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Abstract
Purpose of Reviews Complex diseases are caused by a combination of genetic and environmental factors, creating a
challenge for understanding the disease mechanisms. Understanding the interplay between genes and environmental
factors is important, as genes do not operate in isolation but rather in complex networks and pathways influenced by
environmental factors. The advent of new technologies has made a massive amount of genetic data available, and
various statistical methods have been developed to analyze genetic data and to identify interactions between genes
and the environment, i.e., gene-environment (G-E) interactions.
Recent Findings In this review article, we introduce various statistical methods for identifying G-E interactions using case-
control designs.We review a range of disease riskmodels for modeling the joint effects of genetic and environmental factors such
as multiplicative and additive models. We then introduce various inference methods under these disease risk models, which
include a standard prospective likelihood, case-only designs, a retrospective likelihood that exploits a gene-environment inde-
pendence assumption to boost power, and an empirical Bayes type approach that uses the independence assumption in a data-
adaptive way. Several tests for detecting genetic associations in the presence of G-E interactions are also introduced, which
include a joint test and a maximum score test that provides a unified approach by integrating a class of disease risk models to
maximize over a class of score tests.
Summary There are several challenges of G-E interaction analysis that include replication issues. While more powerful statistical
methods for detecting interactions are helpful, ultimately studies with larger sample sizes are needed to identify interactions
through consortium-based studies to achieve adequate power for G-E analysis.
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Introduction

Complex diseases are caused by a combination of genetic and
environmental factors, creating a challenge for understanding
the disease mechanisms. Understanding the interplay between
genes and environmental factors is important, as genes do not
operate in isolation but rather in complex networks and path-
ways influenced by environmental factors. In addition to pro-
viding insights into disease etiology, exploiting gene-
environment (G-E) interaction can help discover novel sus-
ceptibility loci for complex diseases, where genetic effects
are modified and masked by the effects of environmental fac-
tors. Therefore, evaluating the main effects of a gene without
considering its interaction with environmental factors can
miss true association signals [1–3]. From a public health per-
spective, G-E interaction is useful because findings based on
interactions can help develop strategies for targeted
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intervention; conducting an intervention focusing on a subset
of the population identified by G-E interactions can provide
efficiency in disease prevention [4•, 5•].

Although G-E interaction has various meanings in epide-
miology, it can be generally defined as a joint effect of genetic
and environmental risk factors that cannot be explained by
their separate marginal effects [6]. The recent advent of new
technologies has made amassive amount of genetic data avail-
able, and various statistical methods have been developed to
analyze genetic data and to identify G-E interactions. These
methods include approaches that exploit additional assump-
tions such as G-E independence to improve power such as
case-only analysis, retrospective likelihood-based analysis as
well as empirical based estimators, methods that incorporate
alternative disease risk models such as additive models, and
tests for identifying interactions between rare variants and
exposures based on exome or whole genome sequencing data.
Various software packages have been also developed, which
can be used to apply newly developed statistical methods for
detecting G-E interactions.

The purpose of this article is to introduce recently developed
statistical methods for evaluating G-E interactions across vari-
ous complex diseases. While several study designs are avail-
able for examining G-E interactions such as prospective cohort
studies, case-control studies, and family studies designs, we
will focus on case-control studies that are mostly commonly
used for genome-wide association studies (GWAS). In this re-
view, we will first discuss the statistical models for joint effects
of genetic and environmental factors and then introduce various
statistical inferences methods under these models such as
methods based on prospective and retrospective likelihoods
as well as empirical base type approaches. We will then intro-
duce statistical approaches that test for genetic associations in
the presence of G-E interactions, variousmethods for two-stage
analyses for GWAS, and methods for identifying interactions
between rare variants and environmental exposures. We final-
ize this article with current challenges and future directions for
analyzing G-E interactions.

Statistical Models for GxE and Interpretations
of Interactions

There are several disease risk models for the joint effects of G
and E, and interpretations of G-E interactions depend on the
underlying disease risk models. A multiplicative model is one
of the most commonly used models via logistic regression:
logit (Pr(D = 1|G, E)) = β0 + βGG + βEE, where G is a geno-
type of a single nucleotide polymorphism (SNP), E is an en-
vironmental risk factor, andD is the disease status. Depending
on the assumed genetic model, G can be coded for an additive
genetic model (i.e., the number of the variant allele), dominant
model (i.e., 1 for variant allele carriers and 0 for non-carriers),

or recessive model (i.e., 1 if one carries two copies of the
variant allele and 0 otherwise). A departure from this model
is called a multiplicative interaction, which can be tested by
H0 : βGE = 0 in the following saturated model:

logit Pr D ¼ 1jG;Eð Þð Þ ¼ β0 þ βGGþ βEE þ βGEGE ð1Þ

Assuming binary factors for both G and E, a 2 × 2 table for a
disease risk for each combination of G and E values can be
constructed based on this model (see Table 1). Assuming a rare
disease (i.e., relative risks can be approximated by odds ratios),
“no multiplicative interaction” implies that the genetic effects

measured by the ratios of the risks (e.g., R10
R00

for E = 0) are the

same across different exposure levels with the null hypothesis

of H0 :
R10
R00

¼ R10
R01
. On the other hand, an additive model is

shown as logit (Pr(D = 1|G, E)) = b0 + bGG + bEE, where the
effects of G and E are additive on the disease risk scale, but
not on the logit scale. An additive interaction is defined by the
departure from this model, which implies that the genetic ef-
fects measured as the differences of absolute risks (e.g., R10 –
R00 for E = 0) vary by exposure levels with the corresponding
null hypothesis of H0 :R10 –R00 = R11 – R01. A number of re-
searchers have shown that conceptual models for biologic in-
teractions translate to the presence of interaction on the additive
scale and not necessarily on the multiplicative scale [7]. In
public health, evaluation of risk differences and additive inter-
actions is directly relevant to problems such as whether it is
beneficial to target individuals for intervention for an exposure
based on genetic susceptibility [2, 8]. In addition to these mul-
tiplicative and additive models, there are some other non-
standard models discussed in the literature [9, 10], including a
liability threshold model, where the effects of G and E are
additive on the probit scale [9].

Inferences: Methods for Testing G-E
Interactions

Standard Prospective Likelihood-Based Approaches

Based on the models introduced in the previous section, several
inference methods have been developed to test for G-E inter-
actions. Standard analyses of case-control studies are typically
based on a prospective likelihood of case-control data. While
this approach does not take into account the retrospective na-
ture of the sampling design, it is shown that such prospective

Table 1 Disease risk for
binary factors G and E,
were Rij = Pr(D = 1|G =
i, E = j) for i, j = 0, 1

E = 0 E = 1

G = 0 R00 R01

G= 1 R10 R11
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treatment of case-control data is valid when there is no assump-
tion made about the joint distribution of covariates, including
genetic and environmental factors and other confounders [11].
This likelihood can be used for both additive and multiplicative
models, and several studies have used this approach for evalu-
ating G-E interactions for various complex diseases [12•, 13,
14]. Figueroa et al. conducted a genome-wide interaction study
of smoking for bladder cancer risk by applying both multipli-
cative and additive interactions based on a prospective likeli-
hood and a retrospective likelihood [12•]. They identified 10
significant SNPs that interact with smoking status (ever versus
never smokers) for bladder cancer; these included rs1711973
that had an increased risk (OR = 1.34; 95% confidence interval
(CI): 1.2–1.5) among never smokers (multiplicative interaction
P= 6.38E-06) and rs12216499 that had a reduced risk (OR =
0.75; CI: 0.67–0.84) for ever-smokers (additive interaction P =
1.41E-06). Multiplicative interactions based on a prospective
likelihood can be tested using any statistical software package
(e.g., SAS, R, or Stata). For example, in R, the glm() function
can be used for testing a multiplicative interaction using a lo-
gistic regression based on a prospective likelihood. An R pack-
age, CGEN (https://bioconductor.org/packages/release/bioc/
html/CGEN.html) implements the methods for both additive
and multiplicative interaction based on a prospective
likelihood; the additive.test function can be used for
performing an additive interaction test and snp.logistic and
snp.score for conducting a multiplicative interaction test (see
Supplemental Fig. 1).

Case-Only Design

In evaluating G-E interactions, there have been several ap-
proaches that assume that G and E are independent in the
underlying population. This assumption is plausible because
the genetic variation an individual receives from a parent is
determined during meiosis, and hence is not affected by sub-
sequent environmental exposures after birth. Genetic suscep-
tibility is unlikely to influence various exogenous exposures
such as environmental pollutants or occupation exposures
with some exceptions, whereas this assumption can become
questionable for endogenous exposures, such as biomarkers.
The case-only design is one of the non-traditional methods
that depend on an assumption of G–E independence in the
underlying population, which can be used to test for multipli-
cative interactions [15]. In brief, under the assumption of G-E
independence in the underlying population (i.e., controls), a
multiplicative interaction test statistic becomes equivalent to
testing the association between G and E among cases. This
method has been applied to the analyses of G-E interaction for
various complex diseases [16, 17]. Freedman et al. used a
case-only interaction test to evaluate the interaction between
two independent genes, FRMD3 and MYH9 for end-stage
renal disease risk. Any standard statistical software can be

used to conduct this test. For example, in R, a linear regression
function (lm function) or generalized linear regression func-
tions (glm function) can be used to evaluate an association
between an environmental exposure and a genotype based
on the data for controls. One major limitation of the case-
only design is that while the case-only method has improved
power over the traditional methods when G and E are inde-
pendent in the underlying population, this method has an in-
creased type I error if the independence assumption is violated
[18]. In addition, the regression parameters for the main ef-
fects of G and E cannot be estimated using this method be-
cause the case-only test is only for evaluating a multiplicative
interaction.

Retrospective Likelihood Approach

To address the limitations of case-only approaches that can
only test for multiplicative interactions (not for the main ef-
fects of G and E), Umbach and Weinberg (1997) generalized
the case-only design idea to use a log-linear model based on
case-control data. They showed the maximum-likelihood es-
timates for all parameters of a logistic regression model can be
obtained using a log-linear model [19]. Along the same line,
Chatterjee and Carroll developed a general method using a
retrospective likelihood that exploits the G-E independence
assumption to test for multiplicative interaction, but can use
both cases and controls to estimate all of the parameters in a
general logistic regression model [20]. Basically, this method
employs a retrospective likelihood that explicitly models the
conditional probability of G given E mediated by an associa-
tion parameter θ that can be constrained to be zero when the
G-E independence assumption holds. This likelihood can be
used for testing both multiplicative and additive interactions;
recently, Han et al. developed a likelihood ratio test that ex-
ploits the G-E independence assumption using a retrospective
likelihood [21•]. Their numerical investigation of power sug-
gests that the incorporation of the independence assumption
can enhance the efficiency of the test for additive interaction
by 2- to 2.5-fold. The multiplicative and additive interaction
tests based on a retrospective likelihood are implemented in
the CGEN R package. The function snp.score can be used for
testing a multiplicative interaction and the additive.interaction
function (with an argument indep = T) can be used for testing
an additive interaction using the G-E independence
assumption.

Empirical Bayes Type Approaches

Despite the power gain using methods that rely on the G-E
independence assumption—such as the case-only, log-linear,
and retrospective methods—they can cause a large type 1
error when the underlying assumption is violated [18]. To
address this issue, an empirical Bayes type method was
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developed that uses a weighted average of the case-control
and case-only estimators of the multiplicative interaction,
which yields an acceptable trade-off between bias and effi-
ciency [22••]. A stochastic framework is used to allow for
uncertainty around the G-E independence assumption, which
estimates the uncertainty parameter using data. The empirical-
Bayes type estimator is provided as follows:

β̂EB ¼ σ̂2CC

θ̂
2
GCþσ̂2CC

� � β̂CO þ σ̂2CC

θ̂
2
GCþσ̂2CC

� � β̂CC , where β̂CO is a case-

only estimator and β̂CC is a case-control estimator for a mul-

tiplicative interaction, respectively. Here, θ̂GE is the measure

of the G-E association among controls and σ̂2
CC is the estimat-

ed variance of the case-control estimator. The intuition is that

θ̂GE is a measure of the bias of the case-only method, and the
empirical Bayes method provides more weight to the case-
control method when this bias is large. How much weight will

be given is calibrated by σ̂2
CC, which is the variance of the less

efficient case-control estimator. If the G-E independence as-

sumption is violated, i.e., true θ̂GE ¼ 0, then the empirical
Bayes estimator will asymptotically behave the same as the
case-control estimator. However, when G-E independence
holds, the asymptotic weight for the empirical Bayes estimator
will be non-zero for both case-control and case-only estima-
tors and thus will have efficiency in between. A general ap-
proach for deriving empirical Bayes-type shrinkage estimators
was also proposed for all of the parameters of a general logis-
tic regression model [22••, 23], which is implemented in the
CGEN R package. The empirical Bayes type estimator for an
additive interaction was also developed in the general regres-
sion setting [24].

Testing for Genetic Association
in the Presence of G-E Interaction

When identifying susceptibility loci for complex diseases,
allowing for interactions to test for association could in-
crease power when such interactions exist. It has been
shown that a joint test of genetic association and interac-
tion has robust performance over a wide range of under-
lying models [25•], although it could be less powerful
than a marginal association test when there is no evidence
of G-E interaction. Using the equation in (Eq. 1), the null
hypothesis of the joint test is given as H0 : βG = βGE = 0,
which has increased degrees of freedom compared to a
marginal association test (i.e. H0 : βG = 0) that can lead
to a decrease in power when there is no interaction effect,
i.e., βGE = 0. Various likelihoods with or without the as-
sumption of G-E independence can be used for joint tests.
Recently, Hamza et al. conducted a genome-wide joint
test for gene x coffee interaction for Parkinson’s disease
and identified a novel susceptibility locus in the GRIN2A

gene. In the gene, the T allele of the SNP rs4998386 is
associated with a reduced risk among heavy coffee
drinkers, whereas this variant has a minimal effect among
light coffee drinkers [26•]. While a joint test can be pow-
erful when the assumed interaction exists, the increased
degrees of freedom of this test (versus a marginal associ-
ation test) can lead to a reduced power when such inter-
action effects are relatively small or when these effects do
not exist. A maximum score test was developed to over-
come the potential loss of power of a joint test due to
increased degrees of freedom [10]. This method provides
a unified approach that integrates a class of disease risk
models by maximizing over a class of score tests, each of
which involves modified standard tests of genetic associ-
ation through a weight function. This weight function re-
flects the potential heterogeneity of the genetic effects by
levels of environmental exposures. Both joint test and
maximum score test are implemented in the CGEN R
package.

Two-Stage Analysis or G-E Interactions
for Rare Variants

Several approaches have been proposed to conduct a two-
stage analysis to improve the efficiency of detecting G-E
interactions on a genome-wide scale [27–29]. In general,
these methods suggest selecting a subset of SNPs based
on the marginal effects of SNPs or G-E correlation tests in
the first stage and conducting standard G-E interaction
tests in the second stage, where the independence between
the test statistics used in the two stages is required to
provide a valid screening procedure. Applications of such
methods are shown in a recent G-E analysis for colorectal
cancer [30] that involves (i) a screening step based on
marginal associations and gene-diet correlations and (ii)
a testing step for multiplicative interactions. They identi-
fied a significant interaction between rs4143094 and proc-
essed meat consumption (OR = 1.17; p = 8.7E-09), which
was consistently observed across studies. With the advent
of high-throughput technologies, various statistical
methods have been developed for identifying G-E inter-
actions based on data for rare variants, generated by
whole genome sequencing and exome sequencing
[31–35]. A standard approach for this problem is a set-
based G-E interaction framework that tests for an interac-
tion between a set of rare variants and an environmental
risk factor. Burden type tests [33, 36] and variance com-
ponent tests [31] are available for analyzing G-E interac-
tion in this framework. Some of these methods are imple-
mented in the R packages rareGE (https://www.hsph.
harvard.edu/han-chen/software/) and SIMreg (http://
www4.stat.ncsu.edu/~jytzeng/software_simreg.php).
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Software Available for G-E Analysis

There are several software packages that provide tools for
conducting G-E interactions using the methods described in
this review. The CGEN R package provides various functions
that can conduct tests for multiplicative and additive interac-
tions, joint tests, as well as maximum score tests under both
prospective and retrospective likelihoods assuming the G-E
independence assumption (https://bioconductor.org/
packages/release/bioc/html/CGEN.html). The empirical
Bayes type method for multiplicative interaction is also
implemented in CGEN. The rareGE R package (https://
www.hsph.harvard.edu/han-chen/software/) provides various
functions for detecting G-E interaction as well as for testing
the joint effect of a gene and G-E interaction under a set-based
framework. The SIMreg R package (http://www4.stat.ncsu.
edu/~jytzeng/software_simreg.php) offers functions for
testing a set-based G-E interaction by using genetic similarity
to aggregate information across SNPs, and incorporating
adaptive weights depending on allele frequencies to accom-
modate rare and common variants. For calculating power for
G-E interactions, the powerGWASinteraction R package is
available (https://cran.r-project.org/web/packages/
powerGWASinteraction/index.html), which includes a power
calculation tool for four two-stage screening and testing pro-
cedures. Several studies compared the power of various G-E
interaction tests including standard prospective likelihood ap-
proaches, case-only designs, retrospective likelihood
methods, empirical Bayes-type estimators, and two-stage
analyses [37, 38].

Challenges for G-E Analysis and Future
Directions

There are several challenges of G-E interaction analysis. One
main challenge is replication issues. While various GWAS
findings of the main effects of SNPs have been replicated by
independent studies for many complex diseases (http://www.
ebi.ac.uk/gwas/), relatively few interactions have been
reproduced. It is likely that the sample sizes of GWAS that
have required measurements on environmental exposures are
not yet adequate to reliably identify G-E interactions of mod-
est magnitude. In addition, differences in the underlying dis-
tribution of environmental exposures across various studies as
well as difficulties in accurately measuring environmental ex-
posures can also lead to reduced power of detecting G-E in-
teractions. While more powerful statistical methods for detect-
ing interactions are helpful, ultimately studies with larger sam-
ple sizes are needed to identify interactions (e.g., through
consortium-based studies) to achieve adequate power for G-
E analysis. A reasonable goal for the future will be to at least
identify parsimonious models that adequately describe the

risks of diseases associated with a combination of genetic
and environmental risk factors. The lack of reporting of inter-
action in current studies so far indicates that linear logistic
models, i.e., multiplicative models, in general may be a good
starting point for building models for evaluating the joint ef-
fects of genetic and environmental factors [39].
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