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Abstract Genome-wide association studies (GWAS) in can-
cer have successfully identified over 450 regions that harbor
susceptibility alleles with small effects contributing to the risk
of one or more cancers. Less than 10 % of the regions identi-
fied thus far are common to more than one cancer, but it is
these regions which display pleiotropy that are especially in-
formative and provide new opportunities to gain insights into
commonmechanisms of carcinogenesis. Since the GWAS age
has been notable for scalability, large-scale consortia have
successfully combined many studies to identify novel regions
associated with risk for cancer. In fact, for common cancers, a
substantial fraction of markers for common alleles have been
identified, and additional studies of the cumulative “polygen-
ic” effect of large scans further suggest that many additional
alleles remain to be characterized. The emerging catalog of
common variants, which represents a fraction of the underly-
ing genetic architecture of cancer susceptibility, already con-
stitutes a set for common cancers that could be used in strat-
ification and public health measures. On the other hand, the
discovery of many regions is occurring at a rate that exceeds
our capacity to understand the underlying biology contribut-
ing to each risk allele. Nearly all susceptibility regions harbor
one or more variants that point towards changes in the regu-
lation of key genes and pathways and not protein coding

changes resulting in Bdrivers^ of somatic alterations. Further
investigation of each region depends upon the sequence of
fine mapping (e.g., identification of correlated variants) using
in silico functional tools to nominate the most promising var-
iants for detailed laboratory follow-up studies. Each region
has to be interrogated individually, taking into account the
unique features of each genomic locale in order to understand
the biological underpinnings of the susceptibility variants.
Building a comprehensive catalog of susceptibility alleles,
across a spectrum of frequencies and effect sizes, and func-
tional annotation of these should be instrumental in revealing
new cancer biology and eventually used in precision
prevention.

Keywords Post-genome-wide association studies . Fine
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Introduction

In the last 25 years, cancer susceptibility alleles have been
discovered by a progression of study designs, beginning with
linkage analyses in cancer-laden families through the largely
unsuccessful world of candidate genetic association studies to
the success of genome-wide association studies (GWAS) and,
more recently, next-generation sequencing (NGS) of high-risk
families. All but the last approach has been predicated on
achieving statistical evidence using either linkage or associa-
tion analyses [1]. The early findings of NGS have required
laboratory corroboration, primarily to bolster the smaller sam-
ple sizes analyzed, particularly in search of less common var-
iants with a moderate effect—one not seen in linkage and too
rare for coverage using current GWAS microarrays [2]. The
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tools used in the cancer genetic susceptibility mapping have
mirrored the above and been derived from the annotation of
the human genome sequence, shifting from genotyping single
tandem repeats (STRs) and single nucleotide polymorphisms
(SNPs) to typing hundreds of thousands of SNPs in parallel
using microarray technologies and recently to whole genome
sequence analysis using massive parallel sequencing
technologies.

Initially, linkage analysis is conducted in family studies,
notable for multiple members who have developed the same
type of cancer and has provided the first evidence for high
penetrance rare mutations; these studies used polymorphic
genome-wide microsatellite markers to detect segregating
haplotypes within a family structure [3, 4]. Follow-up se-
quence analysis of many possible genes was required within
the identified linkage peaks, and yet only a small proportion of
causative mutations have been characterized. These rare or
uncommon mutations with large effect sizes (Fig. 1) were
particularly found in families with extensive breast and colo-
rectal cancer, melanoma, or a constellation of cancers, such as
Li-Fraumeni Syndrome [5–10]. A high fraction of these over-
lap with driver mutations, identified in the Cancer Genome
Atlas and COSMIC databases, underscoring the importance
of the altering the germline as well as the somatic genome
[11•, 12].

Over time, investigators turned to candidate gene associa-
tion studies, since it was argued that linkage analysis for com-
plex diseases would be less efficient than association analyses
in populations for mapping the set of common variants with
smaller effect sizes [1, 13, 14]. The approach, however,
yielded very limited success. Only a handful achieved suffi-
cient statistical significance in replication studies because
most reported findings failed to replicate for a variety of

reasons that included issues in study design, small sample
sizes, and ineffective choice of variants for testing, often driv-
en by insufficient evidence. The collective failure of the can-
didate gene approach taught us the importance of robust rep-
lication, which together with the scaling of studies established
a critical foundation for success, namely, adequate power to
conclusively detect common variants.

Principles of Cancer GWAS

As the draft sequence of human genome was completed, its
annotation revealed a wide spectrum of genetic variation and
led to international efforts to study different types of genetic
variation in distinct populations [15–19]. In particular, the
HapMap and 1000Genome Projects provided the comprehen-
sive annotation of SNPs and their correlation, thus enabling
investigators to search indirectly for markers that subsequent-
ly would be mapped to determine the underlying variants that
could explain the biological basis of the signal [19, 20, 21•].
Further advances in microarray technologies have enabled
researchers to interrogate hundreds of thousands of SNPs in
parallel. Looking across the genome at one time, in an agnos-
tic manner, has given rise to the age of GWAS.

So far, common susceptibility alleles have been discovered
by association studies, which compare allele frequencies be-
tween affected and unaffected individuals (Fig. 2). To test for
unbiased genome-wide associations, commercial SNP micro-
arrays are designed to tag common variants across the entire
genome and as a consequence detect surrogates of the “func-
tional” variant in linkage disequilibrium (LD) and rarely de-
termine the actual functional variant [22]. Interestingly, in
some cases, the backbone of a common haplotype may also
be a marker for less common variants accounting for the

Fig. 1 Distribution of
susceptibility alleles by frequency
and strength of genetic effect.
This illustrates the distribution of
susceptibility alleles as well as the
feasibility of identifying variants
through GWAS and sequence
analysis
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signal, known as a Bsynthetic^ association [23]; so far, this
scenario has been less frequently encountered than originally
postulated. To circumvent false-positive statistical findings,
the community has embraced a threshold of genome-wide
significance for reporting GWAS results, defined as a trend
association test with a p value≤5×10−8. Replication in inde-
pendent sets is important against the pursuit of false positives,
since the downstream mapping and laboratory investigation
are costly with respect to time and resources [24, 25]. In ad-
dition, follow-up studies or large meta-analyses can be effec-
tive to conclusively establish GWAS finding [26].

Cancer GWAS Discoveries

Over 450 distinct genetic loci, marked by one or more highly
correlated SNPs, have been conclusively identified for more
than two dozen different cancers at or below the threshold for
genome-wide significance [27–32] including common can-
cers, such as breast, colon, and prostate as well as rarer pedi-
atric cancers, and cancers in young adults, like Ewing sarco-
ma, neuroblastoma, osteosarcoma, and testicular cancer
[28–43]. So far, the reported cancer GWAS findings are al-
most exclusively restricted to susceptibility to cancer and only
with rare exception associated with clinical outcomes, such as
metastatic disease or survival. These rare instances have arisen
from detailed biological follow-up and been concentrated in a
rare pediatric cancer, neuroblastoma; susceptibility loci, such
as LMO1, HACE1, and LIN28B, are associated with more
advanced disease and survival [44••, 45••]. Additionally, a
variant present in the 5' UTR of SLC39A6 disturbs a transcrip-
tional repressor-binding site and results in upregulation of
SLC39A6 expression, a risk factor for survival of esophageal

squamous carcinoma in East Asia. In turn, overexpression of
SLC39A6 correlated with shorter length of survival in individ-
uals with advanced esophageal squamous cell carcinoma [46].
Still, in aggregate so far, the lack of correlation between asso-
ciated loci and clinical outcomes suggests that distinct regions
of the genome may contribute to the development of cancer
but not necessarily the progression of cancer. In breast cancer,
with large data sets, there is emerging evidence that a small
subset of alleles influencing risk might also be associated with
survival [47, 48]. The overall discrepancy between etiology
and outcome markers may reflect different pathways but also
could be, in part, due to study-specific factors that have made
GWAS of survival and other clinical outcomes more difficult
(e.g., sufficient number of case/events, the length of post-
diagnosis follow-up, challenges finding replication popula-
tion, and quality of phenotype/clinical data). Of interest, an-
other study identified one new locus (rs2059614 at 11q24.2)
associated with survival in ER-negative breast cancer cases
and did reach genome-wide significance [49].

To date, the majority of the GWAS markers discovered
display large minor allele frequencies (MAF), namely, greater
than 10 % and in the first set of studies with adequate power
identified larger estimated per-allele odds ratios, in the range
of 1.2 to 1.4, but with large-scale consortia, ratios can be
discovered in the range of 1.1 [41]. Notably, the pediatric
cancer GWAS estimates of 1.6–1.8 were discovered in smaller
sample sets and perhaps suggest that the early onset cancers
could be a consequence of alleles with stronger effects, in
combination with other alleles or exposures. A notable disease
is testicular cancer, in young adults, for which the discovery
rate has been faster than other cancers, and interestingly, near-
ly all of the discovered loci have clustered around genes

Fig. 2 Genetic analysis of
genome-wide association study.
Multiple steps are conducted that
include the choice of SNPs across
genome (usually included on a
commercial SNP microarray
based on linkage disequilibrium
in a region, enabling a surrogate
to test for the region). Association
analysis is conducted in case–
control setting, examining all
SNPS in a BManhattan plot^
followed by replication analyses
that pinpoint markers on
chromosomes that are fine-
mapped and investigated in the
laboratory
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critical for sexual development, telomerase stability, and germ
cell development, all key pathways in testicular cancer devel-
opment. This is not surprising since testicular cancer has a
high heritability in family studies, and other identified testic-
ular cancer susceptibility loci have higher per-allele odds com-
pared to other cancer types [36–43]. Moreover, one of the first
loci to be discovered, KITLG on chromosome 12q22, has a
per-allele effect estimate greater than 2.5, which could be con-
sidered for genetic counseling [37, 38]. TP53 binding in the
KITLG gene is under selection and also associated with hair
color [50, 51, 52••].

Pleiotropy in Cancer GWAS

So far, most susceptibility alleles discovered for cancer risk
are specific to one type of cancer. However, there is a small
fraction, less than 10 % overall, that appears to be shared by
two or more distinct cancers. When two or more cancers map
to the same susceptibility allele, this is known as pleiotropy
and it these Bshared^ regions that provide new insights into
potentially common underlying mechanisms. Moreover, there
can be an overlap with other complex traits, such as hair color,
nevus formation, or obesity, all traits associated with risk for
specific cancers, whereas in select circumstances, the shared
signal may be a novel or previously underappreciated associ-
ation between with other risk factors or non-cancer chronic
diseases. One variant (rs12821256) approximately 350 kb up-
stream ofKITLGwas recently associated with blond hair [50],
while several variants within theKITLG locus were previously
reported to be associated with testicular cancer [37, 38].
Furthermore, KITLG plays a role in determining level of pig-
mentation [51] and has undergone strong positive selection in
the European populations [37, 52••].

The catalog of loci displaying pleiotropy continues to in-
crease, particularly as the progress of GWAS includes larger
international consortia. One of the first regions to be discov-
ered was 8q24 for prostate cancer susceptibility, and over
time, subsequent studies have expanded the catalog to include
multiple independent regions associated with prostate cancer
risk, some specific to populations of specific ancestry, such as
men of African ancestry [53]. At the same time, this region
centromeric to the MYC oncogene on 8q24 harbors at least
five distinct, independent loci, some of which are shared be-
tween two or more cancers; interestingly, these susceptibility
loci include cancers of disparate embryological and mutation-
al spectra, chronic lymphocytic leukemia, breast, colon, blad-
der, ovarian, and prostate cancers [54–63]. The mechanism by
which each of these loci contributes to susceptibility is com-
plex but appears to be mediated through enhancer regulation
ofMYC expression [64–66]. Not surprisingly, cancers with an
established viral etiology, such as cervical, liver, nasopharyn-
geal, and multiple subtypes of non-Hodgkin’s lymphoma,
have mapped susceptibility loci to the complex HLA region

on chromosome 6p21 [67–73]. Further studies are needed to
precisely map the different alleles to understand how class I
and class II alleles contribute differentially to cancer risk.

One region which harbors the telomerase gene, TERT, and
a close neighbor, CLPTM1L, on 5p15.33 is particularly inter-
esting because it harbors susceptibility loci for at least ten
distinct cancers as well as rare mutations associated with
dyskeratosis congenita, idiopathic pulmonary fibrosis, acute
myelogenous leukemia, and chronic lymphocytic leukemia
[42, 74–90]. Notably, more than ten cancers map to as many
as six distinct and independent loci and in each of the six,
between three and five cancers, mapped to each independent
locus with interestingly both risk-enhancing and protective
effects [83]. For example, there is a surprising, inverse rela-
tionship for one of the TERT-CLPTM1L alleles between basal
cell carcinoma and melanoma, two cancers of the skin strong-
ly associated with sun exposure—one is protective while the
alleles confer susceptibility to the other [91]. For a subset of
SNPs, an allele-specific effect on DNA methylation was ob-
served, indicating that methylation and subsequent effects on
gene expression may contribute to the biology of risk variants
of the TERT-CLPTM1L locus [83]. The extensive pleiotropy
across the TERT-CLPTM1L locus suggests complex gene–
gene or gene–environment interactions.

The 9p21 region has been implicated in the pathogenesis of
multiple cancers and other complex traits such as intracranial
aneurysm, coronary artery disease, and type 2 diabetes
[92–97]. This region harbors the cyclin-dependent kinase in-
hibitor 2A/B (CDKN2A/B) and CDKN2B-AS1 genes. In a
variety of tumors, somatic mutation and/or deletions have
been observed in this same region [98–100]. Two coronary
artery disease risk alleles of SNPs rs10811656 and
rs10757278 are located in an enhancer and disrupt a binding
site for STAT1, while binding of STAT1 inhibits CDKN2B-
AS1 expression in lymphoblastoid cell lines. Using a new,
open-ended approach to detect long-distance interactions, in
human vascular endothelial cells, the enhancer interval con-
taining the CAD locus physically interacts with among others
the CDKN2A/B locus, influencing expression [95]. In differ-
ent cancer types tested, two risk alleles were associated with
cis-expression of 9p21 genes in corresponding cancer tissues
in the expression quantitative trait loci analysis [93].

Meta-Analysis, Pathway Analyses, and Further Discovery
of Cancer Susceptibility Loci by GWAS

GWAS are scalable for discovery to detect common markers
with smaller effect sizes; several studies have increased sam-
ple size by comparing newly genotyped cases against previ-
ously genotyped or employed large meta-analyses and follow-
up studies. For example, the Collaborative Oncological Gene-
Environment Study (COGS) had pooled existing scans and
conducted large-scale replication using a custom Illumina
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iSelect genotyping array (the iCOGS array) that includes 211,
155 cancer-related SNPs. They found 70 new susceptibility
loci for breast, ovarian, and prostate cancers with effects sizes
between 1.05 and 1.15 [101–103]. Since GWAS genotyping
has been performed with different commercial and more re-
cently custom SNP microarrays, techniques for imputation of
data have been developed, to effectively combine genotyping
data across platforms. Imputation programs can successfully
infer untested and highly correlated SNPs based on reference
data sets, such as the International HapMap Project, the 1000
Genome Project, the Genome of the Netherlands (GoNL)
Project, or the DCEG imputation set [18, 19, 104•, 105•]. Of
interest, recently, rare variants (BRCA2 p.Lys3326X and
CHEK2 p.Ile157Thr) with large effect size were identified in
a squamous lung cancer GWAS [106••], showing that impu-
tation and meta-analysis in large-scaled data set do not only
potentiate findings of common variants with smaller estimated
effect sizes.

New consortia, such as The Genetic Associations and
Mechanisms in Oncology (GAME-ON), have assembled
large sets of cases and controls, drawn from a myriad of study
designs, and promise to accelerate the discovery of new loci
[107, 108], primarily those loci with estimated effect sizes that
are in the range of 1.1. The large, systematic analyses of tens
of thousands of cancer cases will yield new loci and provide
more data on the polygenic nature of common cancers, such as
breast, colon, lung, ovarian, and prostate cancers. In this re-
gard, it is critical to continue this effort to discover the full set
of common variants that explain a substantial fraction of the
underlying genetic architecture of each of these five common
cancers. Park et al. analyzed existing GWAS data to develop a
model based on empirical data to estimate the fraction of her-
itability explained by SNPs for common cancers (breast, pros-
tate, and colon) based on an upper limit for heritability of
roughly twofold. Based on the empirical data and model ap-
plied, the expected area under the curve is not expected to
exceed 0.80 for breast, colon, and prostate, suggesting that
additional uncommon variants further explain risk [109, 110].

Early in the discovery era of GWAS, many investigators
postulated that pathways of known genes could harbor sus-
ceptibility SNPs that cumulatively could explain risk for can-
cers, especially in cancers in whichmodifiable risk factors had
been established. To achieve the power needed to detect com-
mon markers with smaller effect sizes, Gene Set Enrichment
Analysis (GSEA) methods were introduced to GWAS studies,
yet the studies to date have not yielded many novel, reproduc-
ible findings, mainly because heterogeneity in design and in-
adequate sample sizes needed have undermined this hopeful
approach. While addressing the association of gene sets that
share common biological functions, these types of analyses
focus on the combined effects of many loci, each making a
small contribution to overall disease susceptibility [111–113].
The problematic assumption has been that the associated

SNPs necessarily regulate or alter the nearest, Bplausible can-
didate gene,^ an assumption that has not necessarily been
supported by the emerging data in functional studies. In some
cases, the effect can be at a distance and not necessarily
exerted at the nearest, Bfavorite^ gene.

For breast cancer, which has been epidemiologically linked
to hormones, very few GWAS signals so far map to region-
harboring estrogen/progesterone-related genes [114]. Of inter-
est, in two different breast cancer GWAS data sets, the growth
hormone signaling pathway was found highly enriched with
association signals employing pathway analysis [115, 116].
GWAS of testicular cancer have identified a number of re-
gions harboring plausible candidate genes, involved in the
development of the testes [36–43]. Deletions of one of these
genes, DMRT1, leads to male-to-female sex reversal, and this
prompted analysis of a custom-built sex determination gene
set using pathway-based analysis in three individual GWAS
data sets of testicular cancer. With the exception of DMRT1,
none of the genes were previously identified as susceptibility
loci in any of the GWAS data sets [117]. Many other groups
have used pathway-based approaches to test whether a group
of genes in the same functional pathway are jointly associated
with disease, but these studies remain preliminary—waiting
for independent studies and laboratory confirmation
[118–121]. Althoughmost pathway analysis algorithms adjust
for characteristics that may confound observed gene set asso-
ciations such as LD patterns, gene size, and variant number
[111–113], it is still important to replicate findings in indepen-
dent data sets.

It is also important to note that in GWAS of sufficiently
large data sets, such as breast cancer and lung cancer, it has
been possible to identify loci that map to one subtype and not
another one. For example, in breast cancer, there are recent
reports of loci that are estrogen receptor-negative only [122],
whereas the vast majority of signals are seen predominately in
women with estrogen receptor-positive disease [102].
Interestingly, of the more than 100 prostate loci, perhaps a
handful could be associated with only aggressive disease
[107, 123].

Investigation of GWAS Signals

In Silico Fine Mapping

To understand the biological underpinnings of each suscepti-
bility alleles, a series of analyses must be undertaken. Each
associated region will require extensive resources to conduct
fine mapping of possible variants, in silico prediction and
prioritization, and the functional studies that provide biologi-
cal plausibility. Associated regions need to be fine-mapped to
determine optimal variants for functional analyses, especially
since most associated SNPs are Bindirect^ markers for the
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actual susceptibility alleles; hence, many associated SNPS are
observed, but very few actual independent loci have been
reported. Fine mapping has been accelerated by the 1000
Genome Project, augmented by the International HapMap,
which established a genome-wide framework of common
haplotypes. More recently, exome sequencing databases have
also provided additional variants, often less common coding
variants [124, 125]. To enhance accuracy, some investigators
have employed regional resequencing or a custom array to
augment the public databases to fully characterize the com-
prehensive portrayal of both common and rare variants
[126–129]. In some setting, a combination of reference sam-
ples genotyped on multiple chips, such as the DCEG imputa-
tion set or the haplotypes from GoNL, can increase the accu-
racy of the 1000 Genome Project imputation, particularly for
common variants with minor allele frequencies estimated to
be more than 2–3 % [104•, 105•]. The pattern of LD, often
with apparent differences between ancestral populations, can
be used to further narrow the window for possible direct as-
sociation of variants. In admixed individuals (e.g., African,
East Asian, or Latino/admixed), it is possible to search for
admixture markers that might explain differences in disease
disparity among different ethnic groups [53, 130, 131]. The
comparison of mapping studies in distinct populations should
narrow the candidate variants for laboratory evaluation de-
signed to provide laboratory insights into the underlying
mechanism(s).

In Silico Assessment of Putative Functional Elements

So far, only a handful of the cancer GWAS signals have been
mapped to a coding change in a plausible candidate gene and
had subsequent supportive, functional data. While over 90 %
of the variants discovered, for cancers and other traits, are
mapping to non-coding regions [31 , 132–135] .
Approximately one quarter of variants found through GWAS
even map to intergenic regions, in which there are no adjacent
correlated markers that map to characterized genes [28–30]. It
is likely that variants present in these non-coding regions do
not alter protein coding but play a regulatory role. A greater
than expected fraction of cancer susceptibility alleles map to
regulatory regions, suggesting that common variants confer
susceptibility primarily through perturbations in regulatory
events [27, 41, 136]. Indeed, it has been observed that
disease-associated SNPs are more likely to have an effect on
gene expression than randomly chosen SNPs [137–139]. For
instance, half of the known risk alleles for estrogen receptor-
positive breast cancer are expression quantitative trait loci
(eQTLs) acting upon major determinants of gene expression
in tumors [140•], though one has to keep in mind that SNPs
might not exert a similar effect in different cell or tissue types.

Several public data sets such as The Cancer Genome Atlas
(TCGA—adult cancers) project [141], the Therapeutically

Applicable Research to Generate Effective Treatments
(TARGET—pediatric cancers) project [142], and the
Genotype-Tissue Expression project (GTEx—normal tissue)
[143] have begun to collect a comprehensive catalog of gene
expression and regulation across tissues. These data sets will
enable studies of eQTLs, alternative splicing, and the tissue
specificity of gene regulatory mechanisms and thus might aid
in short listing plausible functional/causal SNP markers. In
addition, the NIH Roadmap Epigenomics Mapping
Consortium (Roadmap—normal tissues and stem cells)
[144, 145] and the Encyclopedia of DNA Elements
(ENCODE—cell lines) Project [146•] have begun to map
DNA methylation, histone modifications, chromatin accessi-
bility, and (small) RNA transcripts, specifically cataloging
sign posts and markers of biological activity. Several algo-
rithms, such as Haploreg [147] and RegulomeDB [148], have
incorporated these data sets and are helpful in the bioinformat-
ic assessment and prioritization of potential functional
markers.

The clever use of the bioinformatic resources can be infor-
mative and lead to unexpected findings. Initially, the discov-
ery of a region on chromosome 19q13.13 associated with
chronic infection with hepatitis C virus (HCV), a risk factor
for liver cancer, was thought to be related to a nearby gene,
IL28B, but the marker SNP is strongly correlated with a dinu-
cleotide variant that Bcreates^ a new gene, IFLN4, encoding
the interferon lambda4 protein [149••]. Functional studies
have shown this new gene and its expression account for the
signal; the dinucleotide variant is also a probably risk marker
for response to HCV treatment and outcome [150]. The
strength of the estimated effect size for spontaneous and
treatment-induced clearance of HCV is significantly larger
than most cancer GWAS signals, suggesting a possible utility
in the clinic.

Laboratory Investigation of GWAS Signals

The pursuit of each region is complex and is determined by
the unique characteristics of the genomic region, with respect
to the number of correlated variants, functional elements, and
known biological processes, such as the effect of a plausible
candidate gene on growth, spread, or apoptosis. Each potential
functional variant has to be studied separately, and a combi-
nation of different approaches and tools is required, which
explains the markedly slower pace of characterization
(Fig. 3). Employing techniques such as the chromosome con-
formational capture (3C), SNP promoter/enhancer reporter as-
says, electromobility shift assay (EMSA), chromatin immuno-
precipitation (ChIP), and eQTL for SNPs of interest can reveal
possible functional elements, but these screens still require
subsequent confirmation [31, 151, 152], usually in cell lines
or tissue analyses.
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For instance, Zeron-Medina et al. determined that 86
of the 62,567 cancer GWAS SNPs (including all vari-
ants correlated with known SNP markers) reside in ge-
nomic regions occupied by p53, using p53 ChIP-seq
data. After further in silico testing, they identify a
SNP in a functional p53-binding site in the KITLG re-
gion, which is associated with testicular cancer as one
of the largest risks identified among cancer GWAS.
Functional analysis established allele specificity of the
ability of p53 to bind to and regulate transcription of
KITLG [52••]. After fine mapping by the Breast Cancer
Association Consortium, in large case–control studies
using the custom iCOGS chip, three statistically inde-
pendent risk signals within the FGFR2 locus were iden-
tified. By using a combination of in silico and function-
al analysis, they found three putative functional SNPs.
ChIP analysis showed that FOXA1 preferentially bound
to the risk allele of rs2981578 and was able to recruit
estrogen receptor 1 to this site in an allele-specific man-
ner, whereas E2F1 preferentially bound the risk allele of
rs35054928. Chromatin conformation capture demon-
strated that the risk region was able to interact with
the promoter of FGFR2 [129]. Of interest, both
FOXA1 and E2F1 are involved in estrogen signaling
and are therefore consistent with the finding that the
genetic association in the FGFR2 locus is stronger in
estrogen receptor-positive disease, with little or no

association for estrogen receptor-negative disease [129].
Analysis in a large case–control study of estrogen
receptor-positive tumors identified three independent as-
sociation signals 11q13. The strongest signal maps to a
transcriptional enhancer element in which risk allele
rs554219 reduces both binding of ELK4 transcription
factor and luciferase activity in reporter assays and
may be associated with low cyclin D1 protein levels
in tumors. Another candidate variant, rs75915166, cre-
ates a GATA3-binding site within a silencer element.
Chromatin conformation studies demonstrate that the en-
hancer and silencer elements interact with each other as
well as with CCND1 [153].

Interestingly, one of the bladder cancer GWAS locus
has been mapped to the prostate stem cell antigen
(PSCA) gene on chromosome 8 [154]. Based on RNA
sequencing followed by functional analysis, a promoter
SNP, characterized in fine mapping, has been shown to
influence mRNA PSCA expression, and the creation of
an alternative translation start site leads to increased
expression of PSCA on the cell surface [155•]. This difference
in expression suggests that the PSCA gene could be a target for
therapy, and the actual genotype could predict PSCA protein
expression and identify bladder cancer patients, harboring the
PSCA variant, who may benefit from immunotherapy with
anti-PSCA-humanized antibody, a potential therapy for differ-
ent cancers.

Fig. 3 Laboratory investigation of GWAS SNPs. Cartoon depiction of
the steps after fine mapping beginning with the assessment of whether a
marker resides in a coding region through the bioinformatic analysis and

assessment of functional elements prior to conducting the experimental
studies
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Concluding Remarks

The above examples underscore the value of pursuing an un-
derstanding the biological basis of a GWAS signal, which
could eventually be the foundation for clinical translation,
but further studies are needed to enable this goal. More im-
portant is the emerging concept that common susceptibility
alleles contribute to cancer risk cumulatively, as part of a
polygenic model. The evidence points towards each locus
providing a small but measured alteration of one or more
pathways, usually through disruption or changes in the regu-
latory elements and not directly through the coding region, a
feature of the emerging class of cancer drivers discovered in
somatic sequencing and highly penetrant familial cancer syn-
dromes [11•, 156].

The pursuit of cancer GWAS will continue to discover
susceptibility alleles, filling in the comprehensive catalog of
susceptibility variants. The successful use of this approach can
now be fully turned to investigate pharmacogenomics and
outcome analyses, particularly with large studies on the hori-
zon that are well-phenotyped. Very few common susceptibil-
ity alleles also influence clinical outcomes, suggesting distinct
mechanisms account for risk over time as opposed to the pro-
gression of disease. The discovery of many cancer suscepti-
bility alleles by GWAS represents an important transition in
the development of integrative scientific collaborations be-
cause it relied on a network of epidemiologists, geneticists,
and analysts, who have uncovered genetic markers for risk.
The challenge ahead lies in the investigation of the underlying
biology that can explain the contribution of susceptibility al-
leles to disease pathogenesis or progression, which, in turn,
could lead to more effective strategies for prevention or treat-
ment. There are daunting challenges in quality control of ge-
nome sequence data, a substantively larger number of variants
for testing, which compounds the challenge of distinguishing
true signal from background noise [157]. To define the com-
prehensive set of uncommon variants (MAF between 0.5 and
5 %), hybrid approaches will be required including both ag-
nostic testing in family and population studies but also labo-
ratory investigation, as demonstrated for two distinct melano-
ma susceptibility genes, MITF and POT1 [2, 158–160].

Future studies should also focus on two major extensions
of the GWAS approach, namely, the interrelationship between
germline susceptibility alleles and somatic alterations [161]
and the utility of common variants for risk stratification, espe-
cially for common cancers, for which changes in absolute risk
could have a major impact. It is important to emphasize that
the susceptibility alleles discovered by cancer GWAS are not
yet ready for personal clinical use, but instead, studies are on
the horizon that could effectively utilize differences in risk
profile for public health measures or recommendations
[162]. It is this effort that holds the promise for implementing
germline genetics into precision prevention [163].
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