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Abstract
Purpose of review Tobacco use is the leading cause of pre-
ventable mortality in the USA, and Food and Drug
Administration (FDA) approved medications fail to maintain
long-term abstinence for the majority of smokers.
Recent findings One of the principal mechanisms associated
with the initiation, maintenance of, and relapse to smoking is
stress. Targeting the brain stress systems as a potential treat-
ment strategy for tobacco dependence may be of therapeutic
benefit.
Summary This review explores brain stress systems in tobacco
use and dependence. The corticotropin-releasing factor (CRF)
system, the hypothalamic-pituitary-adrenal (HPA) axis, and the
noradrenergic system are discussed in relation to tobacco use.
Preclinical and clinical investigations targeting these stress
systems as treatment strategies for stress-induced tobacco
use are also discussed. Overall, nicotine-induced activation
of the CRF system and subsequent activation of the HPA axis
and noradrenergic system may be related to stress-induced
nicotine-motivated behaviors. Pharmacological agents that
decrease stress-induced hyperactivation of these brain stress
systems may improve smoking-related outcomes.

Keywords Tobacco . Nicotine . Stress . CRF . HPA .
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Introduction

Tobacco use is the leading cause of preventable morbidity and
mortality in the USA, with over 556,000 deaths attributable to
smoking-related causes per year in the USA [1] and over 6
million deaths attributable to smoking-related reasons per year
worldwide [2]. The high degree of tobacco use across the
globe contributes to the well-documented magnitude of med-
ical and financial consequences associated with smoking.
Smoking increases risk for lung, oral, liver, and bladder can-
cers, chronic obstructive pulmonary disease (COPD), coro-
nary heart disease, and cardiovascular disease amongst many
others [3]. Correspondingly, smoking imposes an economic
burden of nearly $289 billion dollars in medical expenses and
lost productivity in the USA alone [4]. Despite the extensive
health and economic consequences associated with smoking,
smokers often fail to maintain long-term abstinence and re-
lapse to tobacco use remains high.More than 70% of cigarette
users relapse to smoking within 1 year, even with the most
efficacious treatments [5], underscoring the importance of
targeting novel systems for treatment of tobacco dependence.

It is well-established that one of the principal mechanisms
associated with the initiation, maintenance of, and relapse to
smoking is stress [6, 7]. Cigarette users (35–100%) self-report
stress and negative affect as causal factors when recounting
relapse episodes [8–10], and measures of smoking lapse be-
havior indicate that robust increases in negative affect were
predictive of relapse to cigarette smoking [11, 12]. Acute
stress has also been shown to reduce the ability to resist
smoking, increase the intensity of smoking, and increase crav-
ing and physiologic reactivity in daily smokers [13].

Considering the large portion of smokers who report stress
as a primary factor for maintaining and relapsing to smoking,
and the fact that current Food and Drug Administration
(FDA)-approved medications for smoking cessation are only
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modestly efficacious in maintaining long-term smoking absti-
nence, targeting brain stress systems as a treatment approach for
tobacco dependence is of the utmost importance.
Specifically, the ability of stressors to reliably activate
the corticotropin-releasing factor (CRF) system, the
hypothalamic-pituitary-adrenal (HPA) axis, and the cate-
cholaminergic system (norepinephrine, epinephrine, and
dopamine) has been linked to stress-induced increases in
drug-motivated behaviors [14], and in nicotine-exposed
animals and humans, acute stress additively increases
HPA and catecholamine activation [15]. The following
sections will review the state of the literature on the influ-
ence of three brain stress systems, the CRF system, the HPA
axis, and the noradrenergic system, on tobacco/nicotine depen-
dence. Preclinical and clinical investigations targeting these
stress systems as treatment strategies for stress-induced tobacco
use are discussed.

The Corticotropin-Releasing Factor System
and Tobacco/Nicotine Dependence

An Overview

Since the discovery of CRF, a 41 amino acid peptide, byWylie
Vale in 1981 [16], the CRF system has emerged as a key
mediator of the stress response and, consequently substance
use. CRF is widely distributed throughout the brain, with high
concentrations of neuronal cell bodies located within the
paraventricular nucleus of the hypothalamus, the basal fore-
brain, and the brainstem [17]. The CRF system is composed of
two main receptor subtypes: CRF1 and CRF2. CRF1 receptors
are widely distributed the cerebral cortex and cerebellum, and
in brain regions associated with stress and anxiety, including
the central nucleus of the amygdala and thalamus [18]. CRF2
receptors can be divided into CRF2α and CRF2β, and are
distributed throughout the brain, including the olfactory bulb,
bed nucleus of the stria terminalis, the hippocampus, and the
posterior cortical nuclei of the amygdala [18].

It is established that CRF initiates the HPA axis response to
stress by binding to CRF1 receptors in the anterior pituitary
[19]. As reviewed by Koob and colleagues [20], preclinical
work demonstrates that CRFmimics or enhances the behavior-
al response to stress in rodents. In particular, CRF1 and CRF2
activation is related to heightened stress responsiveness [21],
although CRF2 findings are mixed with some findings indicat-
ing an opposite effect of CRF2 receptors to those of CRF1 [22].
Consequently, administration of CRF antagonists reduces
stress-related neural activation and behavior in rodents [23].

Nicotine and the CRF System

It is thought that persistent sensitization of the behavioral
stress response following chronic drug use is driven by the

CRF system. Preclinical models demonstrate that nicotine ac-
tivates the HPA axis via hypothalamic CRF activity [24].
Further, extracellular CRF increases in response to precipitat-
ed withdrawal from chronic nicotine in rodents, particularly in
the central nucleus of the amygdala [25]. Similarly, nicotine
withdrawal-induced decrements in brain reward function have
been demonstrated to be mediated by CRF1 receptors [26].
Specifically, CRF messenger RNA (mRNA) levels in the cen-
tral amygdala and nucleus accumbens increase following nic-
otine withdrawal [27, 28•], and this increase in CRF mRNA
levels during withdrawal is more pronounced in female rats
relative to males [28•]. In the same study, CRF mRNA levels
were higher in the amygdala during nicotine exposure in male
versus female rats. Correspondingly, stress-induced effects as-
sociated with nicotine withdrawal are reversed by CRF1 an-
tagonists [29].

Preclinical

It is well-established that the CRF system mediates drug-
motivated behaviors, and antagonists of the CRF1 receptor
reduce nicotine self-administration, stress-induced reinstate-
ment to nicotine-seeking, and nicotine withdrawal effects in
animal models of nicotine dependence. Older studies demon-
strate that CRF antagonists reverse conditioned stress responses
elicited by nicotine [29], reduce stress-induced reinstate-
ment of nicotine-seeking when administered directly into
extrahypothalamic brain regions [30], attenuate abstinence-
induced increases in nicotine self-administration [25], and re-
verse deficits in brain rewards function following nicotine
withdrawal in rodents [31, 32].

More recently, CRF1 antagonist administration into the
central amygdala abolished mecamylamine-induced eleva-
tions in brain reward thresholds in rodents chronically treated
with nicotine [33]. CRF antagonism attenuates withdrawal-
induced deficits in response to a painful thermal stimulus in
nicotine-dependent rats [34]. Relatedly, blockade of CRF1 re-
ceptors in the ventral tegmental area (VTA) blocked the aver-
sive effects of nicotine withdrawal, and viral vector-mediated
downregulation of CRF mRNA in the VTA reduced increases
in nicotine self-administration induced by chronic nicotine
exposure [35]. With regard to stress induction, blockade of
CRF1 receptors reduced the ability of footshock stress to fa-
cilitate nicotine conditioned place preference (CPP) acquisi-
tion [36]. Taken together, the CRF systemmodulates nicotine-
motivated behaviors at a molecular, genetic, and behavioral
level, and reduces stress reactivity to nicotine CPP.

Clinical

Although CRF activation is associated with mood regulation
and depression in the clinic, very few studies in humans have
examined the role of CRF mechanisms underlying tobacco
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dependence and stress-related smoking lapse behavior. A re-
cent genetic study examined the CRHR1 gene, a gene
encoding for the CRF1 receptor, and whether variants in the
CRHR1 gene were associated with nicotine dependence [37].
That study demonstrated a significant association between
CRHR1 single nucleotide polymorphisms (SNPs) and
smoking quantity in African American individuals, and a sig-
nificant association between the same SNP and smoking
quantity and Fagerstrom Test for Nicotine Dependence
(FTND) scores in African American and European American
individuals. Despite the genetic link between CRF and nico-
tine dependence, human laboratory studies investigating the
role of the CRF system on smoking behavior have been lim-
ited. This may be related to the limited efficacy of some CRF1
antagonists for the treatment of depression, anxiety disorders,
and alcohol dependence [38, 39], the failure of CRF1 antago-
nists to reduce anxiety-potentiated startle responses in women
[40], and the potential for a negative adverse event profile
associated with their use [38]. Ongoing phase II clinical trials
of CRF1 antagonists for the treatment of PTSD symptoms
may further elucidate the role of CRF blockade on stress-
responsiveness [41].

Overall, preclinical findings support the notion that in-
creased CRF levels in the brain mediate nicotine-motivated
behaviors and stress-induced nicotine-seeking. CRF1 antago-
nists reduce the anxiogenic effects of increased extracellular
CRF on nicotine responding and withdrawal in rodent models
of nicotine dependence. Of particular importance is the recent
literature indicating a gender-sensitive role of CRF activity in
the modulation of nicotine reward in female rodents. A recent
review postulates that there are sex-dependent differences in
CRF modulation of dopamine within the nucleus accumbens
during nicotine withdrawal, and that nicotine withdrawal may
produce a stronger and more sustained activation of the CRF
stress system in females relative to males (see review by
O’Dell and Torres) [42]. This is supported by studies demon-
strating that female relative to male rats have higher numbers
of CRF1 receptors and lower levels of beta-arrestin2, an intra-
cellular protein that internalizes CRF1 receptors [43], indicat-
ing that female rats may be more responsive to CRF activation
than males. The human literature on the relationship between
CRF activity and tobacco dependence is sparse, with a single
genetic study demonstrating a link between CRF encoding
genes and nicotine dependence in African and European
Americans. The lack of studies in human laboratory para-
digms or clinical trials may be related to the limited efficacy
of CRF blockade for depression, anxiety, and alcohol depen-
dence, suggesting that findings may not be translatable from
preclinical to clinical work. Continued work should focus on
elucidating the role of the CRF system in stress-induced nic-
otine-motivated behavior in preclinical paradigms and the
translational utility of CRF1 antagonists for tobacco depen-
dence in humans.

Hypothalamic-Pituitary-Adrenal Axis
and Tobacco/Nicotine Dependence

An Overview

The HPA axis is perhaps the system most widely associated
with stress and arousal. During the stress response, CRF syn-
thesis in the paraventricular nucleus of the hypothalamus in-
creases, and once released, CRF binds to CRF receptors in the
anterior pituitary. Downstream cascade effects of CRF induce
the release of adrenocorticotropin (ACTH) from the pituitary
and subsequent secretion of glucocorticoids and cortisol (or
corticosterone), from the adrenal glands [44]. There are two
primary glucocorticoid receptors in the brain: the mineralocor-
ticoid receptor and the glucocorticoid receptor [45].
Mineralocorticoid receptors are located in brain regions in-
cluding the hippocampus and amygdala, and glucocorticoid
receptors are located throughout the hippocampus and in the
parvocellular neurons of the paraventricular nucleus [45]. It is
established that the release of cortisol plays an important role
in the modulation of the stress response, and the action of
cortisol on glucocorticoid receptors during periods of stress
results in a suppression of stress-induced increases in HPA
axis reactivity.

Nicotine and the HPA Axis

Work originally conducted by Balfour in the 1980s demon-
strated that nicotine is a potent activator of the HPA axis [46],
influencing the release of ACTH and cortisol. In humans,
cortisol levels tend to be higher in smokers than in non-
smokers. It is largely thought that the magnitude of effects
of smoking within the HPA axis depends on the number of
cigarettes smoked, the nicotine content of cigarettes smoked,
and smoking topography [47]. For example, there have been
mixed findings regarding the influence of nicotine content in
cigarettes on the release of ACTH and cortisol. Low nicotine
content cigarettes have demonstrated no effect on ACTH and
cortisol levels or an increase in cortisol levels in the laboratory
[48–51]. In contrast, smoking higher nicotine content ciga-
rettes reliably increases ACTH and cortisol levels in male
smokers [48–50]. Dysregulated HPA activation has also been
demonstrated after chronic nicotine exposure [52]. Further,
smoking cessation appears to immediately decrease salivary
cortisol, and this effect is maintained over a period of absti-
nence [47].

Preclinical

Early studies of neuroendocrine responses to nicotine and
stress indicate that independent administration of nicotine or
restraint stress increased corticosterone levels, and that nico-
tine administered in conjunction with stress enhanced this
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increase in corticosterone levels [15]. Similarly, acute nicotine
self-administration increased ACTH and corticosterone levels
in rats, but chronic administration of nicotine resulted in an
attenuated effect of nicotine on increased ACTH and cortico-
sterone [53]. In that study, chronic nicotine self-administration
increased HPA activation in response to mild footshock stress.
During nicotine withdrawal, adult female rats displayed in-
creased anxiety-like behavior and elevated plasma corticoste-
rone in the nucleus accumbens relative to their male counter-
parts [28•]. Corticosterone synthesis inhibitors have shown
efficacy in reducing cocaine self-administration in rodents
[54, 55], but these drugs have not been investigated for
nicotine until recently. A recent study examined the low-dose
combination of a corticosterone synthesis inhibitor,
metyrapone, and a benzodiazepine, oxazepam, on nicotine
self-administration and demonstrated that low doses of these
two drugs in combination decreased intravenous (IV) nicotine
self-administration in rats [56].

Clinical

In early studies, smokers demonstrated blunted HPA respon-
siveness to stress regardless of smoking abstinence status [57],
and this attenuated HPA stress response was associated with
quicker time to relapse [58]. In a recent study on stress and
smoking relapse in nicotine dependent men and women, lower
cortisol levels predicted relapse to smoking in men, but higher
cortisol levels predicted relapse in women after 48 h of absti-
nence [59•]. Similar work has demonstrated that smokers ex-
hibit blunted increases in cortisol levels in response to stress
following acute nicotine withdrawal [60] and acute tobacco
abstinence [61]. This is consistent with the theory that chronic
nicotine exposure and withdrawal dysregulate the HPA axis
system, and that women may be more sensitive to stress-
induced relapse to smoking than men.

Our research group has also demonstrated that stress in-
creased HPA axis reactivity in daily smokers, and increased
levels of ACTH and cortisol and tobacco craving were asso-
ciated with reduced ability to resist smoking following stress
[62]. Increased ACTH and cortisol levels were also associated
with smoking reward and smoking satisfaction, respectively.
More recently, findings from our group indicate that
guanfacine, an α2-adrenergic agonist, may help normalize a
blunted stress response in nicotine-deprived smokers [63•]. In
that study, nicotine-deprived smokers exhibited decreased cor-
tisol levels, and guanfacine normalized this stress response.

Taken together, preclinical findings indicate that both nic-
otine and stress increase HPA activation, and that this effect is
dysregulated after chronic nicotine self-administration. The
same effect has been demonstrated in humans after smoking
abstinence. Nicotine activates the HPA axis, but acute absti-
nence blunts nicotine-induced ACTH and cortisol release. In
agreement with sex-difference findings in preclinical literature,

a recent investigation on sex differences in HPA reactivity to
smoking lapse and stress demonstrate that women have higher
cortisol levels following abstinence and that this is predictive
of relapse. This is consistent with other literature discussed in
this review suggesting that women smokers may be more
sensitive to stress-reactivity than males. With regard to medi-
cation development, guanfacine shows promise in normaliz-
ing HPA axis activation in smokers, but cortisol synthesis
inhibitors may be limited in their use in humans due to aver-
sive adrenal side effects [56].

The Noradrenergic System and Tobacco/Nicotine
Dependence

An Overview

The noradrenergic system is widely known to be involved in
arousal, anxiety, and more recently, substance use. The norad-
renergic system is comprised of two main ascending projec-
tions within the brain: the dorsal noradrenergic bundle (DNB)
and the ventral noradrenergic bundle (VNB) [64–66]. The
DNB has cell bodies originating in the dorsal pons (locus
coeruleus; LC) and projects from the LC, a nucleus comprised
of entirely norepinephrine-containing neurons, to the cortices
and hippocampus. The VNB is comprised of four noradrener-
gic cell groups (A1, A2, A5, and A7) and has cell bodies that
originate in the brain stem (pons and medulla) and innervate
the hypothalamus, basal forebrain, and amygdala [67].

This system is comprised of three main receptor subtypes,
α1 (alpha-1),α2 (alpha-2), andβ (beta), to which norepineph-
rine binds. Alpha-1 and β adrenoceptors are primarily located
postsynaptically [67, 68] in several brain regions including the
LC [67, 69], olfactory bulb, cerebral cortex, amygdala, dentate
gyrus, and the thalamus [67, 70], and can be further
subdivided into α1a-, α1b-, and α1d-adrenergic and β1-, β2-,
and β3-adrenergic receptor subtypes [67]. Alpha-2
adrenoceptors can be subdivided into α2a-, α2b-, and α2c-ad-
renergic receptors, and exist both presynaptically and postsyn-
aptically [67, 68] in regions including the LC, amygdala, and
hypothalamus [67, 71]. Medications that act on these receptor
subtypes by way of reducing central noradrenergic activity
have historically been used for the treatment of hypertension
and attention-deficit/hyperactivity disorder (ADHD), with
more recent use for the treatment of drug-motivated behavior.

Nicotine and the Noradrenergic System

Nicotine primarily binds to nicotinic acetylcholine receptors
(nAchRs) in the brain, and the activity of nicotine on nAchRs
interacts with the noradrenergic system to enhance noradrener-
gic signaling and peripheral sympathetic activity [15].
Preclinical models indicate that systemic administration of nic-
otine increases extracellular norepinephrine levels, and that this
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effect is directly mediated by the LC, the main noradrenergic-
containing region in the brain [72]. Chronic nicotine exposure
also increases tyrosine hydroxylase activity, a precursor for the
synthesis of norepinephrine, in brain regions innervated by the
noradrenergic system but not in dopamine projection areas [73].

In humans, tobacco use increases plasma levels of norepi-
nephrine and epinephrine, and elevated baseline plasma nor-
epinephrine and epinephrine levels in smokers decrease dur-
ing long-term abstinence [74]. Chronic smoking behavior is
also related to decrements in the density of noradrenergic re-
ceptors and receptor binding in the LC, and these decrements
normalize with smoking abstinence [75]. Overall, it is well-
established that nicotine stimulates noradrenergic activity in
both rodents and humans, and noradrenergic agents that re-
duce noradrenergic activity or normalize noradrenergic activ-
ity have demonstrated potential as treatments for tobacco
dependence.

Preclinical

Animal models indicate that exposure to acute stress induces
relapse to nicotine-seeking in non-dependent and dependent
rodents, and drugs that reduce noradrenergic signaling also
reduce nicotine-motivated behaviors, such as stress-induced
reinstatement of nicotine-seeking [76–80]. Thus, stress-
induced nicotine-seeking and self-administration may be me-
diated by the noradrenergic system. Provocation of the norad-
renergic system by yohimbine, an α2-adrenergic antagonist
and pharmacological stressor, has been reliably used in both
animal and human studies to reinstate drug-seeking behaviors.
Relevant to the present review, yohimbine has been found to
reinstate nicotine-seeking in female and male rodents [76, 81].
Yohimbine also increased progressive ratio (PR) breakpoints
for nicotine intake in male and female rats, but female rats
were more sensitive than males to stress-induced responding
for nicotine [77].

Correspondingly, prazosin, an α1-adrenergic antagonist,
blocked the acquisition of nicotine self-administration behav-
ior and reduced nicotine-induced dopamine release in the nu-
cleus accumbens (NAc), a brain region associated with reward
and reward processing [82]. Subsequent studies demonstrated
that prazosin dose-dependently decreased nicotine self-
administration and blocked reinstatement of extinguished
nicotine-seeking induced by a nicotine prime or cue [78],
and decreased elevations in brain reward thresholds associated
with nicotine withdrawal [79]. Propranolol, a β-adrenergic
antagonist, decreased somatic signs associated with nicotine
withdrawal and modestly inhibited cue-induced reinstatement
of nicotine-seeking [79, 83]. With regard to stress, exposure to
footshock reinstated extinguished nicotine-seeking behaviors,
and the α2-adrenergic agonist, clonidine, reduced stress-
induced reinstatement of nicotine-seeking when administered
directly into the central nucleus of the amygdala (CeA) [80]

and when given systemically [30]. Taken together, pharmaco-
logical provocation of the noradrenergic system demonstrates
increased effects on stress-induced nicotine responding in ro-
dents, and pharmacological agents that blunt noradrenergic
firing demonstrate decreased effects on nicotine-motivated
behaviors.

Clinical

Noradrenergic effects on nicotine-motivated behaviors have
been examined to a lesser extent in the human laboratory,
although noradrenergic medications have demonstrated effi-
cacy in reducing subjective reactivity to smoking, ad libitum
smoking behavior, and withdrawal symptoms associated with
smoking [63•, 84, 85]. Carvedilol, an α1- and β-adrenergic
antagonist, reduced self-reported subjective ratings of Bbad
effects^ associated with nicotine in female and male abstinent
smokers, but did not affect tobacco withdrawal symptoms [84].
However, another anα1- andβ-adrenergic antagonist, labetalol,
reduced tobacco withdrawal symptoms following intravenous
(IV) nicotine administration in abstinent smokers [85].

More recently, in a validated laboratory analogue of stress-
precipitated smoking, stress decreased the latency to smoke and
increased tobacco craving and smoking self-administration in
nicotine-deprived smokers [63•]. In that study, the stress-
related effects on smoking were absent or attenuated in sub-
jects treated with guanfacine, an α2a-adrenergic agonist.
Specifically, guanfacine eliminated the effect of stress on time
to resist smoking and ad libitum smoking, and reduced tobac-
co craving. Preliminary findings from our group have also
found that doxazosin, an α1-adrenergic antagonist with a lon-
ger half-life profile than prazosin, increased the ability to resist
smoking following stress and reduced tobacco craving for
positive and negative reinforcement (Verplaetse et al., in
preparation).

Similar to preclinical work regarding stress-related sex dif-
ferences on nicotine responding, in a 4-week proof-of-concept
treatment period, our research group found that guanfacine
may act through gender-sensitive mechanisms for smoking-
related behavior. Although guanfacine reduced the number of
cigarettes per day following a quit attempt in both women and
men, guanfacine decreased smoking lapse, tobacco craving,
and smoking self-administration following stress in women
but not men [86]. Our research group has recently hypothe-
sized that smoking activates different brain systems modulat-
ed by the noradrenergic activity in women versus men, such
that noradrenergic agents that normal noradrenergic hyper-
arousal differentially attenuate stress reactivity in women
and nicotine-related reinforcement in men [67]. This is con-
sistent with preclinical findings in which CRF mRNA levels
are increased during nicotine withdrawal in female rats rela-
tive to males, but CRF mRNA levels are increased during
nicotine exposure in male versus female rats [28•].
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Taken together, noradrenergic agents reduce negative sub-
jective effects of smoking, decrease tobacco craving, and de-
crease smoking self-administration in adult cigarette smokers.
Moreover, preclinical and clinical findings indicate that the
noradrenergic system may be a sensitive to gender-sensitive
effects on nicotine-related outcomes. Female rodents were
more sensitive to yohimbine-induced increases in PR
responding for nicotine, while guanfacine preferentially de-
creased smoking-related behavior following stress in women
compared to men. Overall, relatively few recent studies have
examined the noradrenergic system with regard to stress-
induced smoking behavior. Older investigations in regular
smokers demonstrated that clonidine increased smoking ces-
sation rates, and reduced tobacco craving and withdrawal
symptoms [87, 88], with particular efficacy in women versus
men [89, 90]. However, significant adverse events, most nota-
bly sedation, have since limited its use as a medication option
for smoking cessation [88]. Continued work is needed to fur-
ther elucidate the role of the norepinephrine brain stress system
on tobacco dependence, and potential gender-sensitive mecha-
nisms underlying treatment efficacy.

Conclusions

Stress is a primarymechanism associatedwith tobacco use and
relapse to smoking, and preclinical and clinical findings sug-
gest that targeting the brain stress systems as a novel treatment
strategy for tobacco/nicotine dependence may be promising.
Substantial preclinical and clinical evidence demonstrates a
role for the CRF system, HPA axis, and noradrenergic system
in stress-induced smoking and relapse. Overall, nicotine-
induced activation of the CRF system and subsequent activa-
tion of the HPA axis and noradrenergic system seem to be
related to stress-induced nicotine-motivated behaviors, and
medications that blunt CRF, HPA, and noradrenergic activity
are efficacious in reducing nicotine self-administration and
stress-induced reinstatement of nicotine-seeking in rodents.
The translation of CRF1 antagonist and corticosterone synthe-
sis inhibitor use in humans has been limited due to efficacy
and aversive side effects. However, agents that normalize nor-
adrenergic signaling demonstrate efficacy for reducing
smoking-related outcomes in humanswhile maintaining a safe
side effect profile. Future work should continue to focus on
the clinical utility of pharmacotherapeutic treatments targeting
the brain stress systems for tobacco dependence.

Of importance, converging lines of preclinical and clinical
evidence suggest that brain stress systems may be more sensi-
tive in female smokers relative to males. It is well-established
that women are more likely to smoke to reduce stress and
negative affect. A considerable body of data indicates that
female rats relative to males have elevated plasma corticoste-
rone and CRF mRNA during nicotine withdrawal; female rats

relative to males are more sensitive to yohimbine stress-
induced nicotine responding, and in women smokers, higher
cortisol levels are predictive of relapse following a period of
smoking abstinence compared to men. Noradrenergic medica-
tions also preferentially act through gender-sensitivemechanism
to reduce tobacco craving and smoking self-administration fol-
lowing stress in women but not men. Therefore, women
smokers in particular may preferentially benefit from
pharmacotherapeutic treatment strategies targeting the brain
stress systems. Continued work in this area will determine
whether CRF, HPA, and noradrenergic mechanisms hold
promise for gender-sensitive medication development for
smoking cessation.
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