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Abstract
Purpose of Review Studies on the mechanisms of action of
environmental exposures in pregnancy are increasingly popu-
lar. In particular, it is of interest to investigate the role of
genetic and epigenetic factors as mediators of the maternal
environmental exposures’ effects on perinatal outcomes.
Causal mediation analysis lies at the center of environmental
epigenetics research, and the methodological challenges that
arise in this context have not yet been fully articulated.
Recent Findings Measurement error, unmeasured confound-
ing, reverse causation, and multiple mediators are often
disregarded issues in environmental epigenetic studies that
can lead to important biases. Considering the study of mater-
nal smoking effect on birth weight potentially mediated by
DNA methylation as example, I discuss the impact of these
phenomena on estimation and testing of causal pathways.
Statistical methods have been recently introduced to account
for these frequently encountered issues.
Summary Causal interpretation of pregnancy studies on the
role epigenetic factors as mediators of environmental expo-
sures effects can be improved by the adoption of recent meth-
odological advancements in mediation analysis that correct
for measurement error, use genetic instrumental variables,
and account for the presence of multiple mediators.

Keywords Environmental epigenetics . Measurement error .

Mediation analysis .Mendelian randomization .Multiple
mediators

Introduction

Pregnancy is a time of enhanced vulnerability in which envi-
ronmental exposures exert effects on a variety of maternal and
child perinatal outcomes that can have long-lasting conse-
quences over the life-course. To investigate causal mecha-
nisms in observational studies of environmental exposures
and perinatal outcomes, studies screen human populations
for biomarkers of exposures as well as mechanistic interme-
diates. Mediation analysis is a key tool to investigate causal
pathways, biological mechanisms, and to design policy inter-
ventions [1]. Modern approaches to mediation have been in-
spired by the pioneering work of the geneticist Sewall Wright
(1920), who developed the path analysis method. Path analy-
sis is now viewed as a special case of structural equation
modeling (SEM) and with the work of Baron and Kenny [2]
became widely used in the context of linear models.
Application of a counterfactual framework [3] has further pro-
vided a strong theoretical basis for causal inference in media-
tion analysis by precisely defining the causal contrasts along
with necessary assumptions for their identifiability. Using the
counterfactual framework has allowed for definitions of direct
and indirect effects and for decomposition of a total effect into
direct and indirect effects, even in models with interactions
and nonlinearities [4, 5••]. The use of mediation analysis is
now widespread in perinatal epidemiology and has resolved
important paradoxes in the field, such as the birth weight
paradox [6–8]. The application of mediation analysis in the
context of environmental determinants of perinatal outcomes
has been more recent but particularly fast growing [9–11, 12•,
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13]. The purpose of this paper is to highlight methodological
challenges in pregnancy studies that aim at investigating me-
diating mechanisms of the effect of environmental factors on
perinatal outcomes and to provide some solutions based on the
most recent methodological developments in mediation anal-
ysis. I introduce the study of the role of DNA methylation as
mediator of the effect of maternal smoking on birth weight as
motivating example. I then provide a review of important
definitions and assumptions in causal mediation analysis.
Finally, I delve into three issues that are often encountered:
(1) measurement error, (2) unmeasured confounding and re-
verse causation, and (3) multiple mediators. For each of these
challenges, I describe practical solutions for both estimation
and testing of indirect effects.

The Role of Epigenetic Factors in Explaining
the Effect of Environmental Exposures on Birth
Outcomes

The role of epigenetic factors as mediators of the early life
“programming” of health is becoming increasingly apparent
[14]. Epigenetic mechanisms regulate all gene expression by
determining the accessibility of DNA to drivers of gene acti-
vation, such as transcription factors [15, 16]. As they are not
part of the genome, epigenetic marks are responsive to the
environment and, in contrast to genetic mechanisms, are also
cell type and developmental stage-specific [15, 16]. DNA
methylation (DNAm) is the most well-studied epigenetic
mechanism. It occurs when a methyl group has been added
to a cytosine followed by a guanine (CpG site) base pair on the
genome and is measured across the genome [15]. When a
pattern of changes of DNAm is found to occur repeatedly at
specific loci, discriminating the phenotypically affected cases
from control individuals, this is regarded as an indication that
epigenetic perturbation has taken place that is associated, pos-
sibly causally, with the phenotype. This approach is described
as an epigenome-wide association study (EWAS) [17] and
takes its cue from the association of genetic variability with
phenotypes in genome-wide association studies (GWAS).

Evidence is accumulating from EWAS that environmental
exposures modify the epigenome. In humans, the best-studied
epigenetic modification is methylation and the best-studied ex-
posure is smoking. Smoking has been reproducibly associated
with alterations in methylation at specific loci in newborns
whose mothers smoked during pregnancy [18]. These smoking
methylation signals have been used to develop novel bio-
markers of exposure [19]. Given strong evidence of differential
methylation in newborns in relation to smoking by the mother,
it has been of interest to consider whether these signals mediate
the effects of maternal smoking on perinatal outcomes such as
birth weight. It has recently been reported that differential
DNAm of a single CpG site in placenta mediates up to 36%

of the effect of smoking on lower birth weight [12•]. In another
study, differential methylation in newborn blood at a single
CpG site in a different gene was reported to mediate 19–46%
of the relationship between smoking and birth weight [13].
Pregnancy studies focusing on other environmental exposures
(e.g., air pollution, nutrition) and other perinatal outcomes (e.g.,
pre-term birth, preeclampsia) find similarly strong evidence of
mediated effects through DNAmof single CpGs [9–11, 14, 20].
The striking results are obtained conducting mediation analyses
that ignore in part or all the issues that we discuss here, namely
exposure measurement error, confounding, reverse causation,
and multiple mediators.

Mediation Analysis: Causal Contrasts
and Assumptions

With reference to the example of mediation of the effect of
maternal smoking during pregnancy on newborn birth weight
by smoking-related differential methylation, let A denote the
exposure, maternal smoking, and M denote the mediator,
DNAm. Let Y denote the outcome, birth weight, and C denote
a vector of covariates representing potential confounders. The
directed acyclic graph in Fig. 1 describes the setting of media-
tion analysis. Mediation analysis can be employed to quantify
how much of the total effect of maternal smoking on birth
weight (Fig. 1a) is explained by the indirect effect of smoking
on birth weight that is mediated by the DNAmethylation level,
relative to the direct effect of smoking on birth weight through
pathways independent of DNA methylation (Fig. 1b). Under
the counterfactual framework for causal inference, direct and
indirect causal effects have been rigorously defined [20, 21].

(a)

(b)

Fig. 1 a Directed acyclic graph for average causal effect of sustained

smoking during pregnancy (A) on birth weight (Y) (TE = θ†1 from Eq. 1).
b Directed acyclic graph for direct of sustained smoking during
pregnancy (A) on birth weight (Y) and indirect effect of sustained
smoking during pregnancy (A) on birth weight (Y) through DNA

methylation (M) (NDE = θ1 from Eq. 3, NIE = θ†1−θ1 ¼ β1θ2 )
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Let Ya and Ma denote the value of the outcome and mediator
that would have been observed if the exposureA had been set to
level a. Let Yam denote the birth weight that would have been
observed if the smoking status and DNAm had been set to

the level, it would have naturally been had the mother
not been a smoker, A = 0. It is defined in counterfactual
notation by NDE ¼ E Y 1M0−Y 0M0 j cð Þ. The natural indi-
rect effect, conditional on C = c, comparing the effect of
DNAm at levels M1 and M0 while fixing the exposure
at level 1, is defined by NIE ¼ E Y 1M1−Y 1M0 j cð Þ. It can
be shown that on the risk difference scale, the total
effect decomposes to the sum of natural direct and nat-
ural indirect effects (i.e., TE = NDE + NIE). In the
example, this is interpretable as the indirect effect of
smoking on birth weight that is mediated by the meth-
ylation level.

To validly estimate direct and indirect effects, the following
four assumptions need to be satisfied. Conditioning on a vec-
tor of covariates C, there is no unmeasured confounding of (i)
the exposure–outcome relationship, (ii) the mediator–outcome
relationship, (iii) the exposure–mediator relationship, and (iv)
there are no mediator–outcome confounders affected by the
exposure [22]. Furthermore, models for the outcome and me-
diator need to be correctly specified. For continuous outcome
and mediator (as in the current setting of outcome birth weight
and mediator methylation), under the assumption of no expo-
sure–mediator interaction in the outcome model, typically
made by published applications of mediation analysis in en-
vironmental epigenetics, if we specify three linear regression
models

E Y jA ¼ a;C ¼ cð Þ ¼ θ∔0 þ θ∔1aþ θ∔
0
c ð1Þ

E Y jA ¼ a;M ¼ m;C ¼ cð Þ ¼ θ0 þ θ1aþ θ2mþ θ
0
c ð2Þ

E M jA ¼ a;C ¼ cð Þ ¼ β0 þ β1aþ β
0
c; ð3Þ

then, the estimators of total effect (TE), direct effect (NDE),
and indirect effect (NIE) take the following form [2, 23]:

TE ¼ θ∔1 ð4Þ
NDE ¼ θ1 ð5Þ
NIE ¼ β1θ2 ¼ θ∔1−θ1: ð6Þ

Estimators for direct and indirect effects in the presence of
exposure–mediator interactions and non-linear effects can be
obtained under the counterfactual framework [4]. The most
popular test for indirect effects is based on the product meth-
od, also known as the Sobel test [24]. This is a Wald test for
the null hypothesis H0 : β1θ2 = 0 based on the delta method

standard error σNIE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
θ2
β2
1 þ σ2

β1
θ22

q
, where σ2

θ2
and σ2

β1

are the variances of the maximum likelihood estimates of θ2
and β1, respectively.

Is DNAm a Mediator or a Biomarker?

It is widely acknowledged that measurement of human envi-
ronmental exposures, including smoking, is prone to error
[25]. Random error exists for all exposures. Nonetheless, most
studies that address whether methylation signatures from
smoking mediate its perinatal outcomes have ignored the po-
tential role of measurement error in assessment of smoking
[12•, 13]. Given this measurement error, evaluation of medi-
ation is complicated by the fact that the proposed mediators,
DNA sites differentially methylated by smoking, are excellent
biomarkers that may better capture the smoking exposure,
which is almost always self-reported [19]. A recent study
has shown that when exposure is measured with error, the
exposure coefficient in the outcome model (Eqs. 1 and 2) is
biased downward inducing, as expected, an underestimation
of the total effect and of the direct effect. However, the bias of
the naïve indirect effect estimator can be in either direction. In
particular, when the mediator is a strong biomarker for the
exposure (i.e., β1 ≠ 0; Eq. 3), as is the case for smoking meth-
ylation signals, the bias of the total effect estimator is larger
than the bias of the natural direct effect estimator, leading to
over-estimation of the indirect effect [26••]. In other words,
when the mediator captures the variability of true latent
smoking exposure better than the self-reported measure of
smoking, some of the direct effect is incorrectly attributed to
the mediator (the indirect effect). Exposure measurement error
has implications on the validity of the Sobel test as well [26••].
Testing for an indirect effect implies evaluating a composite
null hypothesis, as the indirect effect can be null under three
scenarios: when (1) Neither the exposure is associated with
the mediator nor the mediator is associated with the outcome,
(2) The exposure is associated with the mediator but the me-
diator is not associated with the outcome, and (3) The expo-
sure is not associated with the mediator but the mediator is
associated with the outcome. The test for indirect effect is
notoriously conservative [27]. However, when the mediator
is a strong biomarker for the exposure, the exposure is not
associated with the outcome (under the null case 3), and the
exposure is measured with error, the type I error rate will not
be preserved [26••]. Therefore, in reasonable scenarios of
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levels a andm, respectively. The average total effect, condition-
al on C = c, comparing exposure level 1 to 0, is defined by TE
=E(Y1 − Y0 | c), which compares the average outcome in sub-
group C = c if the mother had been a smoker with the average
outcome in subgroup C = c if the mother had been a non-smok-
er. The controlled direct effect is defined as CDE = E(Y1m −
Y0m | c), that is the effect of smoking on birth weight while
fixing the mediator to an arbitrary value,m. The natural direct
effect, conditional on C = c, is the effect of smoking
status on birth weight when the mediator is fixed to



mediation analysis in environmental epigenetic studies, the
naïve mediation analysis is likely biased, and there is risk of
reporting false positive findings of mediated effects through
DNAm whenever the exposure is imperfectly measured and
DNAm is a biomarker of the exposure.

Several steps can be taken to minimize this bias. First, the
investigator should define carefully the exposure clarifying
the timing and considering preferably a continuous measure-
ment (e.g. number of cigarettes smoked per day during the
first trimester, rather than (any) smoking during pregnancy).
Second, resources permitting, the study design should include
the collection of replicates or gold standard measurements of
the exposure. Finally, at the analysis stage, statistical ap-
proaches for measurement error should be employed. To cor-
rect for measurement error or misclassification and obtain val-
id inferences on natural direct and indirect effects (defined in
the previous section), a two-stage approach has been intro-
duced [28–29]. In the first stage, assuming plausible values
for the magnitude of measurement error, characterized by ei-
ther the variance of the error for continuous exposure or mis-
classification probabilities for categorical exposures, media-
tor, and outcome regression coefficients can be estimated
using either regression calibration, SIMEX (simulation and
extrapolation), or the EM (expectation-maximization) algo-
rithm approaches for measurement error correction [30–32].
In the second stage, the coefficient estimates are plugged into

Unmeasured Confounding and Reverse Causation

Most pregnancy studies on environmental and lifestyle factors
measure the DNAm profile in the placenta; smoking has been
shown to exert an effect of global and gene-specific placental
methylation [33]. However, confounding, where a common
exposure influences both epigenetic profile and phenotypic
outcome in the absence of a causal link, must be considered.
Even with careful measures of exposures to minimize residual
confounding, there is always potential for unobserved effects
on both epigenetic profile and outcome of interest (unmea-
sured confounding). Moreover, given the general requirement
to measure epigenetic marks at birth, after any effects on early
development are likely to have commenced [14], it is very
difficult to ascribe a direct causal link to any observed epige-
netic association. It is possible that epigenetic changes in the
placenta observed at birth are a consequence of, and not a
cause of, disrupted placental functioning and pregnancy de-
velopment (i.e., reverse causation, where the intended out-
come is observed to precede the effect). Sensitivity analyses

for unmeasured confounding in mediation analyses have been
developed [34–35] and are becoming routine practice in peri-
natal epidemiology. However, they have not yet been adopted
to evaluate robustness of such environmental epigenetics stud-
ies to confounding bias.

Another approach that has the potential to address is-
sues of measurement error, unmeasured confounding, and
reverse causation is the Mendelian randomization (MR)
approach [36, 37••]. In MR, if there are genetic variants
robustly associated with the exposure of interest and other
independent genetic variants robustly associated with the
mediator of interest, these can be used to help infer cau-
sality. These genetic variants are correctly measured, are
not associated with various confounders, and are not di-
rectly influenced by the outcome of interest. These vari-
ants must satisfy the assumptions of an instrumental vari-
able (IV): are associated with the exposure of interest, are
not associated with any confounder (including those that
are unmeasured), and are not associated with the outcome
given the exposure and all the confounders [38]. Such
genetic variants divide the observed population into sub-
groups analogous to arms in a randomized controlled trial
where the intervention is to change the level of the expo-
sure. Let exposure and mediator each have corresponding
genetic IVs, Ga and Gm, respectively. A causal DAG il-
lustrating the relationships between these variables is given
in Fig. 2. It has been shown that if all effects are linear
without interaction terms [37••], the causal effects of A on
Y, of A on M, and of M on Y can each be estimated by
application of the ratio method [39] and then used to
estimate the effects in Eqs. (4)–(6). The coefficient from
the regression of the outcome on the exposure’s IV, γY∣Ga

,

is divided by the coefficient from the regression of the
exposure on the IV, γA∣Ga

to obtain the total effect:

TE ¼ γ
Y∣Ga

=γ
A∣Ga

:

U

a m

MA

Fig. 2 Causal directed acyclic graph (DAG) leading to direct and indirect
causal effects of variable A on Ywith mediatorM, associated instrumental
variables Ga and Gm, and unmeasured confounders U
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the formulas of NDE and NIE to obtain measurement
error-corrected estimates of the causal contrasts of interest
with standard errors obtained via the bootstrap. When the
amount of error is not known from external validation data,
a sensitivity analysis can be conducted.



The natural indirect effect is estimated similarly upon
obtaining the A–M and M–Y associations in a similar fashion:

NIE ¼ γ
M∣Ga

=γ
A∣Ga

� �
� γ

Y∣Gm

=γ
M∣Gm

� �
:

Finally, the natural direct effect is given by the following:

NDE ¼ TE−NIE:

Although theMR approach appears simple, it relies on very
strong assumptions. First, it is very hard to find genetic vari-
ants, which satisfy the IV assumptions for the exposure–me-
diator and mediator–outcome relationships. In the example
considered here, variants for smoking exposure and certain
DNA methylation CpGs have been uncovered [36]. Another
important limitation is that it is possible that associations may
reflect pleiotropy (multiple effects of a single gene) rather than
mediation [37••]. If there are alternative pathways by which
variants associated with the exposure may be associated with
the mediator, then the assessment of mediation is more prob-
lematic. Discussion of these and other limitations of MR is
given in [40•]. It is recommended to use MR only where the
IV assumptions have a strong biological or scientific basis.
Furthermore, results of MR should be compared with alterna-
tive approaches, such as sensitivity analyses for unmeasured
confounding and measurement error. Finally, it is not clear yet
how one would go about applying MR when more than one
mediator is of interest, the final issue that I discuss in the next
section.

Multiple Mediators

Another important yet understudied problem in mediation
analysis in environmental epigenetics studies is how to esti-
mate and test indirect effects in the presence of multiple or
high-dimensional sets of mediators (Fig. 3). Currently, most
mediation analyses in EWAS are conducted separately for
each mediator (say DNAm of each CpG site separately) and

post-hoc Bonferroni or permutation-based corrections for
multiple comparisons are applied [12•, 13, 41, 42]. This ap-
proach is problematic for two main reasons. First, failure to
adjust for other mediators could lead to inefficiency, if medi-
ators are independent of each other, exacerbating the conser-
vativeness of the Sobel test [43]. Second, this approach can
introduce bias, and Bonferroni correction would be inappro-
priate, if mediators are correlated with each other [44••]. This
latter issue may bemore troublesome as the correlation among
probes close to one another can be as high as 0.6 [45] in cell
lines. It is therefore advisable to include multiple mediators in
one model to determine to what extent the specific indirect
effects are associated with mediators. As in GWAS, investi-
gators can adopt a “candidate gene” approach and investigate
multiple selected mediators. Alternatively, investigators can
consider a high-dimensional set of mediators. Approaches
for mediation analysis for multiple mediators are available
and should be employed to estimate and test direct effects
and joint indirect effects. Some of these approaches do not
require modeling the mediators [44••, 46]. If mediators are
correlated and temporally ordered (either by design or based
on prior knowledge) certain path-specific effects can be esti-
mated [47]. These approaches for multiple mediators do not
accommodate high-dimensional mediators, and more research
is needed to ensure valid causal inferences in this setting.
Some initial proposals involve variable selection procedures
before applying multiple mediators’ approaches and provide
joint testing procedures more appropriate to this setting [43,
48••].

Concluding Remarks

Causal mediation analysis is a key approach to investigate the
role of epigenetic factors in explaining the effect on environ-
mental exposures on birth outcomes. Causal interpretation of
such investigations can be strengthened by the adoption of
recent methodological advancements in mediation analysis
that correct for measurement error, use genetic instrumental
variables, and account for the presence of multiple mediators.
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