoring during
follow-up warrants additional consideration, since the ordering
of events becomes difficult to decipher; Harrell’s concordance
(c) index [18, 23], Royston and Sauerbrei’s D statistic [24], and
the weighted Brier score [18, 23, 25] have been proposed to
address this limitation. Harrell’s ¢ index in the context of time-
to-event data is a rank order statistic measuring the ability of a
model to discriminate between individuals with different event
times [18, 23]. It is a measure of the probability of concordance
between observed and predicted survival probabilities given
that pairs are useable (> 1 individual experiences the event of
interest) [26]. Therefore, a model with good discriminative
properties will assign a higher predicted probability to an indi-
vidual with the event compared to an individual without the
event at the same time point [15]. Royston and Sauerbrei’s D
statistic is an absolute measure of separation of survival curves
that measures discrimination between strata of risk groups and
the baseline hazard [24]. The Brier score is a quadratic scoring
rule that estimates the squared distance between the observed
and predicted outcomes [18, 23]. As a measure of explained
variation, it can be used to assess calibration, as well as,
goodness-of-fit of the model. A Brier score can take values
from 0 to 1, with a value of 0 suggesting perfect prediction.
Brier scores are generated based on the prediction times from
the models calculated at fixed time points (e.g., 6- or 12-month
intervals) to generate time-dependent curves [23]. If censoring
is found to be substantial and informative, a weighted Brier
score using inverse probability of censoring weights should
be used [25, 27].

Calibration refers to the agreement between the predicted
and observed outcomes [18]. For prognostic estimates, calibra-
tion is important since it provides a measure of model reliability
[18]. Calibration plots are constructed as a function of the pre-
dictions from the model on the x-axis and the observed out-
comes on the y-axis with perfect predictions falling on the 45°
line [18]. Plots can also be generated by grouping individuals
based on their predicted probability of the outcome with a larg-
er division between groups indicating improved discrimination.
In the context of time-to-event data, calibration curves are cre-
ated from predicted probabilities obtained from the final models
and compared to observed probabilities obtained from Kaplan-

Table 1 Measures of Incremental Value and Clinical Utility

Meier estimates at fixed time intervals [15]. Calibration is then
measured as the difference between the observed and expected
survival estimates at specified time intervals. This difference
can then be used to correct the performance measures for the
degree of optimism or overfit of the model. A second measure
of calibration is goodness-of-fit, which is commonly measured
using the Hosmer-Lemeshow goodness-of-fit test for binary
outcomes. The number of expected and observed outcomes is
compared within groups of individuals using a x* statistic.
Goodness-of-fit for survival models is typically assessed using
calibration curves and the Brier score or by comparing the Cox-
Snell residuals and the cumulative hazard function within risk
categories [18].

Risk stratification is an important measure of performance
since it assesses the capacity of a prediction model to stratify
individuals into clinically relevant risk groups [28].
Stratification entails dichotomizing or categorizing predicted
risks based on meaningful cut-offs and assessing the capacity
of the model to classify patients into the defined risk catego-
ries [29]. Risk stratification can also be used to compare the
incremental value of predictors to existing models using re-
classification tables [28]. However, reclassification tables do
not account for improvements in risk stratification. The net
reclassification improvement (NRI) index was developed to
quantify improvements resulting from appropriate risk reclas-
sification by assigning scores based on upward
reclassifications in individuals with the disease and downward
reclassifications for individuals without the disease (Table 1)
[30]. An extension of the NRI, the integrated discrimination
improvement (IDI) index, assesses the NRI over all possible
cut-offs (Table 1) [30]. Risk stratification is important for im-
plementation of prediction models in clinical practice since it
facilitates the identification of high-risk patients and clinically
relevant thresholds for targeting prevention strategies. An ex-
ample of the utility of risk stratification to guide decision
making in clinical practice is the stratification of patients into
low- and high-risk of perinatal death compared to gestational
age alone using the miniPIERS model [31]. Based on the
performance of the model across various thresholds of predict-
ed risk, the investigators were able to determine the incremen-
tal value of the miniPIERS model above the current standard.

Internal Validation

Once performance measures have been established, internal
validation is needed to determine the degree of overfit of the

Net reclassification improvement
Integrated discrimination improvement
Net benefit

NRI = P(uplevent) — P(down|event) + P(down|non-event) — P(upjnon-event)
Slope = E(events) — E(non-events)
Net benefit = P2 where w = 0dds of cut-off [;2 o

]

E, expectation; FP, false positives; P, probability; p,, predicted probability of event; NRI, net reclassification improvement; 7P, true positives
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model. Commonly used techniques such as bootstrap resam-
pling and cross-validation allow investigators to report
optimism-corrected performance measures [32]. Bootstrap re-
sampling is preferable in particular when dealing with small
sample sizes to provide more precise estimates of the variabil-
ity associated with modeling [15].

External Validation

Once the final model has been found to perform adequately,
external validation should be completed to improve the gen-
eralizability of the model. External validation is performed in
a study population with a different data collection strategy
from that used for model development. Several methods for
external validation have been proposed including domain,
geographic, and temporal validation [18, 33]. All three forms
of external validation attempt to capture the potential for dif-
ferences in model performance based on temporal and geo-
graphical trends or heterogeneity in patient populations. A
recent study externally validating the fullPIERS model for
prediction of adverse outcomes in women with preeclampsia
provides an example of the various methods used for external
validation [34]. Using three cohorts including women from
different geographic locations, with varying periods of
follow-up time, and with a broader range of disease (hyper-
tensive disorders in versus of pregnancy versus preeclampsia),
the investigators were able to assess the transportability of the
model across time and clinical settings.

Assessing Clinical Impact

The final step in prediction modeling involves assessing the
clinical impact of the model. The presentation of absolute
risks of an outcome without clearly defined decision thresh-
olds is unlikely to modify a clinician’s decision for patient
management. Decision curve analyses were developed as a
means of quantifying the harms and benefits of treatment over
a range of decision thresholds [35, 36]. A decision curve is
based on a measure of net benefit (NB) defined as the propor-
tion of true positives penalized for false positives (Table 1)
[37]. This measure is weighted by the ratio of over diagnosis
(false positives) versus appropriate diagnosis (true positives),
which is directly related to the decision threshold. The clinical
utility of the final models can be assessed by plotting the range
of threshold probabilities using the final models against a
“treat all” and “treat none” scenario [36, 38]. For the purpose
of establishing clinical utility, discrimination should be prior-
itized relative to calibration since it facilitates decision mak-
ing. However, discrimination in isolation cannot determine the
impact of the model for use in clinical settings since
miscalibrated models can result in increased harm and reduc-
tions in the NB of prediction models [18].
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The final step prior to implementation of prediction models
is to perform impact evaluation studies for clinically relevant
outcomes [39]. Impact evaluation studies can be assessed
using randomized trials; however, due to time and cost con-
straints associated with the conduct of such trials, observation-
al or quasi-experimental designs (e.g., pre- and post-designs,
regression discontinuity, or differences-in-differences compar-
ing outcomes in populations in which risk prediction models
are used to standard of care) can provide a more efficient
means of evaluating the impact of prediction models.

Considerations in the Choice of Study Populations
for Development and Validation

The big data era has seen an upsurge of prediction models
developed using new data sources, including electronic health
records (EHR) and administrative health and insurance claims
databases. In perinatal epidemiology, these databases have
been used to develop prediction models for the risk of early
onset gestational diabetes [40], neonatal encephalopathy [41],
neonatal sepsis [42], and adverse pregnancy outcomes [43¢].
EHRs are digital versions of a patient’s medical chart contain-
ing medical and treatment history including laboratory and
diagnostic test results, prescriptions, and hospital admissions.
The breadth of clinical data in EHRs facilitates the sharing of
clinical information across healthcare providers to improve
continuity of care. Unlike EHRs, administrative health and
insurance claims databases include data collected for admin-
istrative or billing purposes (e.g., Medicaid, Medicare, and
Kaiser Permanente). The advantages of these databases are
that they include a large number of patients followed longitu-
dinally over time. Since these data are not collected for re-
search purposes, their use for development and validation of
risk prediction models is limited by the absence of detailed
clinical information, inconsistencies in reporting, and discon-
tinuous coverage resulting from changes in insurance pro-
viders or eligibility status. However, administrative and claims
databases can be leveraged for research purposes through link-
age to EHRs, disease registries, or census data.

The availability of more data and larger data sets affords an
opportunity to identify novel predictors not previously consid-
ered or to include a larger set of predictors. However, the
availability of new data sources and machine learning
methods may also contribute to the surplus of unvalidated
and poorly performing models. For example, there are approx-
imately 1000 prognostic models developed to assess the risk
of cardiovascular disease. However, only a limited number of
these models have been externally validated, and even fewer
are used for decision making in clinical practice [44].

Although EHRs and administrative and insurance data-
bases allow for the inclusion of a larger set of candidate pre-
dictors, the data for predictors and outcomes may be less de-
tailed, are subject to measurement error or inconsistencies in
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reporting due to between-center or between-healthcare pro-
vider heterogeneity, and may have a large degree of
missingness [45]. Although multiple imputation methods are
able to circumvent issues of missing data (with an acceptable
degree of missingness), they do not account for the inconsis-
tencies in reporting and data collection. For example, the
reporting of spontaneous abortions may vary by time (primar-
ily in earlier databases), by institution, and by healthcare pro-
vider in administrative databases largely due to the passive
nature of data collection. Moreover, private insurers often pro-
vide incentives to improve documentation of clinical and
sociodemographic characteristics by healthcare providers
compared to administrative databases where documentation
is left to the discretion of the provider. EHRs or administrative
databases may also lack important predictors that are not rou-
tinely collected or recorded. A recent study by Dalton and
colleagues showed that a summary measure for neighborhood
deprivation outperformed traditional risk factors in the pooled
cohort equations risk model for prediction of cardiovascular
risk [46]. As articulated by Galea and Keyes, the study by
Dalton highlights the uncertainty of the accuracy of individual
risk predictions based on a small set of clinical and demo-
graphic characteristics [47].

An additional consideration is the transportability of pre-
diction models to different healthcare settings (e.g., socialized
versus private healthcare and insurance claims versus popula-
tion-based). For example, if we are interested in developing a
risk prediction model to predict the occurrence of preeclamp-
sia in low-resource settings, using an EHR (from a tertiary
care setting) for the development of this model may not reflect
the distribution of predictors or outcomes in the target popu-
lation and impact its generalizability. An additional concern
regarding the use of these databases is the potential for selec-
tion bias due to informative censoring. Differences in the case-
mix in EHRs compared to the general population could result
in substantial selection bias as a result of competing events or
admissions to different hospitals. In perinatal epidemiology,
however, losses to follow-up may be less of a concern since
women tend to be younger and have fewer chronic illnesses.
Although EHR and administrative and claims databases have
become increasingly available, researchers need to consider
the limitations of these data and the implications for the accu-
racy of individual-level predictions and the potential harm to
patients based on miscalibrated models [13¢].

Considerations for Selection of Predictors

The performance of prediction models is determined by the
strength of the predictors included in the final model. The
strength of a predictor is a function of both the magnitude of
its association with the outcome and its distribution in the
population [18]. However, additional considerations are need-
ed to optimize selection of predictors. First, a predictor can

only have a small degree of missingness to be considered. If
there is an acceptable degree of missingness (30-50%) [48],
multiple imputation is preferred to minimize potential selec-
tion bias that may occur when using complete cases only.
Moreover, investigators need to ensure that predictors not rou-
tinely collected or readily available at the time of risk assess-
ment are included in the model as this will reduce the gener-
alizability of the model. For example, the usefulness of the
gold standard for assessment of proteinuria, 24-h urine pro-
tein, versus a rapid dip-stick for management of women with
gestational hypertension at > 37 weeks gestation is debatable
due to the lag time associated with laboratory testing. Second,
predictors need to be clearly defined using standardized and
clinically relevant definitions [33]. Using arbitrary cut-offs or
categories for predictors will reduce its transportability to clin-
ical settings. For example, if gestational diabetes is included as
a candidate predictor and the threshold for diagnosis used for
developing the model is different from the threshold used in
clinical practice, it will impact the predictive performance of
the model and its transportability into practice. In addition,
researchers should be cautious of data-driven categorization
of continuous predictors since they may be fitting the idiosyn-
crasies of the data rather than true associations [18]. Third, the
approach to data collection or capture needs to be considered
as this may impact the distribution of predictors in the popu-
lation used for model development or the accuracy of the
model for external validation. For example, developing a pre-
diction model to predict adverse obstetrical outcomes using a
general practitioner’s database may not capture women at
higher risk of experiencing the outcome since these women
are typically seen by obstetricians, thus, impacting the gener-
alizability of the model to all pregnant women. Fourth, the
temporality of predictors is essential for predictor selection.
Prediction models should only include patient characteristics
available to clinicians at the time of risk assessment and not
those that occur after the outcome. For example, although
infant birth weight is a strong predictor of success of vaginal
birth after a cesarean section, it should not be included as a
predictor since it is not available prior to delivery. Fifth, pre-
dictors do not need to be causally related to the outcome.
Candidate predictors should be chosen based on substantive
and clinical knowledge and not based on their causal relation-
ship with the outcome. For example, there is a lack of evi-
dence to support a causal link between demographic and cer-
tain clinical characteristics and stillbirth. However, previous
research suggests that socioeconomic status and smoking are
strong predictors of stillbirth [49, 50¢]. These risk factors
should therefore be considered as candidate predictors when
developing a prognostic model for stillbirth. Sixth, the predic-
tive value of predictors should not be assessed using measures
of association (e.g., odds ratios (OR), risk ratios, and risk
differences) [51]. As demonstrated in simulations, predictors
would need to have associations of magnitude of OR > 25 to
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be deemed strong predictors [51]. Researchers should there-
fore avoid using univariate analyses for selection of predictors
and rely on more relevant measures such as the discriminatory
ability of models. Finally, investigators tend to measure more
predictors than can reasonably be included in the model. For
prediction modeling, the number of predictors should be de-
termined by the number of outcomes. To minimize the risk of
overfitting or overly optimistic models (higher than expected
false positives), the convention is to use the 10:1 rule (ratio of
events to predictor) to improve model accuracy [39].
However, more recent work suggests that the 10:1 rule may
be too conservative and that the number of predictors should
be based on the prevalence of the outcome in the population,
the total sample size, and the number of events in the popula-
tion used for model development [52].

Generalizability of Prediction Models

External validation is essential for the implementation of pre-
diction models in clinical practice. However, it is rarely per-
formed as a result of the limited availability of suitable data,
[2, 13¢] and when performed, prediction models rarely per-
form well in external validation, mainly due to study-level or
population-level differences with the development dataset [12,
18]. These differences can occur in part due to differences in
study design, which can lead to differences in the incidence of
outcomes as a consequence of the sampling strategy (e.g.,
case-control versus cohort) or the mechanism of data collec-
tion (e.g., self-report versus physician diagnoses). Differences
in the incidence of the outcome between the development and
the validation set can reduce the transportability of the model
largely due to poor discrimination [13¢]. The distribution of
predictors may also differ as a result of variations in the case-
mix. For example, using a disease registry may result in more-
severe patients compared to a primary care or population-
based cohort. The accuracy of prediction models in validation
sets may also decrease as a function of temporal trends in
patient characteristics and outcome distributions. To accom-
modate such temporal changes and to avoid inappropriately
rejecting a potentially useful prediction model, investigators
can recalibrate or update models based on population-level
differences in the validation set [18, 33]. Discrepancies may
also result from differences in standard of care across jurisdic-
tions or availability of resources (e.g., tertiary versus primary
care settings or rural versus urban settings). Variations in the
strength of predictors can result from overfitting of models or
from variations in the definition of predictors and outcomes.
This can be minimized through the use of standardized defi-
nitions for predictors and outcomes and transparent reporting
as described in the Transparent Reporting of a multivariate
prediction model for Individual Prognosis Or Diagnosis
(TRIPOD) guidelines [53].
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Conclusions

Risk prediction modeling provides clinicians with an objec-
tive measure of an individual’s absolute risk to guide treatment
and prevention strategies. The increasing availability of pre-
diction models developed to predict outcomes during preg-
nancy and delivery and in the post-partum period highlights
the importance of targeting high-risk patients for prevention
strategies [54]. However, the utility of risk prediction models
in perinatal epidemiology is contingent on the use of appro-
priate modeling strategies for model development and valida-
tion, transparency in reporting of results, and assessment of
clinical impact. Additionally, data linkage and data quality
need to be optimized in order to facilitate the use of EHRs
and administrative and claims databases for development and
validation of prediction models and to improve the transport-
ability of models across clinical settings and geographic loca-
tions. Population-based pregnancy registries linked to various
databases including information from obstetrical visits (in-
cluding genetic screening, ultrasound, and diagnostic tests),
the antepartum and delivery period (including maternal and
infant outcomes), neonatal outcomes, past clinical history, and
vital statistics should be prioritized for the development and
validation of prediction models in perinatal epidemiology.
Birth and perinatal registries, similar to those available in
Denmark (Danish Medical Birth Register), Norway (Medical
Birth Registry of Norway), Finland (Medical Birth Registry),
Canada (British Columbia Perinatal Data Registry), and the
UK (Clinical Practice Research Datalink Pregnancy Registry)
are a few databases that could be exploited for risk prediction
in perinatal epidemiology due to the large number of individ-
uals included in these databases, the longitudinal follow-up,
and their representativeness of the general population.
However, the quality of the data and linkage to external data-
bases (as previously described) needs to be optimized in order
to reduce the potential for measurement error and missing data
and to improve the accuracy and generalizability of prediction
models.

Future research in risk prediction modeling in perinatal
epidemiology should focus on updating existing models and
adjusting or recalibrating them to the local circumstances or
settings rather than developing new models. This way, predic-
tion models may strengthen evidence-based, individualized
decision making and can contribute to a rational use of scarce
resources. When new prediction models are needed, consid-
erations regarding the clinical setting and the outcomes of
greatest importance should be prioritized to increase their
transportability to the target population. Despite the chal-
lenges of implementing prediction models in clinical practice,
they are useful in improving our understanding of how risk
factors contribute to the burden of disease and for identifying
women and infants who would benefit from available
treatments.
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