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Abstract
Purpose of Review Human reproduction is a common process and one that unfolds over a relatively short time, but
pregnancy and birth processes are challenging to study. Selection occurs at every step of this process (e.g., infertility,
early pregnancy loss, and stillbirth), adding substantial bias to estimated exposure-outcome associations. Here, we focus
on selection in perinatal epidemiology, specifically, how it affects research question formulation, feasible study designs,
and interpretation of results.
Recent Findings Approaches have recently been proposed to address selection issues in perinatal epidemiology. One such
approach is the ongoing pregnancies denominator for gestation-stratified analyses of infant outcomes. Similarly, bias
resulting from left truncation has recently been termed “live birth bias,” and a proposed solution is to control for common
causes of selection variables (e.g., fecundity, fetal loss) and birth outcomes. However, these approaches have theoretical
shortcomings, conflicting with the foundational epidemiologic concept of populations at risk for a given outcome.
Summary We engage with epidemiologic theory and employ thought experiments to demonstrate the problems of using denom-
inators that include units not “at risk” of the outcome. Fundamental (and commonsense) concerns of outcome definition and
analysis (e.g., ensuring that all study participants are at risk for the outcome) should take precedence in formulating questions and
analysis approaches, as should choosing questions that stakeholders care about. Selection and resulting biases in human repro-
ductive processes complicate estimation of unbiased causal exposure-outcome associations, but we should not focus solely (or
even mostly) on minimizing such biases.
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Introduction: Selection Processes and Risk
in Perinatal Epidemiology

In perinatal epidemiology, we seek to establish the effects of
exposures on outcomes among dynamic and complex popu-
lations: the population of people who may conceive, pregnant
women, their fetuses, neonates, infants, and women in the
postpartum and inter-conception periods (who may or may
not become pregnant again). Some of these populations are
not well-defined (e.g., people who may not desire children but
are nonetheless at risk for pregnancy), some are difficult to
enumerate (e.g., blastocysts and embryos in early gestation),
and most of them present challenges to researchers.

These populations are biologically interrelated, and par-
ticularly so during pregnancy. Most populations in repro-
ductive and perinatal epidemiology are characterized by
key transitions that remove people or gestations from the
“at risk” population, altering the pool among whom out-
comes can be studied. Beginning before conception, there
is an extended process of cohort attrition from embryonic
development through birth and early childhood [1–3, 4•].
By the time a woman realizes she is pregnant, the most
extensive cohort attrition has already occurred [4•, 5]. We
cannot measure the instances of fertilization and can only
measure implantations and subsequent losses with great
difficulty [4•, 6, 7]. Of the former, it is estimated that only
about one third makes it to live birth, be it preterm or term
birth [4•, 5]. These processes of selection (e.g., implanta-
tions to clinically recognized pregnancies, to birth) and
attrition (e.g., the loss of preterm live births and stillbirths
that are absent from the population of term live births)
determine the populations that we study in perinatal epide-
miology (illustrated in Fig. 1 over the course of gestation).
An important implication of these transitions is the recog-
nition that the population of live births has been culled
significantly by the time we study it (e.g., to examine in-
fant outcomes). Other populations within which we seek to
analyze causal effects are similarly affected by selection

processes, e.g., the population of preterm live births, who
represent a small and highly selected subset of the gesta-
tions that reach viability [8••].

The selection occurring at each of these stages can result
in biases of different types, depending on the research
question. We employ causal diagrams to illustrate these
biases [9, 10]. In studies seeking to establish the causal
effect of prematurity on neonatal death [11], confounders
include maternal and pregnancy characteristics (e.g.,
race/ethnicity, multi-fetal gestation) as well as pathologies
like preeclampsia, chorioamnionitis, and those that we do
not know (Supplemental Fig. S1, Panel A). However, if we
restrict our population to preterm births and seek to estab-
lish the causal effect of a preterm birth precursor (e.g.,
preeclampsia) on neonatal death, then the same causal
structure results in selection bias (Supplemental Fig. S1,
Panel B) [8••, 12]. One cannot simply alter the sampling
frame to circumvent this selection bias, as in the classical
Berkson bias [13, 14], which can be avoided by recruiting
study participants in a setting other than the hospital. For
this question, no sample of preterm infants will be immune
from this type of selection—except for the hypothetical
case in which babies were randomly assigned to being
delivered preterm. The forces that determine this sample
composition are diverse and include a host of social, envi-
ronmental, and biological processes that are largely out of
the investigator’s control [11, 15, 16].

Thus, the selection processes that determine the popula-
tions we study in perinatal epidemiology are more fundamen-
tal—and more intractable—than in other fields of epidemiol-
ogy. They are both widespread and largely unobservable.
They affect the questions we ask (by defining the scope of
causal effects we can hope to estimate), how we define our
target population, the study designs we can use, the biases
incurred in analyses among these populations, and the
methods we may use to control for these biases. In this paper,
we discuss these selection processes and their implications for
perinatal epidemiology.
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Methodological Considerations for Causal
Inference in Perinatal Epidemiology: Recent
Developments and Foundational Concepts

As epidemiologic methods have evolved in the last two de-
cades to include newer approaches for estimating causal ef-
fects [9, 17–23], there has been a growing focus on applying
tools and methods, such as causal diagrams and bias analysis,
to address selection issues in perinatal epidemiology [8••,
24••, 25•, 26]. One well-known bias that these advanced tools
are being applied to is the bias that affects gestation-stratified
analyses of prenatal exposures and postnatal endpoints
(resulting from conditioning on gestational-age, a mediator
and a collider) [8••, 24••, 27]. The counter-intuitive findings
that can result are well-documented (e.g., a seemingly protec-
tive effect of preeclampsia on cerebral palsy, infant death, and
many other infant morbidities [28–33]), as is their non-causal
basis [8••, 24••, 27].

One approach to addressing this particular selection issue is
to analyze all pregnancies reaching a given gestation as the
population at risk for pregnancy outcomes (variously de-
scribed as the “ongoing pregnancies denominator” and the
“fetuses-at-risk denominator”) [34, 35]. This approach pre-
vents conditioning on gestational age after the beginning of
the time at risk and has been applied to an increasing number
of fetal, maternal, and infant outcomes [36, 37•, 38–40]. This
approach is non-controversial for outcomes that occur before
the onset of labor (e.g., induction of labor, antepartum still-
birth) [34, 41–42, 43••, 44–45], and is also intuitive: The
population at risk for an antepartum stillbirth at or after a given
gestation (say, 37 weeks) is not deliveries occurring at 37-
weeks’ gestation; gestations that continue to 38 weeks,
39 weeks, and beyond were also at risk for this outcome at
37 weeks. Therefore, this approach uses the population of
gestations reaching 37 weeks as the denominator for this out-
come, regardless of whether birth occurred at 37 weeks or
later. Extension of this formulation to neonatal and childhood
conditions likely to have a prenatal origin has been proposed
[38–40, 46]. However, the application of this approach to
postnatal outcomes is controversial and has been shown to
result in misleading estimates [43••, 47].

Although it prevents conditioning on gestational age after
the beginning of time at risk, use of the ongoing pregnancies
denominator for postnatal outcomes promptly runs into anoth-
er, related problem: It results in the inclusion of denominator
units that have not yet reached the beginning of the time at risk
[43••, 44]. Studying the role of pre-conception and prenatal
factors in relation to endpoints that can only be diagnosed
among those having reached a specific milestone (such as live
birth, or a given childhood age) represents a common chal-
lenge in perinatal epidemiology. In the example above of term
antepartum stillbirth risk (i.e., at 37 weeks’ gestation or later),
the infants who are born preterm (whether liveborn or

stillborn) are not counted, nor are gestations that ended in
early pregnancy loss. This concern about populations missing
due to not reaching the beginning of the time at risk (i.e., left
truncation [48, 49]) is also increasingly being discussed (and,
when applied to neonatal outcomes occurring after live birth,
has been termed “live birth bias”[25•, 26]).

Say that researchers are analyzing the effect of a precon-
ception environmental exposure on the risk of a childhood
outcome like autism spectrum disorders (ASD). Suppose that
the exposure, like other prenatal and preconception causes of
ASD (e.g., advanced parental age, ambient air pollution)
[50–52], also increases risk of miscarriage and stillbirth
[53–55]. The outcome of ASD, by definition, may only occur
and be measured in conceptions that survive to viability and
which result in a live birth that reaches a given age (approxi-
mately 3 years old, for ASD). Again, there is selection at
several steps in the reproductive process (Supplemental Fig.
S2). Given that both our environmental exposure of interest
and other factors (referred to generally as “Exposure B” in Fig.
S2, Panel A) affect the risk of miscarriage, of stillbirth, and of
ASD, conditioning on survival beyond each of these steps
opens unblocked backdoor paths between exposure and out-
come, resulting in bias (Fig. S2, Panel B). One approach that
has been proposed is to control for these common causes of
the selection variables (e.g., fecundity, fetal loss) and the sub-
sequent outcome (e.g., ASD), in an attempt to close biasing
pathways opened up by selection [25•, 56]. However, the
meaning of such an estimate, and of the counterfactual it rep-
resents, is unclear [47, 57••, 58].

A foundational epidemiologic concept is that of “popula-
tion at risk” for a given outcome [59, 60••]. Only by rigorously
defining, identifying, and sampling the population at risk of
the outcome can we validly estimate the effect of an exposure
on that outcome. Specifically, all members of the denominator
must be able to become members of the numerator (i.e., be at
risk of the outcome during follow-up). The following thought
experiment shows what can happen when we fail to meet this
basic criterion.

A Thought Experiment Demonstrating
the Utility of Conditioning on Survival

Let us consider a large double-blind randomized controlled
trial to test a treatment, to be initiated before conception,
aimed at preventing autism spectrum disorders (ASD).
Given that ASD are rare, but have a relatively high risk of
recurrence [61, 62], researchers focus on women who have
had a first child diagnosed with ASD and are planning a sec-
ond child. In total, 4000 women are recruited, half of whom
are randomized to treatment and half to placebo. Participants
attempt conception for up to 12 cycles and collect weekly
urine samples to detect implantation. Taking full advantage
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of the imaginary nature of this study, we assume full compli-
ance and no dropouts. Even though this is an experimental
pre-conception cohort with complete follow-up, providing
an estimate based on all randomized women is not necessarily
the best option. The treatment may affect any of the steps prior
to a child surviving to age 3 (conception, early pregnancy loss,
fetal survival, and childhood survival), when the outcome can
be measured. The imaginary results of this trial are summa-
rized in Table 1.

The last column shows the relative risk (RR) calculated
based on the number of ASD cases divided by the denomina-
tor at each step. When all randomized women are considered,
as customary inmost trials, the treatment appears to reduce the
probability of ASD by 36% (i.e., RR = 0.64). Yet, if a phar-
maceutical company advertised this figure to demonstrate the
effectiveness of their treatment, most would consider it mis-
leading. Half of the drug’s apparent effect is due to attrition
prior to the time when diagnosis of ASD is even possible:
Women in the treatment arm have a 21% lower probability
of having a child who survives to age 3, due mostly to de-
creases in conceptions. Given survival to age 3, the treatment
reduces the probability of ASD by 18% (RR = 0.82). This is a
much smaller protective effect than the intention-to-treat anal-
ysis implied. The overall RR of 0.64, despite being an “unbi-
ased estimate” of the overall treatment effect, is neither very
useful nor very transparent. Indeed, if the overall effect were
the desired one, an even more impressive result could be
achieved by giving women long-acting reversible contracep-
tion or sterilization.

It could be argued that the more appropriate estimate is not
the relative risk of having a child with ASD but, rather, the
relative risk of having a child without ASD, as that is the
desired endpoint. This is expressed by a risk ratio of (710/
2000)/(881/2000) = 0.805. From this perspective, the placebo
appears to be superior, with a 20% higher probability of

having a child without ASD. However, this estimate answers
a different question and obscures the fact that, given that a
child survives to age 3, the treatment does reduce ASD risk.

This (admittedly artificial) example highlights the difficulty
of using a denominator that includes units not at risk, if the
exposure differentially affects the probability of reaching the
at-risk stage. If (continuing our hypothetical scenario) a brain
lesion characteristic of ASD could be detected by ultrasound
from week 20 of gestation, estimating the risk of this outcome
among all pregnancies surviving to 20 weeks would be appro-
priate. However, given current clinical capabilities, measuring
the risk of actual ASD only among survivors to age 3 is argu-
ably more relevant from a clinical perspective.

Epidemiologists often condition on post-exposure events
without agonizing over it. For example, when examining the
risk of infertility in women exposed to maternal smoking in
utero, not only do we condition on live birth but also on
survival to sexual maturity, despite evidence that maternal
smoking affects the probability of both these events [63, 64].
Yet, aside from the extreme difficulty of reconstructing a
posteriori the original pregnancy cohort, it is an incontrovert-
ible (if cynical) fact that infertility is not a concern for those
who have died. Furthermore, using the entire cohort would
attenuate the effect of prenatal exposure to maternal smoking
by including in the study population units that are “prisoners”
of the denominator as they cannot experience the outcome.

It is worth noting that, in a study such as the above, the
study population is often restricted to pregnancy planners
(e.g., [65–67]), which adds a further—and more controver-
sial—layer of conditioning, if children of smokers were less
likely to use contraception in a consistent manner (as has been
reported for smokers [68]). Unlike the unborn conceptuses
and the children who did not reach sexual maturity, those
who are not included in a study because they had conceived
by accident had a risk of infertility greater than 0, and their

Table 1 Results of a hypothetical randomized controlled trial of a treatment preventing autism spectrum disorders (ASD) among women with a prior
child with ASD

Treatment Placebo ASD RR among pregnancies
reaching this stageb

N reaching this stage % reaching this stagea N reaching this stage % reaching this stagea

All women enrolled 2000 2000 0.64

Chemical pregnancies 1480 74.0 1700 85.0 0.74

Clinical pregnancies 947 64.0 1156 68.0 0.79

Live births 796 84.1 1006 87.0 0.81

Survived to age 3 784 98.5 996 99.0 0.82

ASD 74 9.4 115 11.5

No ASD 710 90.6 881 88.5

a Percents are conditional on having reached the previous stage
b Each relative risk is calculated using as denominators the numbers reported in the column treatment and placebo, for exposed and unexposed,
respectively. The numerator is the same in all calculations and is given by 74 and 115
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exclusion could lead to overestimating the effect of prenatal
smoking on fertility.

While these examples effectively show the potential prob-
lems of using denominators that include units not at risk of the
outcome, the fact that exposures can differentially affect com-
peting events should, at a minimum, be discussed. This is
particularly true when presenting comparisons over time or
across populations, as the probability of surviving to given
milestones may differ over time or between populations
(e.g., survival of very preterm infants).

What Was the Question Again? Incorporating
Stakeholder Perspectives into Formulation
of Causal Questions

It bears repeating that formulating a good research question is
fundamental for sound science.We argue that this principle be
applied in perinatal epidemiology, despite the various factors
that play into an investigator’s scientific and analytical choices
(e.g., availability of a given dataset that may drive questions,
responsiveness to funding agencies’ current priorities, the
temptation to use “fashionable” methods). Without
discounting the importance of incremental knowledge gains
whose public health or clinical applications may only become
apparent later, we nonetheless advocate for selecting questions
whose results will drive further scientific discovery, policy,
and practice (e.g., those that may be translated into public
health interventions or policies, and which individual people
care about [69, 70]). The preceding thought experiment dem-
onstrates that the stage at which we define our causal question
is critical for both estimation and interpretation of the effects.
In the population of pre-pregnancy women, preventing con-
ception itself is extremely effective in preventing a case of an
adverse childhood outcome. However, non-outcomes are not
equal in the eyes of stakeholders: A non-outcome owing to
early pregnancy loss does not have the same meaning as a
non-outcome owing to a conception that is carried to term,
resulting in a child who is ASD-free.

The question “What is the effect of treatment among 3-year-
olds?” imposes selection and does not express the full effects of
the exposure on all reproductive processes leading up to the
outcome. Furthermore, this selection is likely to result in bias
because of many other competing risks throughout the repro-
ductive process (Supplemental Fig. S3). There are various
stages that a censoring-outcome confounder may introduce bias
under selection (Fig. S3, Panel A); however, a censoring-
outcome confounder must affect survival to only one such stage
to introduce this selection bias (as with Confounder C in Fig.
S3, Panel B). Although the full effect of treatment is not cap-
tured by this question (“What is the effect of treatment among
3-year-olds?”), and bias due to selection is likely, this is never-
theless a question that people care about. In this case, it is likely

the question that stakeholders care most about, which should be
prioritized even as we consider approaches to address selection
bias inherent in answering such questions. In these instances,
whenever possible, we should also provide estimates of the
effect of the exposure on key selection stages (e.g., the proba-
bility of clinical pregnancy and live birth).

Choosing a question that is relevant to the people who will
use those findings sometimes results in bias, but changing the
question to be one that does not incur these biases may make it
less relevant. In the thought experiment above, we find the
causal question of most interest is, “Compared to placebo,
what is the causal effect of the experimental drug on ASD
incidence among children at risk for this outcome?”
Although this specific outcome and definition of time at risk
imposes selection onto the population amongwhomwe estimate
the causal effect, these selection factors are motivated by the
scientific question. In other words, the censoring processes
(illustrated in Figs. 1, S2, and S3) are not nuisance parameters
whose consequences we wish to adjust away; rather, they are
variables of causal interest that meaningfully impact our scien-
tific question. Specifically, these censoring variables affect how
our population at risk is constituted.We see utility in understand-
ing how these censoring processes and competing events may
affect our estimated association, but like others [57••], we dis-
agree that the most logical solution is to attempt to adjust away
their influence. Doing so is conceptually analogous to redefining
the population of interest as all conceptions or all women en-
rolled in the study. As noted above, this change in focus includes
study participants who are never at risk for the outcome and also
changes the question to one that patients care less about. Finally,
it is not a plausible solution to adjust for all common causes of
the outcome (here, ASD) and conception, fetal loss, stillbirth,
and infant death. This represents an extremely large number of
variables, some of which will likely remain undefined.

Changing the study population changes the causal ques-
tion, which in turn alters applications of the results—some-
times dramatically. Thinking through, and defining, one’s re-
search question in detail is an often overlooked, yet essential,
step of the research process. Considerations to address when
defining the research question include, who is the target pop-
ulation? How does our sample population differ from this
target population? What is the outcome? Who is at risk for
it, and over what time? What is the exposure, and how is it
temporally related to the outcome? Given exposure and out-
come, what are the confounders? How well can we measure
each of these variables? What are the likely biases, and how
can we adjust for or minimize these in the analysis phase?

In addition to these considerations, we also advocate for
addressing the following point in helping guide question for-
mulation: What could be done with these results if our study
finds evidence of an association (or if it does not)? All these
considerations matter, and the weight given to each depends
on the investigator and the specific project. When studying the

Curr Epidemiol Rep (2018) 5:379–387 383



effects of prenatal or preconception exposures on childhood
endpoints, focusing too much attention on one problem (e.g.,
how do we address bias owing to selection processes in hu-
man reproduction?) risks losing sight of other concerns. We
argue that fundamental (and commonsense) concerns of out-
come definition and analysis (e.g., ensuring that all study par-
ticipants are at risk for the outcome) should take precedence,
as should choosing questions that stakeholders care about—
not just reducing bias.

Conclusion

Selection and resulting biases are omnipresent in human re-
productive and perinatal processes. In fact, these processes of
transition, attrition, and survival are arguably at the core of
human reproduction [4•]. They complicate our task to estimate
unbiased exposure-outcome associations, but it may not be in
our best interest to focus solely (or even mostly) on minimiz-
ing such biases. To illustrate why, we present one last thought
experiment, the most extreme so far.

Let us consider the ideal study design to study some adult
outcome and contrast this with the optimal study design to
study birth outcomes. Say we are interested in whether a given
dietary pattern affects risk of developing incident hypertension
among adults in their 40s and 50s. We can imagine enrolling a
large sample of normotensive adults in their 20s, in a perfect
universe with easy recruitment methods, excellent participa-
tion rates, and high retention throughout our desired study
period. We can imagine a world where participants would
gladly comply with whichever dietary regimen they are ran-
domly assigned, from a large and diverse list of possibilities.
We could follow these people for years or decades, and track
their blood pressure trajectories, hypertension incidence, and a
host of other risk factors and outcomes for good measure.

Now, picture conducting an analogous study to estimate the
effects of various dietary regimens before and during pregnan-
cy on a childhood outcome (say obesity, or ASD again). Even
with the low administrative burdens, easy enrollment and re-
tention, and sample with high compliance, this task is consid-
erably more difficult by comparison. In our hypertension
study, we had resources to track the few losses to follow up.
The rate of mortality was not very high among our age group,
so few participants were censored due to death. In contrast, in
our preconception cohort, no matter howwell-funded or beau-
tifully-designed our study is, we can count on at least 25% of
the original conception population at risk for childhood out-
comes being lost, many of them before we can even enumer-
ate them or know of their existence.Worse still, the losses may
be differential due to the exposure. It is difficult to draw a
parallel to the adult blood pressure study, but perhaps, there
is a cataclysmic disaster or an alien invasion that removes a
quarter of the population from the adult study, without our

being able to track them (or even, precisely how many were
taken). In the adult study, we at least were aware of the exis-
tence of all study participants, but not so in our preconception
cohort. In preconception cohorts, all women are enumerated
and known, but the internal and hidden nature of conception
and early embryonic development means that a large share of
our potential at-risk population cannot even be detected. Are
women not able to get pregnant? Losing conceptuses early?
Losing embryos later but still before the pregnancy is recog-
nized? Again, it is difficult to imagine how we could explain
this challenge to our colleagues in adult cardiovascular epide-
miology—perhaps there is an impenetrable, opaque force-
field that prevents some unknown proportion of the partici-
pants in their study from being enumerated, or even having
their existence known to the study team. It is even harder to
devise an analogy for infertility, yet another selection factor
that can be affected by our exposure of interest (like early
pregnancy loss)—particularly since some infertile couples
will never know their status, if they never try to conceive.

There may bemore apt analogies to describe the challenges
facing perinatal epidemiologists in assessing causal effects
amidst the dynamic, hidden, and interconnected populations
of pregnancy, birth, and childhood, but we believe that no
realistic ones can fully capture the dynamics of the many
selection processes we have focused on here. What we pro-
pose is that, rather than trying to combat the alien invaders to
recapture lost study participants, or to see through opaque and
impenetrable force-fields, we acknowledge the challenges fac-
ing us and use our epidemiologic tools to understand them as
best as we can. Thus, adjusting away selection may not always
be possible in perinatal epidemiology, but we should remain
vigilant in seeking to understand these processes and how they
affect our results. We should also be mindful to formulate
analytical approaches that conform to the foundational tenets
of epidemiology (e.g., populations at risk), and questions that
matter to stakeholders. When this process takes us down the
path of confronting bias owing to selection processes and
competing risks, we should do our best to understand and
address these biases, while still letting our question drive the
analytical approach.
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