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Abstract
Purpose of Review Over many decades, researchers have
been designing studies to investigate the relationship between
genotypes and phenotypes to gain an understanding about the
effect of genetics on disease. Recently, a high-throughput ap-
proach called phenome-wide associations studies (PheWAS)
have been extensively used to identify associations between
genetic variants and many diseases and traits simultaneously.
In this review, we describe the value of PheWAS along with
methodological issues and challenges in interpretation for cur-
rent applications of PheWAS.
Recent Findings PheWAS have uncovered a paradigm to
identify new associations for genetic loci across many dis-
eases. The application of PheWAS has been effective with
phenotype data from electronic health records, epidemiologi-
cal studies, and clinical trials data.
Summary The key strength of PheWAS is to identify the as-
sociation of one or more genetic variants with multiple phe-
notypes, which can showcase interconnections among the
phenotypes due to shared genetic associations. While the

PheWAS approach appears promising, there are a number of
challenges that need to be addressed to provide additional
robustness to PheWAS findings.

Keywords Phenome-wide association studies (PheWAS) .

Phenotyping . International Classification of Disease
(ICD) codes . Electronic health record (EHR)

Introduction

In an emerging clinical discipline called precision medicine,
the primary focus is to use an individual’s clinical data along
with genetic, environmental, and lifestyle information to tailor
clinical care. The steps toward discovery for precision medi-
cine involve enrollment of individuals into studies to then link
their genotype and phenotype data to identify clinically rele-
vant genetic associations. The most common methodology to
determine such genotype-phenotype connections is called
genome-wide association studies (GWAS) [1•, 2], where tests
for association are performed between single-nucleotide poly-
morphisms (SNPs) across the genome (usually over 500,000
SNPs) and a single disease outcome or trait. There is now
growing evidence demonstrating the validity of some of these
genetic associations [3••]. However, there is still a limited
impact of GWAS due to its focus on a single phenotype, and
hence, the exploration of the effect of a given SNP across
multiple phenotypes is not feasible. For instance, there are a
number of GWAS that have identified associations between
loci in the fat mass and obesity (FTO) gene and loci in the
body mass index (BMI) [4–6]. There are known predisposi-
tions to various diseases due to variation in BMI [7, 8].
However, by design, the focus of the GWAS case-control
studies of BMI limits their ability to identify links between
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variations in the FTO gene with other diseases in a high-
throughput manner.

An alternative approach called phenome-wide association
study (PheWAS) has shown some success by simultaneously
scanning genome-wide significant variants over hundreds or
thousands of phenotypes [9••, 10••]. For example, using
PheWAS, Cronin et al. examined the aforementioned
genome-wide significant FTO locus across a number of dis-
eases. They identified not only BMI-mediated disorders such
as obesity and type 2 diabetes but also associations with sleep
apnea, fibrocystic breast disease, nonalcoholic liver disease,
and gram-positive bacterial infections [11]. PheWAS is a high-
throughput way to identify such cross-phenotype associations,
i.e., an association of genetic variant with multiple pheno-
types, diseases, or traits. Such findings have the potential to
uncover pleiotropy or an underlying genetic architecture of
disease comorbidities. In early 2010, Denny et al. demonstrat-
ed the first successful application of the PheWAS methodolo-
gy using phenotypes derived from an electronic health record
(EHR) [9]. Before this study, researchers in the Electronic
Medical Records and Genomics (eMERGE) network had de-
veloped approaches to identify the relationship between ge-
netic variants and a few phenotypes derived from EHRs [10].
The eMERGE network is a collection of biorepositories with
genetic data linked to EHRs within different healthcare sys-
tems across the USA [12]. The first PheWAS analysis illus-
trated the value of using billing codes within EHR for retro-
spective genomic studies. Since then, the utility of EHR data
has exponentially grown for genomic studies from under-
standing the underlying biology of complex diseases to novel
drug targets and their side effects [13–16]. The genetic com-
ponent of PheWAS is not limited to SNPs; we can use struc-
tural variations (copy number variations), mitochondrial vari-
ation [17], and gene regions for low-frequency and rare vari-
ants (population allele frequency < 1%) [18•] as well as non-
genetic measures such as clinical laboratory measures [19]
and quantitative measures derived from biomarkers.

Here, we review the current scope, application, and key
association findings of the PheWAS methodology (Fig. 1).
We provide an introduction to the different data types used
for PheWAS and the developments in algorithmic approaches
to define phenotypes for clinical research. We then review dif-
ferent methods and tools available to perform PheWAS
(Table 1).We subsequently provide a brief overview of upcom-
ing methods and tools in the development for PheWAS analy-
sis. We end our review by providing current limitations and a
commentary on the future direction of PheWAS applications.

Phenotype Data in PheWAS

The majority of PheWAS studies has used data from de-
identified EHRs [9, 11, 17, 20–28] linked to genotype data,

while a few have been performed in large-scale epidemiologic
studies [29–32] and clinical trials [33, 34]. The representation
of the phenome varies in each of these types of studies. For
PheWAS in the EHR, the phenome can be represented as
billing codes, PheCodes [9••], clinical lab measurements, or
comprehensive electronic phenotyping algorithms. In the ep-
idemiology and clinical trial-based PheWAS, the phenome
can be represented by the data types collected in the study
which may include lab measurements, biomarker assays,
self-report health and disease history, and environmental sur-
veys. The representation of the phenome drives the selection
of the statistical technique for the PheWAS analyses, thus is a
critical component of the PheWAS design.

To date, the billing codes within EHR are most extensively
used in EHR-based PheWAS. TheWorld Health Organization
(WHO) maintains these billing codes, also commonly known
as international classification of disease (ICD) codes, to clas-
sify human diseases in standard units [35••]. In a health sys-
tem, ICD codes are primarily referred to as billing codes since
historically their primary purpose was to use them for insur-
ance claims. ICD codes consist of codes related to signs,
symptoms, disease diagnoses, and procedures, as well as in-
juries and related conditions. These codes are a reflection of an
individual’s health over the time, and their frequent presence
within the EHR has made them a valuable tool for research.
There are multiple versions of ICD codes, and new revisions
replace the previous versions. ICD version 10 (ICD-10) is the
most recent. Up until October 2015, all health systems within
the USA used version 9 of the ICD codes (ICD-9). The ICD-9
codes are alphanumeric codes ranging from three- to five-digit
codes, where the first three digits are the category of the con-
dition and each digit after the decimal could represent anatom-
ical location or severity of the condition. For example, a three-
digit code “440” is used for “atherosclerosis,” the fourth digit
of the code provides more specificity about location of the
disease (440.0—atherosclerosis of aorta; 440.1—atheroscle-
rosis of renal artery), and lastly, the fifth digit provides addi-
tional specificity (440.21—atherosclerosis of native arteries of
the extremities with rest pain; 440.23—atherosclerosis of na-
tive arteries of the extremitieswith ulceration).Whereas, ICD-
10 codes have considerably different disease concepts and
structure than ICD version 9. The length of ICD-10 code
ranges from 3 to 7 characters, with first three characters rep-
resent disease category, and then each character after the dec-
imal provides more detail on the disease etiology, anatomic
site, severity, and laterality. For example, ICD-9 code 440.23
translates to “I70.209” (unspecified atherosclerosis of native
arteries of extremities, unspecified extremity) in ICD-10.
There are over 68,000 ICD-10 codes in comparison to approx-
imately 14,000 ICD-9 codes, and this pose some challenges to
translate existing ICD-9 codes in EHRs to the ICD-10 equiv-
alents. There are several pitfalls in mapping codes between the
two versions, where there are both one-to-many and many-to-
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one mappings. For example, ICD-9 code 250.81 (diabetes
with other specified manifestations, type I (juvenile type),
not stated as uncontrolled) maps to ten different ICD-10
codes. There are a handful of conversion tools available now
to map ICD-9 to ICD-10 [36]. However, it is a significant
undertaking to convert existing ICD-9 codes in the EHR sys-
tems to ICD-10 codes and make them research ready, espe-
cially when there are no research-acceptable ICD-10 diagnosis
codes as of yet.

To date in the area of PheWAS research, ICD-9 diagnosis
codes are most commonly used to design a case control-based
study. There can be instances of misdiagnosis for an ICD-9
code or short visit history of a patient within a health system,
which can create ambiguity. The individuals in a study using
EHR data are defined as cases when there are at least multiple
instances, such as three, for a given code at different time
points (this is referred to as rule-of-three). The threshold varies
across different studies; in most cases, it is agreed upon to use
at least two or more instances to define a case. All the indi-
viduals with the absence of that code are assigned as controls.
The ICD-9 codes can be used in the raw form as well as
grouped into custom groupings. Since ICD-9 codes are cate-
gorized in a hierarchy, we can group four- and five-digit codes
to three digits, which can be one way to combine correlated
phenotypes. Although, such grouping of individual ICD-9
codes requires careful consideration, for example, subcate-
gories of ICD-9 code “250” (diabetes mellitus) consist of
two clinically different diseases type 1 diabetes (250.1*) and
type II diabetes (250.2*) and they should be investigated in-
dependently. There is another custom grouping of ICD-9

codes developed by Denny et al. called PheCodes (or
PheWAS Codes) [9••]. The PheCodes are a curated list of
diagnosis codes where similar disease codes are combined
into custom higher category codes. The replication of SNP-
ICD-9 code association across different EHRs can be effective
using PheCodes [13]. These PheCodes are currently
established for ICD-9 only and has not yet been extended or
adapted to include ICD-10.

In EHRs, the combination of different measures can be
used to develop well-informed algorithms to understand the
genetic etiology of diseases better and elucidate our under-
standing of the architectural differences due to raw pheno-
types and processed phenotype data. Here, processed pheno-
types refer to the phenotypes derived through electronic phe-
notype algorithms which utilize ICD-9 codes, clinical notes,
clinical laboratory measures, demographic, and lifestyle infor-
mation in combination to define the phenotype. Researchers
in the eMERGE network have developed a catalog called
PheKB, which consists of over 30 phenotype algorithms to
derive phenotypes from EHRs [37].

There are also studies which have demonstrated the use of
clinical laboratory measures from EHR as well as epidemio-
logical studies and clinical trials in PheWAS [29, 32–34, 38] .
The laboratory measures are quantitative values collected
from patients during the routine check-ups as well as for the
diagnosis and monitoring of the diseases. The phenome de-
rived from epidemiological cohorts also includes self-reported
disease status, nutrition diet supplements, psychiatric traits,
use of alcohol, smoking habits, and more. Table 1 shows the
different phenotype categories used for different PheWAS

Fig. 1 Current scope of phenome-wide associations study (PheWAS). A
methodology to link genetic variations with a broad spectrum of
phenotypes using statistical tests to identify genetic associations with a
single trait or phenotype as well as multiple phenotypes. SNPs (single-
nucleotide polymorphisms) are the most commonly used genetic
variations in PheWAS. The phenotypes in PheWAS can be derived

from electronic health records (ICD-9 billing codes, clinical laboratory
measurements), epidemiology cohorts (self-reported disease status,
clinical laboratory measures, health surveys), or clinical trials (clinical
laboratory measurements). PheWAS is a high-throughput approach to
scan thousands of phenotypes which can be further used to generate
new hypothesis for a more focused analysis on specific phenotypes
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studies, which is an important component to then select the
analysis method used.

Candidate Variants PheWAS

To date, the bulk of PheWAS analyses has centered on candi-
date variant analyses, where researchers have assessed the
variants identified through GWAS against a comprehensive
list of phenotype measurements. Researchers at Vanderbilt
University performed an initial PheWAS application in their
EHR through a combination approach to first perform a
GWAS on an EHR-derived phenotype and then further ex-
tending it to a PheWAS on the variants identified as
genome-wide significant [9••, 10••]. This study reported var-
iants associated with electrocardiographic QRS duration in
GWAS, and subsequently, the variations in SCN5A/10Awere
also associated with atrial fibrillation and cardiac arrhythmias
[10••]. In a similar approach, a new genetic locus rs965513 in
forkhead box E1 (FOXE1) was associated with primary hypo-
thyroidism (through GWAS) as well as new diseases derived
from ICD-9 billing codes for thyroiditis, nutritional deficiency
of anemia, and non-toxic nodular goiter, among others [55].
The FOXE1 locus also has known connections with thyroid
cancer through GWAS [56, 57]. Additionally, a systematic
application of PheWAS using EHR-derived phenotypes repli-
cated 66% of associations previously reported in the NHGRI
GWAS catalog [20]. This study demonstrates the accuracy
and reliability of associations identified by PheWAS method-
ology. All of these studies highlight the key feature of
PheWAS which is to expand the search space of diseases that
are not considered before for known disease-related genetic
variants.

Researchers have used epidemiological cohorts linked with
genetic information in PheWAS to capture novel associations
with self-reported disease status; clinical laboratory measures
(LDL, HDL, glucose, and more); nutrition diet supplements;
and environmental measures. These studies include data from
cohorts such as Population Architecture using Genomics and
Epidemiology network and National Health and Nutrition
Examination Survey. The PheWAS on ethnically diverse in-
dividuals in these cohorts identified many novel genetic asso-
ciations that are ancestry-specific as well as significant in one
or more race/ethnicity groups [29, 32, 58]. Overall, these stud-
ies illustrate that PheWAS using epidemiological study data
can also be used to improve the characterization of disease and
health outcomes.

The choice of statistical method in PheWAS to investigate
genetic associations with complex diseases is conceptually
similar to GWAS. In its simplest form, the allele distribution
of genetic variants across a given population is compared
against case and control status of each phenotype. For binary
outcomes, logistic regression is a popular method, and theT
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statistical model can be adjusted for confounding effects such
as age, sex (male or female), population structure, and others.
For quantitative variables such as clinical laboratory mea-
sures, linear regression or analysis of variance are commonly
used for analysis. Researchers use different software packages
for the implementation of these regression tests for PheWAS
analysis such as PLINK [59, 60]; PLATO [61]; and R-
PheWAS [62], SAS software©, and STATA [63].

Genome-Wide PheWAS

Evaluating a range of phenotypes or traits in PheWAS shows
its advantage over traditional GWAS on a single trait and the
transition to investigating all the variants across the genome is
shown in a handful of PheWAS publications. In the first
genome-wide PheWAS, researchers used 27 laboratory mea-
surements from antiretroviral therapy-naive individuals en-
rolled in AIDS (acquired immunodeficiency syndrome) clin-
ical trials [33]. In this proof-of-concept study, authors demon-
strated that the identified cross-phenotype associations high-
light the important interrelationships between the phenotypes
from treatment-naive individuals. The study also highlights
that PheWAS can be used to create new hypotheses to analyze
i n t e rmed i a t e pheno type s , s ubpheno t ype s , and
endophenotypes, and to identify pharmacogenomic associa-
tions to better under understand the pharmacokinetics of the
drugs [34].

Recently, researchers at Geisinger Health System and the
Michigan Genomics Initiative conducted separate genome-
wide PheWAS using clinical data from EHR [50, 51]. Verma
et al. used PheWAS to investigate all common variants on the
Illumina HumanCoreExome chip and clinical laboratory mea-
sures from ~ 12,000 European American individuals [50].
Subsequently, they tested the significant SNPs from the clin-
ical lab PheWAS with 541 diagnosis codes [50]. Dey et al.
demonstrated the application of a new statistical method
(Table 1) for PheWAS and tested ~ 30 million imputed
SNPs with 1500 EHR-based PheWAS codes [51]. Dey et al.
also proposed a new method for binary outcomes, called
SPAtest, which is a variation of logistic regression that esti-
mates p values using saddlepoint approximation. The authors
demonstrate that this approximation method is computation-
ally efficient than traditional regression methods [51]. This
approach can be computationally efficient for large-scale ge-
nome-wide PheWAS, especially for studies with an unbal-
anced case-control ratio [51].

Rare-Variant PheWAS

As the cost of DNA sequencing over the years continues to
decrease, whole genome and exome sequencing are

discovering large numbers of low-frequency genetic varia-
tions commonly known as rare variants. These new technolo-
gies present an excellent opportunity to identify rare-variant
associations with clinical phenotypes and diseases. The tradi-
tional statistical methods such as logistic regression, linear
regression for GWAS, and PheWAS approaches are usually
underpowered for rare-variant analysis due to low sample size
for each rare variant, although considerable progress has been
made in method development to identify disease associations
with rare variants such as gene burden tests, dispersion tests,
and variance-based tests, among others [64]. Application of
rare-variant tests has been limited in PheWAS where multiple
phenotypes are simultaneously studied. A study from Basile
et al. proposed an approach to create bins of rare variants
based on the prior biological knowledge and further test for
association with phenotypes using dispersion test such as
SKAT (sequence kernel association test). In the study, they
performed rare-variant PheWAS on variants with
MAF < 0.01 in 82 known pharmacogenes and nine pheno-
types derived from EHR-based phenotype algorithms [18•].

The use of different statistical methods to perform rare-
variant analysis has been available for quite some time. Lee
et al. present an extensive review of different methodology
available for rare-variant association studies [64]. Rare-
variant analysis in PheWAS is still in an early stage, and there
are only a handful of out-of-the-box tools that allow the in-
vestigation of multiple phenotypes in a high-throughput man-
ner such as BioBin [65], RV-test [66], and PLINK/SEQ [67].

PheWAS Using Non-genetic Information

The majority of PheWAS to date still focuses on identifying
the associations of SNPs with phenotypes across the
phenome. However, recently, a few studies have demonstrated
the application of PheWAS using non-genetic measures. For
rheumatoid arthritis (RA), Doss et al. utilized serologic tests to
group RA patients into two groups: seropositive RA and se-
ronegative RA individuals, to derive a binary independent
variable [52]. Then they tested the independent variable
against disease PheCodes [52] (custom ICD-9 PheCode
grouping). In this study, an association between fibromyalgia
and seronegative RA was most significant, and seropositive
RA had associations with chronic airway obstruction and to-
bacco use. In an independent work, Liao et al. presented a
more targeted approach to investigate comorbidities in pa-
tients with RA [19]. They used quantitative measures from
36 autoantibodies grouped by ten antigens with known con-
nections to RA and comprehensively tested these measures
against PheCodes. The key finding was between autoantibody
fibronectin and obesity as well as between fibrinogen and
pneumonopathy. These studies utilized logistic and linear re-
gression implemented in PLINK and R PheWAS packages for
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association analysis. Both of these studies highlight the im-
portance of analyzing subphenotypes within RA patients and
the patterns of different diseases that occur in these groups.
We can expect to see more use of lab measures to define
patient subgroups for investigating phenotype heterogeneity
in a study population.

Conclusions

Challenges and Future Directions

Current development and infrastructure support for biobanks
linked to genetic information suggest that there will be an
increase in the collection of genomic and patient health data
in the coming years. The use of biobanks for retrospective
case-control studies has already shown some success, and it
will continue to play a critical role in identifying novel genetic
associations. The PheWAS methodology will become a run-
of-the-mill approach to generate new hypotheses to study the
interconnection between a wide range of disorders and asso-
ciations across the genome. Although, there can be some chal-
lenges with the genome-wide PheWAS analysis such as mul-
tiple hypothesis testing and computational burden, which lead
to a challenge in identifying true pleiotropic associations, bi-
ologically relevant associations, and interpreting the results in
a high-throughput manner [13–16].

There are several challenges in the current scope of
PheWAS which need additional development to enhance the
robustness of PheWAS association findings. One such chal-
lenge in an association study with a large number of statistical
tests between SNPs and phenotypes is the multiple hypothesis
testing burden. Most commonly, a Bonferroni correction is
applied to account for false positives due to multiple hypoth-
esis testing [68]. The Bonferroni correction is an overly con-
servative approach, because it assumes that all the tests are
independent. However, on many occasions, the SNPs includ-
ed in a study may be correlated due to underlying linkage
disequilibrium. In GWAS, a p value of 5 × 10−8 is considered
as the genome-wide significant for common variants when
tested with one phenotype or trait. As the field is moving
toward genome-wide PheWAS, it will increase the number
of SNP-phenotype models tested and thereby increase the
Bonferroni threshold. For example, in an EHR, there are
~ 14,000 ICD-9 diagnoses codes, and if we test them with
all the common variants (e.g., 1 million SNPs), then the
threshold will increase to 3.57 × 10−12. Identifying indepen-
dent SNPs through LD pruning can lower the p value thresh-
old to some extent [69••]. There may also be correlation
among the phenotypes; however, more methods development
is required to identify independent phenotypes from EHR da-
ta. For example, calculating the pairwise correlation between
the phenotypes to estimate the number of independent

phenotypes to generate a more appropriate denominator for
a Bonferroni correction could be explored. Developing more
robust strategies for dealing with the multiple testing burdens
that control the type I error rate (false positives), while also
controlling the type 2 error rate (false negatives—missing true
signals), are essential to the future of these endeavors.

The GWAS PheWAS will affect not only the multiple test-
ing burden but also the computational burden. Even
multithreading and parallel computing options in some of
the current packages (PLINK, PLATO) might not be adequate
since those will be limited to available computational re-
sources. Cloud platforms such as Amazon web services
(AWS), Google Cloud Platform, and Microsoft Azure can be
used to develop new tools or extend existing tools to perform
large-scale PheWAS in a more efficient and less time-
consuming manner. Currently, there are a handful of cloud-
based tools to perform GWAS such as Google BigQuery [70],
easyGWAS [71], and CloudAssoc [72] but there are none
currently available for PheWAS. There are also platforms built
upon different clouds that can be used to perform association
testing such as DNAnexus [73]. It is important to note that
cloud computing can incur higher computation costs than the
traditional high-performance cluster computing in a local
computing environment.

PheWAS have identified genetic associations across differ-
ent complex diseases and traits. However, the interpretation of
results in a high-throughput manner is currently limited. There
are two aspects of results analysis in PheWAS: (1) understand-
ing the clinical relationship when there is a SNP associated
with two or more phenotypes and (2) identifying biologically
relevant associations based on the functional implications of
the SNP. Although, identification of cross-phenotype associa-
tions is a strength of PheWAS, it can also be challenging to
distinguish cross-phenotype associations which can be due to
pleiotropy, comorbidity, or confounding phenotype patterns.
Few statistical tests can help distinguish between these differ-
ent types of cross-phenotype associations; Solovieff et al. pro-
vides a review on such methods [74•]. It is also important to
investigate the functional implications of the SNPs for the
statistically significant PheWAS associations, a similar chal-
lenge that we experience in GWAS. As explained earlier, the
FTO gene association with obesity-related traits was discov-
ered and replicated by many GWAS. The PheWAS approach
led to identifying cross-phenotype associations with BMI, in-
cluding obesity and type 2 diabetes (T2D) that could poten-
tially also be due to the effect of FTO variants. Although, most
significant correlations were observed in FTO gene, however,
the direct functional implication of this gene with metabolic
traits was not confirmed by association studies. Smemo et al.
showed in their expression analysis of human brain that vari-
ants mapping to the FTO gene interacted with the promoter
region of the IRX3 gene and observed an increase in the ex-
pression of IRX3 due to variants in FTO gene with known
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BMI association [75]. This finding highlights the importance
of including functional information such as gene expression,
eQTL, chromatin marks, and variant annotations to fine-map
findings from association studies. Several existing statistical
and functional methods for fine mapping can be applied to better
understand the causality of the genetic variants identified through
PheWAS such as PAINTOR [76], RIVERA [77], CAVIAR [78],
IDEAS [79], and CHROMHMM [80], among others.

Conclusions

In this review, we presented the strengths and advantages of
PheWAS as well as the challenges based on the current scope
of these high-throughput association studies. Among many
challenges, PheWAS also delivers tremendous opportunities
for validating the robustness of associations and discovering
cross-phenotype associations. Testing of multiple phenotypes
together not only helps in identifying the same variants linked
to multiple diseases but also helps in discovery and new hy-
pothesis generation. Analyzing, different components of an
individual’s information ranging from disease diagnosis, lab-
oratory measures and demographic data help in elucidating
the genetic architecture of complex traits that exist in both
common and rare genetic variations in study populations.
For future studies, rare-variant analyses utilizing multiple phe-
notypes, a better understanding through functional implication
analyses, and optimized methods for high-throughput analy-
ses are likely to strengthen PheWAS methodology and en-
hance our understanding of complex traits.
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