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Abstract Craniosynostosis, the premature fusion of one or
more cranial sutures, leads to abnormal craniofacial form
and function. Its causes remain largely unknown. One of the
strongest clues regarding non-syndromic craniosynostosis eti-
ology is its association with thyroid-related disorders, which is
based on a mix of epidemiologic and experimental findings.
This paper reviews evidence for the contribution of thyroid-
related mechanisms to craniosynostosis and makes recom-
mendations for how to improve this knowledge.
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Introduction

Craniosynostosis (CS), the premature fusion of one or more
cranial sutures, leads to abnormal craniofacial form and func-
tion. It is often associated with increased intracranial pressure

leading to abnormal neurocognitive development, and most
affected infants require extensive reconstructive surgery
[1–3]. It affects approximately 5 per 10,000 births and incurs
substantial emotional and financial costs [4]. For about half of
CS cases, the sagittal suture is affected; for 15 %, the metopic
suture; for 20 %, the coronal suture; for 3 %, the lambdoid
suture; and for 7 %, multiple sutures [5]. Based on reports of
prenatal diagnoses and autopsies, it is thought that CS occurs
as early as the second trimester [6–8]. Althoughmost CS cases
have a prenatal onset and are diagnosed at or soon after birth,
postnatal craniosynostosis can occur and in most cases, are
less severe [9, 10]. Normally, suture closure does not begin
until 3 to 9 months of age for the metopic suture and not until
the third decade of life for the other sutures [9, 11].

The etiology of CS is presumed to be multifactorial,
with multiple contributing genetic and environmental
factors [12]. Studies suggest various risk factors for
CS, such as smoking, advanced maternal age, in utero
constraint, male sex, and Caucasian race-ethnicity
[13–16], but its actual causes remain largely unknown.
This is particularly true of non-syndromic CS, i.e., cases
for which no genetic cause has been identified, which
comprise about 90 % of all cases.

One of the strongest clues regarding non-syndromic
CS etiology is its association with thyroid-related disor-
ders. For example, several case-only studies have report-
ed CS among offspring born to women with thyroid-
related disorders or neonates themselves diagnosed with
thyroid disease [17–23]. This paper reviews evidence
for the contribution of thyroid-related mechanisms to
CS and makes recommendations for how to improve
this knowledge. It is hoped that improved understanding
of the contribution of thyroid function to CS will even-
tually lead to clinical advances in the prevention, detec-
tion, and treatment of this significant congenital disorder
in skull development.
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Maternal-Fetal Thyroid Function and Hypotheses

Thyroid function involves a complex interplay among multi-
ple hormones, including thyroid-stimulating hormone (TSH),
thyroxine (T4), and triiodothyronine (T3). Hypothyroidism
(high TSH, low free T4) and hyperthyroidism (low TSH, high
free T4) affect up to 4 % of women of reproductive age if
subclinical disease is included [24•]. In addition, transient hy-
perthyroidism affects up to 3 % of women during early preg-
nancy, due to the TSH-like activity of placental human chori-
onic gonadotropin (hCG). Thyroid autoantibodies are present
in about 10–20 % of women of reproductive age and serve as
markers of thyroid autoimmunity [24•, 25]. The presence of
these antibodies in the absence of overt thyroid dysfunction is
predictive of the development of thyroid disease, and their
production may continue even after effective treatment.
Hypo- and hyperthyroidism, as well as the presence of thyroid
antibodies in the absence of thyroid disease, are associated
with increased risk of adverse pregnancy outcomes such as
spontaneous abortion and preterm delivery [26–28]. Risk fac-
tors for thyroid disease include maternal age >30, family his-
tory of autoimmune thyroid disease, infertility, diabetes, mor-
bid obesity, and iodine deficiency, some of which have been
suggested to be associated with risk of CS [29].

During pregnancy, levels of T3 and T4 increase by around
50 % [24•]. They tend to be highest during the first trimester,
due to cross-reactivity of hCG with the TSH receptor leading
to lower levels of TSH. Thyroid autoantibodies decline due to
immunosuppression that occurs during pregnancy. These
changes complicate approaches to screening and treatment
of thyroid disease during pregnancy, and recommendations
vary. In general, overt hypothyroidism is treated with
levothyroxine, hyperthyroidism is treated with anti-thyroid
drugs that block thyroid hormone synthesis, and all of these
medications can cross the placenta. Among non-pregnant
women, hyperthyroidism may be treated with radioactive io-
dine or thyroidectomy and may be the reason for subsequent
hypothyroidism and treatment with levothyroxine.

The embryo depends entirely on transplacental passage of
maternal thyroid hormones until endogenous synthesis begins
at about 12 weeks of gestation [30]. Maternal thyroid function
continues to affect fetal thyroid function even after that point,
based on studies demonstrating concordance of maternal and
cord blood levels of thyroid hormones [31]. Interestingly, one
recent study identified that cord blood levels of T4 were ab-
normally high among 50–60% of infants born to mothers who
had been diagnosed with hyperthyroidism or hypothyroidism
[32]. All of these mothers were undergoing treatment during
pregnancy. Like thyroid hormones, thyroid antibodies [24•]
and anti-thyroid drugs [33] pass freely from mother to fetus
throughout gestation.

There are multiple mechanisms by which fetal thyroid
function may be affected by maternal thyroid function. Fetal

thyroid function could be disrupted by transplacental passage
of maternal thyroid-related hormones, autoantibodies, or med-
ications. The accompanying clinical features of the mother
may be highly variable, however, depending on her current
state of thyroid function and treatment. Given this complexity,
our primary hypothesis is therefore framed in relatively gen-
eral terms—that risk of CSmay be increased among newborns
whose mothers or themselves exhibit potential indicators of
thyroid dysfunction, including particularly high or low levels
of thyroid hormones or the presence of thyroid autoantibodies.

Epidemiologic Evidence

Case Reports In 1969, Robinson et al. [21] reported CS in a
young boy who was hyperthyroid. Subsequent case reports
described CS among newborns, infants, and young children
who were hyperthyroid [19, 20, 34–36] or hypothyroid and
being treated with levothyroxine [17, 37]. Another case report
described a newborn with CS who had thyroid agenesis and a
mother without thyroid disease [23]. The most severe cases
tend to be those that present at birth or during early infancy,
due to the rate of brain growth in the late fetal and early
postnatal period [20].

Observational Studies We are aware of only two observation-
al studies (i.e., studies that include a comparison group of non-
cases) that have examined the association of maternal thyroid
dysfunction with CS, and their results are mixed [38, 39]. The
first case–control study did not observe an increased risk of
CS among offspring born to mothers who reported a history of
thyroid disease, but the study had limited power (it included
63 CS cases, 4 of whom reported a history of thyroid disease),
and exposure assessment occurred up to 15 years after deliv-
ery [38]. The second study was based on the National Birth
Defects Prevention Study, a population-based case–control
study [39]. It reported a 2.5-fold increased risk of CS among
offspring born to women with thyroid disease (based on 431
case mothers, 19 of whom reported a history of thyroid dis-
ease) [39]. Most women reported hypothyroidism, though the
etiology could not be definitively established in all subjects.
The association of maternal hypothyroidism with CS could be
explained by passage of exogenous levothyroxine (as a ma-
ternal medication) or maternal thyroid autoantibodies to the
fetus, especially stimulating thyroid receptor antibodies
(TRAbs) in women who are currently hypothyroid due to past
treatment for Graves’ hyperthyroidism (e.g., thyroidectomy).

A large cohort study reported lower T4 levels in newborns
with CS [40]. A potential explanation for this finding is that
maternal hyperthyroidism results in a hyperthyroid in utero
environment and at the same time impedes physiologic matu-
ration of fetal hypothalamic-pituitary-thyroid regulation,
resulting in central congenital hypothyroidism in the newborn
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[41–43]. These results suggest that both maternal thyroid dys-
function and fetal thyroid dysfunction via placental transmis-
sion of maternal anti-thyroid antibodies or treatment of mater-
nal hypothyroidism contribute to the pathogenesis of CS [40].
Stimulating maternal antibodies or exogenous levothyroxine
can also lead to hypothyroidism in the infant due to negative
feedback regulation [43, 44].

Thyroid and Insulin-Like Growth Factor Pathway
Interactions

Interactions between insulin-like growth factor (IGF) signal-
ing and thyroid hormones in bone development are well de-
scribed [45–48]. The thyroid and IGF1 pathways are closely
related and enhance each other’s bioactivity. For example,
hyperthyroidism is associated with increased IGF1 levels
[49], as are certain DIO1 variants [50], and rodents treated
with exogenous thyroid hormone demonstrate markedly en-
hanced IGF1 expression [51, 52•]. The IGF1 receptor
(IGF1R) is highly expressed in developing cranial sutures
and is known to promote cellular proliferation, differentiation,
and migration, likely by mediating activity of insulin-receptor
substrate 1 (IRS1) via IGF1 and IGF2 binding to IGF1R [53].
Genetic models supporting the role of IGF signaling in CS
include the association of CS with IGF1R trisomy/tetrasomy
[54, 55], and our recent identification of IGF1R gain-of-
function mutations in CS patients [56•]. We have determined
that osteoblast cell lines derived from patients with CS with
high IGF1/IGF1R expression demonstrate enhanced signal-
ing, though the IRS1/Akt pathway implicating IGF1 signaling
as a potential biomarker for CS (Fig. 1). IGF1 is expressed in
rat calvaria osteoblasts [46, 57] and is induced in the sagittal
suture of a hyperthyroid rat model [51]. T3 enhances the

effects of IGF1 in osteoblasts by increasing IGF1 and IGF1R
expression, IGF1 binding, and IGF1-induced cell prolifera-
tion, suggesting thyroid hormone potentiates signaling of
IGF1 at the receptor level [52•, 58, 59]. These observations
suggest that thyroid hormone leads to increased IGF1 signal-
ing and may be critical in the pathogenesis of CS. In fact, we
have preliminary data indicating that IGF1/IGFR1 expression
in CS osteoblasts is strongly correlated with expression of
thyroid-related genes (e.g., THRA, THRB, PDE8B) (Fig. 2).

Genetics

Many syndromic cases of CS have an underlying genetic
cause, but the specific genes causing syndromic CS have not
been identified as major contributors to non-syndromic CS
[56•, 60, 61]. Studies demonstrating concordance in twins
and familial recurrence do, however, support a contribution
of genetics to non-syndromic CS [12, 62]. Although genome-
wide association studies and candidate gene resequencing ef-
forts have identified genes that may be associated with in-
creased risk, our understanding of genetic susceptibility to
non-syndromic CS is limited [47, 56•, 63].

A variety of genes affect circulating thyroid hormone levels
or their intracellular availability and activity [49]. For example,
iodothyroinine deiodinases 2 and 3 (DIO2, DIO3) and FOXE1
regulate tissue-specific biologic activity of thyroid hormones;
DIO1 and PDE8B affect circulating levels of thyroid hor-
mones; and thyroid hormone receptors (THRA, THRB) directly
affect thyroid hormone signaling. Functional variants have
been identified in many of the genes that code for these pro-
teins, and they have been associated with altered thyroid func-
tion [49, 50, 64]. A recent study examined the association of
variants in 24 thyroid hormone pathway genes with newborn
TSH values; the strongest associations from that study were for

Fig. 1 Differential gene
expression in synostosis
osteoblasts with high and low
IGF1 signatures exposed to T3.
Seven-day exposure of human CS
osteoblasts to 10−7 M (T3) results
in ≥1.5-fold increased expression
of AHSG, BMP3, CD36, CHRD,
FLT1, ITGB1, COL2A1, SPP1,
TGFBR1, and TNF in cells with a
“high” IGF1/IGF1R signature
relative to the those with a “low”
IGF1 signature. Data presented as
log2ΔΔCt. Green outline >2-fold
change in gene expression,
orange outline 1.5–2-fold change
in gene expression
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PDE8B and FOXE1 [65]. Similarly, a meta-analysis examining
the association between variants in 68 thyroid hormone path-
way genes and TSH and T4 levels in adults identified candi-
dates in PDE8B, FOXE1, DIO1, and THRB [64].

To our knowledge, no studies have focused on examining
the contribution of variants in thyroid regulatory genes to the
risk of developing CS. Examination of the association of CS
with variants in genes that are most proximal to thyroid hor-
mone synthesis and biologic activity, such as those mentioned
above, would certainly be informative. Bioinformatic ap-
proaches that examine gene expression correlation structures
may also be useful [53]. As a preliminary demonstration of
this approach, we examined publicly available data that reflect
changes in gene expression subsequent to T4 exposure (Gene
Expression Omnibus “GEO” GSE32444, 47517, and 15458).
Two of the top ten up-regulated genes werePOR and IGFBP4.
POR is of interest given that POR mutations cause the CS
syndrome Antley-Bixler. IGFBP4 is a binding protein that
increases the bioavailability of IGFs [66]. As a third approach
to identifying additional genes of interest from the thyroid
pathway, we recently conducted preliminary studies investi-
gating differential expression of genes in osteoblasts derived
from patients with CS in response to T3 exposure and stratified
by the level of IGF1 expression (Fig. 1). These preliminary
data suggest that several transcripts related to osteoblast dif-
ferentiation demonstrate differential expression in response to
the combination of high IGF1 expression and T3 exposure.

Experimental Evidence

There are many lines of experimental evidence supporting the
biologic link between thyroid hormone exposure and the devel-
opment of CS. Osteoblasts express thyroid receptors which upon
binding T3 reduce proliferation and enhance differentiation [67].
Exposure of mouse calvarial pre-osteoblasts to thyroid hormone
results in enhanced osteogenesis and upregulation of genes

known to play a role in CS including Fgf1, Fgf2, and Igf1
[52•]. These in vitro results are further substantiated by in vivo
experiments exposing rat pups to T3 resulting in enhanced bone
formation at the osteogenic front of the calvaria [68]. Further-
more, transgenic models of hyperthyroidism serve as ideal
in vivo experiments to understand the biologic response to thy-
rotoxicosis. Mice engineered to harbor a loss of function muta-
tion in thyroid hormone receptor beta (THRB) are resistant to
thyroid hormone and thus become hyperthyroid. They demon-
strate increased endochondral and membranous ossification
resulting in both growth retardation and CS [69]. Taken together,
these experiments provide strong evidence that hyperthyroidism
enhances osteogenesis, and in in vivo models, it induces CS.

Conclusions and Recommendations for Future Studies

There is strong epidemiologic and basic science evidence that
abnormal thyroid function is associated with an increased risk of
CS, but the exact mechanism(s) by which thyroid-related dys-
function may affect risk of CS is uncertain. Evidence to date
suggests that thyroid hormones or antibodies may directly influ-
ence gene expression at the developing suture, and that IGF may
potentiate the osteoblast response. Additional research is needed
to advance our understanding of these associations, beyond the
existing useful but limited case reports and epidemiologic and
experimental studies on this topic. For example, the identification
of a genetic predisposition to CS influenced by maternal thyroid
disease is an ideal model for meaningful gene-environment in-
teraction studies that could lead to translational research
impacting this subset of patients, although admittedly it may
require relatively large cohorts. Similarly, identification of high-
risk pregnancies based on the presence ofmaternal biomarkers of
aberrant thyroid function or IGF signaling could potentially con-
tribute to prevention among at-risk infants.

Based on existing evidence, our primary hypotheses are
that maternal subclinical or overt hyperthyroidism or thyroid

Fig. 2 Osteoblast expression
profile from 20 cases with the
highest IGF1 expression
contrasted with 20 control lines
and 20 cases with the lowest IGF1
expression. Colors represent
robust multi-array average
normalized signal intensities in
log2
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autoimmunity (especially stimulating maternal TRAbs) or
low newborn TSH are associated with increased risk of having
an infant with CS because they are all indicators of a hyper-
thyroid environment in the fetus. Secondary hypotheses to
take into account include the complexities of thyroid dysfunc-
tion and its treatment. We hypothesize that increased CS risk
may occur in the presence of maternal subclinical or overt
hypothyroidism (e.g., due to transplacental passage of thyroid
antibodies among women previously treated for Graves dis-
ease) or newborn hypothyroidism (a consequence transpla-
cental transfer of thyroid hormone in cases of maternal hyper-
thyroidism). Our premise is that exposure of the fetus to ab-
normal thyroid hormone levels or anti-thyroid antibodies dur-
ing gestation induces aberrant thyroid signaling in the fetus.

After diabetes, thyroid disorders are the second most com-
mon endocrine disorder among women of childbearing age.
Improved knowledge of potential harmful effects of aberrant
thyroid function will contribute to the development of optimal
approaches to the screening andmanagement of thyroid disease
among pregnant women and infants. Appropriate screening for
thyroid dysfunction and thyroid autoimmunity in pregnant
women are a topic of on-going debate [24•]. A better under-
standing of the association between thyroid function and CS
will be informative to this debate, especially as it relates to the
potential risks associated with unresolved hyperthyroidism or
overtreatment of hypothyroidism during pregnancy.
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