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Abstract
Purpose of Review Biomarkers are widely used in perinatal epidemiology to examine the health effects of environmental
chemical exposures during pregnancy. These measurements take the form of chemical concentrations measured in blood, urine,
or other biospecimens. Biomarkers have the advantage of providing objective estimates of chemical exposures from multiple
sources. However, they are difficult to handle at the data analysis stage. We review recent trends and developments in the
statistical analysis of biomarkers with particular emphasis on exposure assessment and multivariable modeling.
Recent Findings Six statistical challenges are presented in the recent literature: (1) the analysis of biomarkers that fall below the
limit of detection, (2) adjustment for dilution-dependent sample variation, (3) handling repeated biomarker measurements within
a single pregnancy, (4) accounting for heterogeneity in biomarker levels between chemicals within the same chemical class, (5)
variable selection and shrinkage for biomarkers in the same class, and finally, (6) dimension reduction strategies including the
sum-of-chemical approach.
Summary The analysis of biomarkers of environmental chemical exposures remains immensely difficult, and the proper appli-
cation of emerging statistical techniques requires input from experts in diverse disciplines. We highlight specific gaps in the
literature where innovation in statistical methods is required.
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Introduction

Biomarkers of environmental chemical exposures are widely
used to assess etiologic relationships in perinatal epidemiolo-
gy [1]. For example, there is great interest in understanding the
effects of toxic chemicals, such as phthalates or
polychlorinated biphenyls (PCBs), on pregnancy outcomes
[2–5]. These effects can be studied using measurements from
human biospecimens, such as blood or urine, which quantify
the presence and the concentration of various toxic environ-
mental agents. A key advantage of using biomarkers is that
they unify diverse sources and routes of exposure to estimate
the biological dose in the target tissue [6, 7]. They also allow

investigators to study multiple exposures simultaneously by
using data taken from the same biospecimen [6, 7].

The analysis of biomarker data entails an extraordinary
collection of statistical challenges [8–12]. A biomarker can
describe a measurement in the causal sequence of events be-
tween an exposure to a hazardous factor and a health outcome
[6]. However, a biomarker cannot be used to directly quantify
the effects of interventions because the actual source and route
of exposure are difficult to determine. Furthermore, attributing
the cause of a health outcome to a single biomarker can be
difficult because there are often dozens of biomarkers to take
into consideration and they may be highly correlated. PCBs,
for example, involve 209 congeners measured in blood plas-
ma at very low levels [13]. Chemical concentrations measured
in blood or urine samples from pregnant women may also
be influenced by a variety of factors including dilution-
dependent sample variation, censoring at low-levels due to
detection limits, short chemical half-life, and variability due
to physiology and metabolism.

This review aims to discuss recent developments in the
statistical analysis of biomarkers with particular emphasis on
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chemical exposures during pregnancy. Given the breadth of
the field, we limit our review to significant trends and devel-
opments related to two topics: (1) statistical methods for ex-
posure assessment using biomarkers and (2) multivariable
modeling of perinatal outcomes where multiple biomarkers
are included as inputs in a linear regression model.
Throughout, we focus on settings where the scientific objec-
tive is to estimate the confounder-adjusted association be-
tween individual biomarkers within a single chemical class
and a continuous outcome.

Statistical Challenges in Exposure Assessment
Using Biomarkers

The quality of exposure measurement plays a critical role in
estimating the effects of environmental exposures. The use of
biomarkers adds an additional layer of complexity [9, 10].
Errors in exposure measurement can introduce bias and un-
certainty into estimates of health effects [14]. When working
with biomarkers, the objective is to estimate the health effects
of usual personal exposures over several months or during
specific windows of vulnerability (e.g., trimesters of pregnan-
cy) [15]. However, there are a myriad of data-analytic chal-
lenges that one may encounter. For example, non-persistent
chemicals such as phthalates and bisphenol A tend to metab-
olize quickly and measured analyte concentrations from urine
samples tend to reflect recent exposure [12].

In the following sections, we review three statistical chal-
lenges in exposure assessment that are specifically related to
biomarkers. We note that there is a vast literature on biostatis-
tical methods to correct for measurement error and misclassi-
fication [10, 14]. These approaches, including regression cali-
bration and Bayesian approaches, model the relationship be-
tween the observed exposure and an unobserved true exposure,
and they permit statistical adjustment for bias and uncertainty
in the exposure-disease relation [10]. However, these methods
are less commonly used in epidemiological studies with bio-
markers of environmental chemical exposures because, in
most settings, there is no unambiguous definition of the true
exposure that can be measured objectively and then used to
estimate the size of the measurement error [14].

Biomarkers That Fall Below the Limit of Detection

Biomarkers for low-level chemical exposure frequently fall
below the minimum detectable capacity of the analytical in-
struments. These measurements, reported by many laborato-
ries as less than the limits of detection (< LOD), are not usable
in any statistical analysis. Substitution with a fixed value such
as LOD/2 or LOD/√2 is the most common strategy for

handling the left-censored data. Deletion of all observations
< LOD is also commonly seen. However, when the same
value is substituted repeatedly or when data are not censored
at random, then increased bias, decreased power and reduced
variability will result [16–20]. Although deletion and substi-
tution are widely used and easy to implement, the consensus
in the literature is that they should be avoided when the fre-
quency of non-detection exceeds 10% [18, 21].

In contrast, maximum likelihood estimation (MLE) is usu-
ally superior. It uses the uncensored data to maximize the
likelihood function for the log-transformed censored data
and iteratively produce estimates with low bias and high sta-
tistical power [17, 19, 20, 22–24]. MLE is the gold standard
when the data follow a parametric distribution [17, 18].
However, MLE is not suitable for datasets with small sample
size or non-parametric distributions. In these settings, multiple
imputation (MI) is preferable [18, 22]. MI uses multiple
datasets that are imputed individually to obtain a set of esti-
mates that are combined to form a final estimate [18, 22,
25–27]. The number of recommended imputations is between
five and ten [22, 28] and can be implemented easily with
statistical software. However, the selection of a suitable impu-
tation model may be complicated [22, 28, 29].

In general, there is no single method that is superior in all
settings and researchers are encouraged to select methods that
best fit their own scenarios [17]. As bias increases with the
proportion of < LOD, it is sometimes recommended that a
chemical be omitted completely from the analysis if the fre-
quency of non-detection exceeds 20%. Furthermore, it is often
incorrectly assumed that the measurement error in the reported
values < LOD is greater than the errors in those above the
LOD [26, 30]. It has been suggested that machine readings,
which are the uncensored outputs from the analytical instru-
ments, may bemore accurate than the imputed values [18, 31].
Therefore, before choosing an imputation method, obtaining
the machine readings is encouraged to better understand the
measurement error process [32].

Adjustment for Lipid or Urine Dilution to Better
Estimate Biologically Relevant Exposure

Variabilities in physiological processes can influence bio-
marker measurements in blood and urine samples.
Lipophilic chemicals in blood samples require adjustment
for lipid dilution [32, 33••], whereas urinary chemicals require
creatinine or specific gravity adjustment to account for hydra-
tion level [34]. For example, when measuring PCBs, individ-
uals with more body fat will have greater PCB concentrations
compared to leaner individuals and, if uncorrected, this mea-
surement error leads to an overestimation of PCB exposure
levels in the target tissue [35]. Consequently, to estimate the
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biologically relevant exposure, it is necessary to account for
dilution-dependent sample variation.

Traditionally, lipid dilution is adjusted by dividing chemi-
cal concentration with serum lipid levels (e.g., μg/L or μg/g
lipids) [34, 35], and urine diluteness is adjusted using either
creatinine or specific gravity (SG) [36–38]. There is an ongo-
ing debate of what the best adjustment methods are, but there
has been no definitive answer that works in all settings [34].
O’Brien et al. [39••], using directed acyclic graphs and simu-
lation studies, compared traditional adjustment methods with
novel methods. They recommended adjusting for urinary sam-
ples by creating a “creatinine z-score,” which divides the
chemical concentration by C/C[ratio], which is the ratio of
the observed creatinine level divided by the predicted value
[39••]. An alternative option is to adjust for both the “creati-
nine z-score” and creatinine as covariates [39••]. As for serum
samples, both the traditional adjustment method and the inclu-
sion of lipids as covariate in the regression model are recom-
mended [39••].

Further studies looking at the use of 2-stage models for
creatinine have been proposed [40, 41], and other newer
methods involve examining total lipid and creatinine levels
across participants according to sociodemographic factors
[42], biological media (e.g., blood or urine), and chemical
characteristics (e.g., persistence, lipophilicity, or hydrophilic-
ity) [43•]. Regardless of the adjustment method, it is important
to keep in mind that it is logistically challenging to obtain
tissue-specific measurements which could help better under-
stand the toxicant distribution in the target tissues. Blood and
urine samples, therefore, are proxies of how the chemicals
affect inaccessible human tissues [33••, 39••]. Even after
correcting for dilution differences, the exposure measure-
ments may not reflect exposure in the target tissue.

Handling Repeated Measures of Biomarkers
Within a Single Pregnancy

Biomarker exposures have traditionally been assessed using
spot samples. Recent literature has revealed that this practice
of assessing exposure at a single time point during pregnancy
does not adequately represent the exposure throughout the
whole pregnancy [44•, 45••, 46•]. Single exposure measure-
ments typically ignore within-person variability and may lead
to exposuremisclassification [45••, 47] especially among non-
persistent chemicals with low intraclass correlation coeffi-
cients (ICCs), such as BPAs and some phthalates where
within-person variability is especially high [45••].

ICCs determine the reliability of the exposure measure-
ments by calculating the ratio of between-person variability
to total variability (e.g., between- plus within-person variabil-
ities) over a period of time. For persistent chemicals such as
polybrominated diphenyl ethers (PBDEs), where within-

person variability is small compared to between-person vari-
ability, the ICCs are close to 1 (e.g., 0.87 to 0.99), which
indicates that single samples can reliably measure average
exposures [48]. For chemicals with ICCs less than 0.6, such
as BPAs and phthalates, it was found that as many as 35
samples per participant are needed to achieve adequate statis-
tical power and limit bias [45••]. For these low ICCs, multiple
measurements per participant collected over the course of the
pregnancy are recommended [44•, 46•, 49]. However, the
quality of exposure measurement also depends on the charac-
teristics of the biological sample. For example, cotinine mea-
sured in hair reflects longer periods of exposure to secondhand
smoke while serum cotinine reflects exposure in recent days
[50].

Assaying multiple samples per participant results in higher
assay costs. A simulation study by Perrier et al. [45••] showed
that repeated measurements can be pooled before analysis
with equal aliquots from each sample, and this reduces costs.
Compared to using single measures, this cost-saving method
saw improved power and bias [43•, 45••]. Alternatively, at the
data analysis stage, repeated biomarkers measures can be
summarized into a single measure of cumulative exposure
[33••, 51]. Using the mean biomarker concentration across
visits improves power to detect exposure-disease relationships
even when exposure has poor stability over time [33••].
However, the mean concentration may not reflect exposure
during biologically relevant periods, and any data that are
missing not at random can bias the results. When an acute
exposure is of interest, using the maximum rather than the
mean exposure across visits is appropriate. It is important to
note that the effects of the acute exposure represented by max-
imum exposure will also depend on its temporal relationship
with an outcome. Recently, Chen et al. [33••] reviewed several
statistical models for repeated measure of biomarkers in preg-
nant women includingmultivariable regression, regression-in-
parallel and multiple informants modeling, two-stage
methods, and clustering methods. There are also statistical
approaches using measurement error models such as regres-
sion calibration and simulation extrapolation (SIMEX) to cor-
rect for exposure misclassification [10].

Besides providing a more accurate exposure assessment,
repeated measurements can identify critical windows of vul-
nerability by analyzing changes in biomarker levels across
pregnancy. The identification of critical windows is difficult
statistically because the biomarkers are correlated within indi-
viduals, and this induces collinearity if the repeated measures
are included in the outcome model [33••]. Furthermore, im-
portant time windows are mostly unknown and are highly
dependent on the chemicals and outcomes studied. To deter-
mine differences in effects across time of exposure, while
accounting for correlated exposures, several modeling ap-
proaches such as those examined by Chen et al. [33••] and
Sanchez et al. [51] can be applied.

286 Curr Epidemiol Rep (2018) 5:284–292



Statistical Challenges in Multivariable
Modeling with Biomarkers of Environmental
Chemical Exposure

When examining the relation between multiple biomarkers in
the same chemical class and a health outcome, the critical
issue is to determine the scientific objective of the analysis
[12, 52, 53]. The investigator must carefully consider the caus-
al questions, competing hypotheses, and the quantification
and interpretation of evidence [52]. However, in the case of
biomarkers of environmental chemical exposures the infer-
ences about causality are primarily at the hypothesis-
generating end of the research spectrum. For example, when
examining the dose-response relationship over continuous
levels of PCBsmeasured in blood, there are no clearly defined
interventions that can directly modify biomarker levels in hu-
man tissue [7, 54]. Consequently, in the discussion that fol-
lows, we focus on statistical challenges where the goal is to
estimate the confounder-adjusted association between individ-
ual biomarkers within a chemical class (e.g., PCBs) and a
continuous outcome, where the dose-response is presumed
to have a simple mathematical form (e.g., linear or monoton-
ically increasing).

The most widely used analytic strategy is multiple linear
regression where one or more of the biomarkers are included
as predictor variables, along with confounders [55••].
Controlling for too many biomarkers can lead to data spar-
sity or multicollinearity, particularly when the number of
predictors is large in relation to the sample size [56].
Consequently, researchers will seek to reduce the number
of variables in the model. Biomarkers present a host of
unique challenges in multivariable modeling because some
analytes are chemically related. For example, phthalate me-
tabolites in urine are often derived from the same parent
compound and tend to be highly correlated. Three specific
problems include the following: (1) accounting for hetero-
geneity in biomarker levels between chemicals within the
same chemical grouping (e.g., PCBs), (2) variable selection
and shrinkage techniques for biomarkers, and (3) the role of
dimension reduction techniques such as summation of chem-
ical concentrations.

Accounting for Heterogeneity in Biomarker Levels
Between Chemicals Within the Same Class

When examining the association between several exposure
biomarkers within a chemical class and a health outcome, it
is desirable to report a measure of effect that conveys the
magnitude of the association, per unit change in the biomark-
er. However, choosing a measure of effect that is easily
interpreted is not simple. Consider, for example, the case of
PCB153, which is more widely detected, and also more

variable between individuals, than PCB118 [1]. If the mea-
sured concentrations for both compounds are included directly
in a multivariable model for the outcome, then the regression
coefficient for PCB153 will be diminished relative to PCB118
merely because the exposure level for PCB153 is more het-
erogeneous in the study population. More generally, within
any chemical class there are often dozens of analytes to take
into consideration, many of which are detectable in fewer than
50% of the study subjects. Furthermore, different authors use
different scales of measurement of exposure, such as μg/L vs.
ng/g lipid. Consequently, it is extremely difficult to assemble a
collection of predictor variables for inclusion in a multivari-
able model.

It is common practice to log transform the biomarker con-
centrations, using base 2 or 10, before incorporating them
into a multivariable model. In addition to limiting the influ-
ence of outliers, this approach also incorporates a non-linear
dose-response between the biomarker concentration and the
mean of the outcome variable, where the slope of the curve
levels off at higher doses [5]. Nonetheless, the interpretation
of the multivariable regression analysis results remains prob-
lematic. The regression coefficients correspond to changes
in the mean of the outcome that are associated with a 2-fold
(or 10-fold) increase in the level of the biomarker. This is
difficult to interpret without referring to percentiles of the
concentration on the original scale. For example, a 10-fold
increase in concentration from the median may entail extrap-
olation of effects outside of the range of biologically plausi-
ble exposure levels.

A different strategy is to put the biomarkers onto a common
scale by subtracting the mean and dividing by the standard
deviation [57]. Subtracting the mean typically improves the
interpretation of main effects in the presence of interactions
[58]. The resulting regression coefficient is the expected dif-
ference in the outcome comparing participants that differ by
one standard deviation in the input variable, conditional on the
remaining predictors. More generally, scaling predictors is
widely used in combination with shrinkage methods, such as
lasso regression, because it can dramatically affect regression
coefficient estimation [59]. However, scaling input variables
using the standard deviation has been criticized because the
resulting scale of measurement is not transportable, meaning
that the regression coefficients cannot be compared between
studies because they depend on the distribution of exposure,
which is sensitive to arbitrary features of the study design [60,
61]. Furthermore, right-skewness of biomarker concentrations
tends to distort the standard deviation to render it meaningless
as a measure of variability.

We recommend two alternative approaches to account
for heterogeneity in biomarker levels: either discretizing
the predictor into quartiles or tertiles [62, 63], or rescaling
the biomarker concentrations using a standard reference
such as an interquartile range (IQR). The standard reference
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should be expressed in natural units of the exposure, which
should be established based on the distribution of the expo-
sure in the target population. Ideally, it should correspond
to levels of exposure where biologically meaningful chang-
es in the outcome are anticipated. Discretization has been
criticized in the statistical literature [64] because the pre-
sumed model for the relationship between the predictor and
the outcome is typically unrealistic, which can introduce
bias. However, discretization has the advantage that it bal-
ances the tradeoff between simplicity and interpretability
versus proper fit [65].

Variable Selection and Shrinkage Techniques
for Biomarkers Within the Same Chemical Class

Variable selection and model building using biomarkers of
environmental chemical exposure is uniquely challenging
[9]. Consider, for example, the case of PCBs, which can be
measured by as many as 209 unique congeners in blood. In
populations not subject to widespread pollution, most PCBs
are detectable in fewer than 50% of the study participants.
On the one hand, we could attempt to impute low concen-
trations. However, the low detection rates raise questions
about which biomarkers should be incorporated into the
model. Many investigators discard all but the most widely
detected congeners and retain those that meet a particular
detection threshold (e.g., 20%). Other authors limit their fo-
cus entirely to PCB153 based on the argument that it is
correlated with other PCBs and with PCB summary metrics
[13]. Discarding some PCBs is reasonable because, individ-
ually, we do not expect low-level exposures to predict mea-
surable variation in the outcome. On the other hand, all PCBs
reveal information about cumulative PCB exposure,
and some PCBs may be toxic even at very low levels. The
health effects of low-level chemical exposures during preg-
nancy are mostly unknown [66]. Therefore, new research
is required to support multivariable modeling of high-
dimensional low-level biomarkers [9, 67]. One important
direction of research is to develop novel MI techniques for
joint imputation of multiple correlated biomarkers that fall
below the LOD and to characterize settings in which such
methods will be most useful [67].

A related issue in multivariable modeling concerns the
adjustment for co-pollutant confounding [55••, 68••, 69••].
Consider the case of PCB153 and PCB180, which are both
widely detected in human populations [13]. The biomarkers
are correlated because the congeners were manufactured to-
gether as commercial PCB mixtures. The investigators must
decide whether both compounds should be included into the
same multivariable model for a health outcome or not. If
both PCBs are included, the regression coefficients become
harder to interpret etiologically because they describe

changes in the mean response conditional on the respective
PCBs. However, PCB153 and PCB180 do not vary indepen-
dently and the standard error of the regression coefficients
may increase dramatically due to collinearity. Conversely, if
both PCBs are not included in the model, then the regression
coefficients will be confounded by one another [69••]. It is
likely that etiologically relevant parameters that describe the
causal effects of individual chemicals can be recovered via
prediction from a model that incorporates multiple bio-
markers from the same class, for example, by using the para-
metric g-formula [58, 70, 71].

One widely used analytic strategy is to combine variable
selection with shrinkage methods, such as Bayesian hierar-
chical modeling [72, 73], the lasso or elastic net [55••, 74,
75]. Bayesian methods use probability distributions to model
uncertainty. These distributions, called prior distributions,
are combined with the data to obtain the posterior distribu-
tion for model parameters. Bayesian hierarchical models
generalize ordinary regression to distinguish multiple levels
of information in a model. The hierarchical structure intro-
duces shrinkage which reduces the regression coefficients
towards zero or towards a group-specific mean parameter.
Introducing bias is typically not desirable; however, shrink-
age methods also reduce the standard error, and consequent-
ly, the overall mean squared error of estimation. Thus,
shrinkage methods are particularly useful in the presence of
collinearity because they stabilize parameters estimates and
reduce prediction error of the outcome variable. As a result
of these advantages and their usefulness in settings with
multiple correlated exposures, shrinkage methods and
Bayesian techniques have been used to analyze biomarkers
[3, 76–80].

Dimension Reduction Methods for Biomarkers
Within the Same Chemical Class, Including
the Sum-Of-Chemical Approach

Data from highly correlated exposures can be combined using
dimension reduction techniques to reduce the number of var-
iables [74]. The idea is to create linear combinations of bio-
markers that serve as lower dimensional summaries, and these
can be included as predictors in the outcome model. Rather
than looking at the effects of individual biomarkers, dimen-
sion reduction techniques address a different scientific objec-
tive, which is to examine the association between a broad class
of chemical exposures and a health outcome [11]. One of
the most common examples is to sum the individual biomark-
er concentrations [13], or alternatively, to sum the concentra-
tions after dividing by the molar mass (see [81] and [5] for
examples related to PCBs and phthalates). This approach is
straightforward and intuitively appealing; however, it does not
account for the potency of the individual biomarkers. If a
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biomarker does not affect the outcome, then including it in the
sum will introduce a measurement error in the estimated dose-
response relationship between the summation and the out-
come. Alternatively, sums can be created by weighting each
biomarker by their toxicity, such as toxic equivalency factors
(TEFs), which describe dioxin-related toxicity for PCBs [82].
It is also possible to use data-driven approaches to create low-
er dimensional summary variables based on relationships in
the data. Examples include principal component analysis
(PCA), partial least squares, cluster analysis, weighted
quantile sum regression [83], environmental risk scores [84],
and structural equation models [85] that use a latent variable
for the true unobservable exposure.

However, a limitation of dimension reduction techniques is
that the biological interpretation of the analysis results is chal-
lenging. A unit change in the low-dimensional summary (e.g.,
+1 IQR) need not correspond to changes in more distal expo-
sures (see [15] for an example related to household dust).
When analyzing biomarkers of environmental chemical expo-
sure, there are two distinct scientific objectives: estimating the
health effects of individual chemicals, and estimating the
health effect of cumulative exposure to multiple chemicals.
Dimension reduction techniques for biomarkers of environ-
mental chemical exposures lie squarely within the second ob-
jective. Further research is needed to bridge the gap between
dimension reduction techniques and the growing literature on
causal inference.

Conclusions

We have highlighted several unique challenges in the analy-
sis of biomarkers of environmental chemical exposures with
particular focus on exposure assessment and multivariable

modeling. Please refer to Table 1 for key references listed
according to the statistical challenges we have identified.
Although our emphasis was on exposures during pregnancy,
the challenges are also of relevant to epidemiologists work-
ing in other areas of environmental health. Given the broad
scope of the review, it is inevitable that some topics are
omitted. We did not discuss the literature on uncertainty
quantification for high-dimensional data (e.g., multiple test-
ing) or machine learning and non-linear modeling tech-
niques, and we refer the reader to the textbooks [64, 74] for
further details. Additionally, we fully acknowledge having
sidestepped a detailed discussion of causal inference using
biomarkers. We focused on settings where the scientific ob-
jective is to estimate the confounder-adjusted association
between individual biomarkers within a chemical class and
a health outcome. This is consistent with the usual custom in
epidemiology of exercising caution in using language about
causality [86]. When analyzing biomarkers, the topic of
cause and effect relationships inevitably drifts to formulating
difficult-to-answer questions such as “Had their measured
biomarker levels been different, would the pregnancy out-
come have been different?” [7]. Ignoring causality has the
disadvantage that it does not shed light on the health effects
of specific interventions [15]. However, it should be empha-
sized that association studies have the advantage that they
can reveal specific biological mechanisms [15]. This con-
tributes to the overall body of evidence linking chemical
exposures and health outcomes. More generally, there is a
vast literature on statistical methods for causal inference
[87]. Much of this work has been in applied settings with a
binary treatment comparison [88]. There is also an emerging
body of work about the analysis of chemical mixtures [89,
90]. New research is needed to clearly articulate the defini-
tions of causal contrasts that are relevant to the study of
biomarkers of environmental chemical exposures.

Table 1 Key references
according to statistical challenges Topics Statistical challenges Key references

Exposure assessment Biomarkers below the LOD Whitcomb et al. 2008 [32]

Helsel 2005 [18]

Dilution-dependent sample variation O’Brien et al. 2016 [39••]

Repeated measures during
pregnancy

Perrier et al. 2016 [45••]

Chen et al. 2015 [33••]

Multivariable modeling Heterogeneity in biomarker levels Greenland et al. 1991 [60]

James et al. 2013 [74]

Variable selection and
shrinkage techniques

Patel 2017 [68••]

Agier et al. 2016 [55••]

Weisskopf et al. 2018 [69••]

Dimension reduction and
sum-of-chemical approach

James et al. 2013 [74]

Carrico et al. 2014 [83]
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