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Abstract It is becoming increasingly evident that a variety of
factors contribute to smoking behavior. Nicotine is a constit-
uent of tobacco smoke that exerts its psychoactive effects via
binding to nicotinic acetylcholine receptors (nAChRs) in
brain. Human genetic studies have identified polymorphisms
in nAChR genes, which predict vulnerability to risk for tobac-
co dependence. In vitro studies and animal models have iden-
tified the functional relevance of specific polymorphisms. To-
gether with animal behavioral models, which parse behaviors
believed to contribute to tobacco use in humans, these studies
demonstrate that nicotine action at a diversity of nAChRs is
important for expression of independent behavioral pheno-
types, which support smoking behavior.
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Nicotinic Acetylcholine Receptors

The primary addictive component identified in tobacco smoke
is nicotine, which exerts its behavioral effects via interaction
with nicotinic acetylcholine receptors (nAChRs). Broadly,
nAChRs can be separated into two main categories: neuronal

and muscle receptors. Muscle and neuronal nAChRs are
pentameric transmembrane cation channels belonging to the
superfamily of ligand-gated ion channels that include the
GABA, 5-HT, and glycine receptors, but a different comple-
ment of subunits makes muscle and neuronal nAChRs respon-
sive to different compounds. Muscle nAChRs consist of α1,
β1, γ, δ, and ε subunits, whereas neuronal nAChRs consist of
α2-10 and β2-4 (for a more detailed review of nAChR com-
position and function, see [1]). As most nicotine-associated
behaviors are thought to be regulated in the CNS, neuronal
nAChRs in the periphery would not make ideal drug targets.

The composition of the receptor and neuroanatomical lo-
calization adds to the specificity and complexity of choliner-
gic signaling by conveying differing pharmacologic charac-
teristics. Heteromeric nAChRs (β2* and β4*; *denotes as-
sembly with other subunits) are generally more sensitive to
agonists, with some subtypes of β2*nAChRs demonstrating
functional activity at nanomolar concentrations, whereas
homomeric nAChRs (α7, α9, and α10) generally require mi-
cromolar concentrations of agonist for their activation [1].
Following activation, nAChRs enter a desensitized (inactive)
state and some heteromeric receptors show preferential desen-
sitization at low concentrations of nicotine. As described be-
low, diverse behavioral outcomes appear to be achieved by
activation versus inhibition of nAChRs.

nAChRs are expressed in brain areas that regulate a variety
of behaviors. β2*nAChRs (including two major subclasses
α4β2*- and α6β2*nAChRs) and α7 nAChRs are the most
common nAChR subtypes in the CNS with complementary
expression in the dorsal striatum, thalamus, and amygdala but
with neuroanatomical overlap in the ventral tegmental area
(VTA), cortex, hippocampus, and basal ganglia [2–4]. These
brain areas regulate sensory transmission, learning and mem-
ory, emotion, and reward. The α6β2*nAChRs are selectively
expressed in catecholaminergic nuclei and enriched in the
mesolimbic DA system, which is believed to support
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addictive drugs. α3β4*nAChRs have modest CNS expres-
sion but are enriched in the medial habenula (mHb) to
interpeduncular nucleus (IPN) pathway with a small subset
of these receptors containing the α5, i.e., α3α5β4 [5–7].
The mHb-IPN pathway regulates the mesolimbic system and
is highly implicated in smoking phenotype. α3 and β4
nAChR subunits also form nAChRs in the ganglion, however,
raising considerations about possible peripheral autonomic
side effects that could result from drug targeting of
α3β4*nAChRs. A small population of α3β2*nAChRs in
the habenula and IPN may prove important for smoking phe-
notype, but there are currently limited tools to assess this.

nAChR Contributions to Smoking

β2*nAChRs

Although genome-wide association studies (GWAS) have
failed to yield convincing evidence for β2 subunit polymor-
phisms that predict risk for tobacco dependence, candidate
gene studies further show that polymorphisms in CHRNB2
are associated with the subjective effects of nicotine,
Fagerstrōm Test for Nicotine Dependence (FTND) scores
[8]; and varenicline, bupropion, and nicotine replacement
therapy outcomes [9–11, 12, 13, 14]. Furthermore, GWAS,
linkage analysis and candidate gene studies have greatly im-
plicated CHRNA3, CHRNA4, CHRNA5, CHRNA6, and
CHRNB3 [15, 16•, 17•, 18•, 19–22] nAChR subunit genes
that assemble with β2 to make functional receptors (see Ta-
ble 1). Of these, α4 (CHRNA4) and α6 (CHRNA6) primarily
assemble with β2 in brain areas thought to regulate nicotine/
tobacco reinforcement.

CHRNA4 and CHRNA6 variations are linked to tobacco
dependence. Numerous studies assessing nicotine dependence
demonstrate that multiple CHRNA4 polymorphisms, espe-
cially rs2236196, rs1044394, and rs1044396, are associated
with increased FTND score, DSM-IV nicotine dependence
symptoms, and cigarettes per day (CPD) [15, 20, 29–33].
Increased sensitivity to the subjective effects of nicotine and
better cessation outcomes have also been associatedwith these
CHRNA4 variants [13, 34]. Linkage analysis among a popu-
lation of nicotine-dependent or non-dependent individuals re-
veals that rare CHRNA4 variants are protective against nico-
tine dependence. In addition, this study revealed that these
variants are associated with altered β2*nAChR binding in
the brain, as measured by SPECT imaging [35]. In vitro data
indicate that these rare variants result in both increased expres-
sion and function of α4β2*nAChRs [36]. Although less stud-
ied than CHRNA4, recent evidence also implicates CHRNA6
polymorphisms in smoking behaviors and dependence. Risk
for nicotine dependence has been associated with polymor-
phisms in CHRNA6, especially rs13277254, located upstream

of the CHRNA6-CHRNB3 gene cluster [15, 28, 29, 31,
37–40]. A few studies have shown that variation in CHRN
A6 is positively associated with smoking initiation, initial
sensitivity, and positive subjective effects of nicotine that pre-
dict susceptibility to smoking [38, 41]. Furthermore,
varenicline, a partial agonist of α4β2*nAChRs (including
α4α6β2*nAChRs) is highly effective for promoting smoking
cessation [42, 43] and reducing craving, withdrawal and
pleasurable experiences associated with smoking
[44–46] (but see discussion of varenicline agonist prop-
erties at α7 nAChRs below).

Imaging studies using a highly selective β2*nAChR com-
petitive agonist, 5-iodo-A85830, demonstrate that the smoke
from a single cigarette results in nicotine binding of more than
88 % of the β2*nAChRs in brains of smokers [47•]. Not only
do β2*nAChRs appear to be highly relevant for smoking,
nicotine/tobacco exposure also increases expression or func-
tion of these nAChRs [48]. Post mortem and imaging studies
demonstrate that β2*nAChR binding is increased in human
smokers, suggesting nicotine-induced upregulation of these
receptors with receptor levels requiring weeks to return to
levels observed in non-smokers [49–53]. Decreased
α4β2*nAChR density in brains of smokers has also been
associated with better cessation outcomes [54], further sug-
gesting that β2*nAChRs support tobacco dependence.

α3*, α5*, β4*nAChRs

CHRNA3-CHRNA5-CHRNB4 genes, closely clustered on
chromosome 15, encode the α3, α5, and β4 subunits of the
nAChR and are often co-expressed and co-regulated. Initial
GWAS have identified SNPs within this region as being asso-
ciated with nicotine dependence [15, 16•, 17•, 18•]. Further
candidate gene studies and meta-analyses have identified
CHRNA3-CHRNA5-CHRNB4 SNPs associated with depen-
dence [25–27], smoking initiation [23, 55, 56], and heavy
smoking behavior [28, 57]. The most common SNPs identi-
fied are rs16969968 of CHRNA5 and rs578776 in CHRNA3
[15, 18•, 26–29, 55]. These particular SNPs are not in linkage
disequilibrium and so appear to represent two independent
gene clusters, producing haplotypes with distinct associations
to nicotine dependence. The minor A allele of rs16969968 is
considered a Brisk^ allele due to high frequency in the
smoking population, whereas the minor G allele of rs578776
is expressed less frequently and thus considered to be protec-
tive [15]. Therefore, a combination of the rs16969968 A allele
and rs578776 C allele is considered the haplotype with the
most risk for nicotine dependence, with the opposite alleles
conveying a protective effect.

Polymorphisms of the CHRNA3-CHRNA5-CHRNB4
cluster are known to have functional effects. The most com-
monly associated SNP of the CHRNA5 gene, rs16969968,
results in a non-synonymous substitution of aspartic acid to
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Table 1 Human genetics data linking nicotinic receptor genes to smoking

Gene SNP Phenotype References

CHRNB2 rs2072658 Increased early subjective response
to tobacco (negative physical; positive)

Ehringer et al. [9]; Hoft et al. [13]

rs2072660 Increased FTND score (minor allele) Wessel et al. 12]

rs2072661
rs3811450

Decreased abstinence rates (minor allele);
increased withdrawal symptoms
(minor allele)

Conti et al. [10]; Perkins et al. [11]

rs4262952 Increased odds of continuous abstinence
with varenicline

King et al. [14]

CHRNB4 rs1948 Earlier age of smoking initiation (risk
allele: CC)

Schlaepfer et al. [23]

CHRNA3 rs578776 Increased FTND score (risk allele: G);
positive smoking status

Saccone et al. [15]; Hong et al. [24]

rs6495308 Increased CPD (risk allele: T) Berrettini et al. [16•];

rs1051730 Increased FTND score (minor allele);
increased CPD; elevated cotinine
levels; positive smoking status

Thorgeisson et al. [17•]; Keskitalo et al. [25];
Chen et al. [26]; Hong et al. [24]; Munafo
et al. [27]

rs3743078 Increased CPD (risk allele: CC) Stevens et al. [28]

CHRNA4 rs2229959 Increased early subjective response to
tobacco (negative physical)

Hoft et al. [13]

rs2236196 Increased FTND score; increased CPD;
increased heaviness of smoking; rush/
high; cognitive effects; abstinence rates

Saccone et al. [29, 15]; Li et al. [20];
Hutchison et al. [34]

rs2273504 Increased FTND score; increased CPD;
increased heaviness of smoking

Li et al. [20]; Saccone et al. [15]

rs1044394 Increased FTND score; increased DSM-IV
dependence symptoms

Han et al. [32]; Kamens et al. [33]

rs1044396 Increased/decreased FTND score; smoking
quantity; heaviness of smoking; DSM-IV
dependence symptoms; cigarettes
per day

Feng et al. [19]; Li et al. [20]; Han et al. [32];
Kamens et al. [33]

rs1044397 Decreased FTND score Feng et al. [19]

rs3787137 Increased FTND score; increased CPD;
increased heaviness of smoking

Li et al. [20]

rs3746372 Increased CPD Voineskos et al. [30]

rs6122429 Increased self reports of nicotine reward Hutchison et al. [34]

CHRNA5 rs16969968 Increased FTND score (risk allele: A);
increased CPD; increased heaviness of
smoking (risk allele A); increased risk
of habitual smoking; elevated cotinine
levels; increased subjective pleasure in
early smoking; positive smoking status

Saccone et al. [29]; Bierut et al. [18]; Sherva
et al. [55]; Stevens et al. [28]; Chen et al.
[26]; Saccone et al. [15]; Grucza et al. [56];
Hong et al. [24]; Munafo et al. [27]

rs514743 Earlier age of smoking initiation (risk
allele: TT)

Schlaepfer at al. [23]

rs55853698 Significant association with CPD Liu et al. [57]

CHRNA6 rs13277254 Increased FTND score; increased DSM-IV
dependence symptoms; increased CPD;
earlier age of smoking initiation

Saccone et al. [15, 31]; Hoft et al. [37];
Thorgeirsson et al. [38]

rs2304297 Increased FTND score; significant association
with DSM-IV dependence symptoms;
positive subjective response to nicotine

Saccone et al. [29]; Hoft et al. [37];
Zeiger et al. [41]

rs7828365 Increased heaviness of smoking Stevens et al. [28]

rs9298628
rs2217732
rs13273442

Increased FTND score Wang et al. [39]; Culverhouse et al. [40]

rs892413 Increased FTND score; increased CPD Wang et al. [39]

CHRNA7 rs1909884
rs904952
rs10438287

Significant association with FTND score;
increased FTND score

Greenbaum et al. [62]; Philibert et al. [63];
Saccone et al. [31]
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asparagine at position 398 (D398N) [18•, 29]. This substitu-
tion causes decreased ACh-evoked function at α5*nAChRs
without altering expression in cultured cells [18•, 58]. fMRI
studies have shown a reduced anterior cingulate cortex (ACC)
to NAc connectivity in human subjects expressing the D398N
substitution [24], which is associated with addiction severity.
In mice, this substitution results in a partial loss of receptor
function, with increased nicotine intake and decreased sensi-
tivity to the rewarding properties of nicotine [59, 60]. These
data suggest that the risk allele of the rs16969968 in the
CHRNA5 gene decreases sensitivity to nicotine and increases
the propensity for addiction. The risk allele of rs578776within
CHRNA3, however, lowers activation of the ACC [61] and
decreases function of the ACC to thalamus pathway [24]. This
reduced function is thought to be associated with feedback
information about reward rather than anticipation and is more
strongly associated with recent nicotine exposure than addic-
tion severity. These studies implicate a role forα5*nAChRs in
mediating the rewarding effects of nicotine, whereas
α3*nAChRs appear to mediate feedback information about
nicotine exposure, suggesting that the α3 nAChR subunit
may be more involved in craving or withdrawal processes.

α7* nAChRs

Polymorphisms within the CHRNA7 gene encoding the α7
nAChR have been linked to smoking behavior in different
populations but with varying results. SNPs of the CHRNA7
gene have been associated with nicotine dependence in wom-
en [62], whereas adoption studies found that a link was evi-
dent in male subjects but not females [63]. Likewise, a CHRN
A7 and nicotine dependence relationship has been noted in
African American individuals but not European Americans
[31], with one study of a UK-based population finding no
association [64]. Recent data has associated the CHRNA7
gene with an increased probability of dizziness at first inhala-
tion [65]. Since increased sensitivity at initiation of smoking is
positively linked to nicotine dependence [66], this provides
some evidence that α7 nAChRs may be involved in initiation
of smoking in healthy individuals. As mentioned above,
varenicline may also promote smoking cessation, in part, via
stimulation of α7 nAChRs [1, 67•]. However, the specific

contribution of α7 nAChRs to varenicline smoking cessation
effects in humans has not currently been elucidated.

The most notable association between the α7 nAChRs and
smoking occurs in individuals suffering from schizophrenia. It
is well established that tobacco use is more prevalent in indi-
viduals with schizophrenia diagnosis than in the general pop-
ulation [68, 69]. Smokers with schizophrenia not only smoke
more cigarettes but also tend to extract more nicotine from a
cigarette than healthy counterparts [70]. Variations of the
CHRNA7 gene have been associated with smoking in this
population [71–73]. There is approximately a 50 % reduction
in expression ofα7*nAChRs found in the brains of subjects with
schizophrenia compared to healthy controls [74, 75]; as detailed
in the animal model section below, reductions in α7 nAChR
function may increase nicotine use and reward. One theory for
reduced α7 nAChR expression is that a truncated duplicate α7
gene acts as a dominant negative to prevent expression of α7
nAChRs at the cellular membrane [76]. A self-medication hy-
pothesis suggests that some individuals with schizophrenia
smoke to relieve deficits in appropriate filtering of sensory stim-
uli [77, 78]. Polymorphisms at the gene locus for the α7 nAChR
on chromosome 15 regulate these BP50^ sensory deficits [79]
and tobacco use counteracts this phenotype [77, 78].

nAChR Contributions to Addiction Phenotype: Animal
Models

Reward and Reinforcement

Rodent studies have highly implicated β2*nAChRs in nico-
tine reward and reinforcement. Knockout mice with a null
mutation of the β2 subunit (β2KO) fail to self-
administer nicotine [80•, 81–83], do not show nicotine-
conditioned place preference (CPP) [84] and do not show
nicotine enhancement of conditioned reinforcement [85].
Similarly, local infusion of the β2*nAChR-selective antago-
nist, dihydro-beta-erythroidine (DHβE) into the VTA greatly
attenuates nicotine self-administration in rats [86•]. β2KO
mice also fail to show nicotine-stimulated locomotor activa-
tion, a behavior, which like nicotine reward and reinforcement

Table 1 (continued)

Gene SNP Phenotype References

rs12915265
rs6494212
rs904951
rs1913456
rs7178176 Increased dizziness at first inhalation Pedneault et al. [65]

Abbreviations: Fagerström Test of Nicotine Dependence (FTND); cigarettes per day (CPD)
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requires dopamine (DA) release [87]. Not surprisingly, in vitro
studies combining genetic and pharmacological tools reveal
that activation ofβ2*nAChRs is required for nicotine-induced
DAergic neuron firing and NAc DA release [80•, 88]. Behav-
iorally, re-expression of β2 subunit in the mesolimbic DA
pathway rescues nicotine-associated locomotor activity and
acquisition of nicotine self-administration in β2KO mice
[83, 89], suggesting that β2*nAChRs in this pathway are
critical and sufficient for nicotine addiction-like phenotype
(see Table 2).

α4 and α6 subunits, which require β2 for their assembly,
are also critical for nicotine reward, reinforcement and
nicotine-associated locomotor activation. α4KO mice do not
exhibit nicotine CPP, do not self-administer nicotine [83, 91,
92], and exhibit blunted nicotine-stimulated DA release at
baseline [83, 91, 92, 93]. In addition, α4β2*nAChR gain-
of-function mice with a single-point mutation in the α4 sub-
unit (L9A) show leftward shifts in nicotine CPP and associat-
ed DAergic neuron firing [94], suggesting that activation of
α4*nAChRs is sufficient for nicotine reinforcement and re-
ward. Similarly, α6KO mice fail to develop nicotine self-
administration or nicotine CPP and delivery of selective
α6β2*nAChR α-conotoxin MII antagonists (CTX) into the
VTA or NAc blocks nicotine self-administration and CPP,
suggesting that activation of mesolimbic α6β2*nAChRs is
critical for nicotine reinforcement and reward [83, 91,
9 5–98 ] . Re c e n t e x v i vo s t ud i e s s u gg e s t t h a t
α4α6β2*nAChRs make up a subclass of nAChRs in the
VTA which are highly sensitive to physiologically relevant
doses of nicotine [99], presumably due to binding at the
α4–α6 interface. α6β2*nAChRs are thought to contribute
to as much as 80 % of nicotine-stimulated DA release on
NAc terminals [100]. Electrophysiological studies reveal
that mice with a gain-of-function single-point mutation
of the α6 subunit (L9S) are hypersensitive to endoge-
nous ACh and nicotine, resulting in enhanced VTA
DAergic neuron activity and DA release at terminals
in the NAc compared to wild type mice, an effect
blocked by CTX [101]. L9S mice show a parallel
hyperlocomotor response to nicotine that appears to re-
quire the α4 subunit since L9S mice bred to have an
α4 null mutation fail to show this phenotype [102].

Other nAChR subunits have also been implicated in nico-
tine reward and reinforcement. For example, α2KO and
α5KO mice display increased nicotine self-administration
compared to WT [103, 104]. When α5 is re-expressed in the
mHb, nicotine self-administration returns to WT levels [103].
Mice overexpressing β4 show decreases in freely available
nicotine intake, an effect that is rescued by mHb expression
of the α5 variant, D398N [59, 60, 105]. These studies suggest
that independent β4*- and α5*nAChRs work in opposition to
regulate nicotine intake or that introduction of the α5 subunit
into the α3β4*nAChR not only changes the properties of the

receptor, as was discussed above [18•, 58–60], but also has a
significant effect on nicotine-dependent behavioral outcomes.

Although early studies suggested that α7 nAChRs did not
play a critical role in nicotine reinforcement or reward [83,
84], an accumulation of recent data suggest that low affinity
α7 nAChRs work in opposition to β2*nAChRs, enhancing
nicotine reinforcement and reward when α7 nAChRs are ge-
netically or pharmacologically inhibited and reducing nicotine
self-administration and nicotine CPP when α7 nAChRs are
stimulated [106, 107]. Studies assessing methyllycaconitine
(MLA), an α7 nAChR antagonist, effects on nicotine self-
administration have returned mixed results [108, 109], per-
haps because MLA has potency as an α6β2*nAChR antago-
nist [110]. Local infusion of a highly selective α7 antagonist
peptide, α-conotoxin ArIB [V11L, V16D], into the NAc or
ACC resulted in a nearly threefold increase in active lever
pressing and breakpoints during a progressive ratio schedule
of reinforcement suggesting that a loss of α7 nAChR function
in these brain areas, such as that seen with schizophrenia,
increases nicotine self-administration [106]. Nicotine-
associated DA release is elevated in α7KO mice [111], which
show leftward shifts in nicotine CPP [107] following systemic
nicotine injection. By contrast, α7KO mice showed impaired
oral nicotine self-administration during a two-bottle choice
but only after 40 days of exposure suggesting thatα7 nAChRs
may differentially regulate initiation and maintenance of nic-
otine self-administration in α7KO mice [83, 112]. Rodent
studies using α7-selective agonist compounds, however,
show that both nicotine CPP, a subchronic paradigm [107],
and nicotine self-administration following more chronic dos-
ing [106] are inhibited when α7 nAChRs are stimulated.

Dependence

Nicotine dependence in rodent studies is characterized by
physical and affective signs of withdrawal. This is generally
achieved by providing continuous chronic or semi-chronic
exposure to nicotine followed by removal of nicotine (spon-
taneous withdrawal) or by injection of a nAChR antagonist
such as mecamylamine (MEC) (precipitated withdrawal).
Physical nicotine withdrawal results in an increase of somatic
signs [113–116] (e.g., paw tremor, body shakes, stretching,
scratching, piloerection) as well as hyperalgesia [116, 117].
Affective signs of withdrawal include increases in anxiety
behavior measured on the elevated plus maze (EPM) and light
dark box [116, 118, 119] and a reduction in reward processing
as indicated by increased reward thresholds in the intracranial
self stimulation procedure (ICSS) [109, 115, 120–122].

Pharmacological and genetic studies have implicated
β2*nAChRs in withdrawal behavior. DHβE-precipitated
withdrawal results in somatic signs [114, 116, 120] and in-
creased anxiety in the EPM [116] following chronic nicotine
exposure. It is interesting that administration of the partial
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Table 2 Pharmacological and genetic findings linking nAChR subunits to nicotine addiction phenotype

Subunit Manipulation Behavioral Outcome Reference

β2 KO Nicotine self-administration blocked (rescued by re-expression
in VTA)

Picciotto et al. [80•]; Maskos et al. [81];
Besson et al. [82]; Pons et al. [83]

Nicotine CPP blocked (not rescued by low-level re-expression
in VTA)

Walters et al. [84]; Mineur et al. [89]

Conditioned reinforcement blocked Brunzell et al. [85]

Nicotine locomotor activation blocked (rescued by low-level
re-expression in VTA)

King et al. [87], Mineur et al. [89]

Nicotine evoked DA release blocked Zhou et al. [88]

Loss of nicotine-stimulated DAergic neuron firing Picciotto et al. [80•]

Loss of anxiety-related behavior (EPM) Jackson et al. [119]

Loss of withdrawal-induced increases in anxiety (EPM) Jackson et al. [119]

Withdrawal-induced increases in somatic signs intact Salas et al. [117]; Jackson et al. [119]

DHβE Nicotine self-administration blocked (infusion in VTA) Corrigall et al. [86•]

Nicotine CPP blocked Walters et al. [84]

Evoked DA release blocked Zhou et al. [88]

Anxiolytic (EPM; marble burying) Anderson and Brunzell [131]

Antidepressant-like (tail suspension; forced swim) Andreasen et al. [139]

Precipitates somatic signs of withdrawal Epping-Jordan et al. [120]; Damaj et al. [116], Malin et al. [114]

Precipitates withdrawal-induced increases in anxiety (EPM) Jackson et al. [149]

Precipitates withdrawal-induced increases in ICSS Epping-Jordan et al. [120]

Varenicline Anxiolytic (marble burying, NIH) Turner et al. [130]; Hussman et al. [132]

Antidepressant-like (forced swim) Rollema et al. [137]; Caldarone et al. [140]

Reduces withdrawal-induced increases in ICSS thresholds Igari et al. [123]

ABT-089 Anxiolytic during nicotine withdrawal and anxiogenic in
naïve mice (NIH)

Yohn et al. [133]

Cytisine Antidepressant-like (tail suspension; forced swim) Mineur et al. [138]

A-85380 Trained rats self-administer this selective agonist Liu et al. [90]

Antidepressant-like (forced swim) Buckley et al. [136]; Caldarone et al. [140]

β3 KO Decreased anxiety levels (EPM) Booker et al. [144]

β4 KO Decreased anxiety levels (EPM; light dark) Salas et al. [143]; Semenova et al. [145]

Reduced withdrawal-induced somatic signs and hyperalgesia Salas et al. [117]; Stoker et al. [125]; Jackson
et al. [127]

α-CTX AuIB Precipitates nicotine withdrawal-induced somatic signs Jackson et al. [127]

α2 KO Increased self-administration Lotfipour et al. [104]

α4 KO Nicotine self-administration blocked (rescued by re-expression
in VTA) and blunted nicotine-stimulated DA release

Pons et al. [83]; Exley et al. [91]

CPP blocked and blunted nicotine-stimulated DA release McGranahan et al. [92]

Blunted basal and nicotine-stimulated DA release Marubio et al. [93]

Nicotine-stimulated anxiolysis blocked McGranahan et al. [92]

Increased anxiety levels (EPM) Ross et al. [134]

L9S Anxiogenic (EPM; mirrored chamber) Labarca et al. [135]

L9A Hypersensitive to nicotine-stimulated DAergic neuron firing
and nicotine CPP

Tapper et al. [94]

Sazetidine Anxiolytic (NIH) Hussman et al. [132]

Antidepressant (tail suspension; forced swim) Turner et al. [130]; Caldarone et al. [140]

α5 KO Increased nicotine self-administration Fowler et al. [103]

Reduced nicotine withdrawal-induced somatic signs Jackson et al. [119]; Salas et al. [128];
Jackson et al. [127]

Nicotine withdrawal-induced increases in anxiety intact (EPM) Jackson et al. [119]
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β2*nAChR agonist varenicline relieved increases in ICSS
thresholds instigated by spontaneous nicotine withdrawal
[123], presumably due to stimulation of β2*nAChRs since
DHβE administration promotes withdrawal-induced in-
creases in ICSS thresholds [120]. Contrary to pharmacological
data, however, studies utilizing β2KO mice show that
withdrawal-associated anxiety is absent in the β2KO mice
but that somatic signs remain intact [117, 119], suggesting a

strong role for β2*nAChRs in mediating the affective signs of
nicotine withdrawal but indicating that β2*nAChR mediation
of physical withdrawal symptoms requires further validation.

Studies assessing α7 nAChR contributions to withdrawal
have utilized MLA and α7KO mice. MLA-precipitated nico-
tine withdrawal induces somatic withdrawal signs [109, 116,
124]. This is presumably due to MLA properties at α7
nAChRs since CTX antagonism of α6*nAChRs blocked

Table 2 (continued)

Subunit Manipulation Behavioral Outcome Reference

α6 KO Nicotine CPP blocked Sanjakdar et al. [98]

Nicotine self-administration blocked (rescued by re-expression
in VTA) and blunted nicotine-stimulated DA release

Pons et al. [83]; Gotti et al. [97];
Exley et al. [91]

L9S Hypersensitive DAergic neuron firing and DA release Drenan et al. [101]

α4 co-expression required for hyperlocomotion Drenan et al. [102]

α-CTX MII
α-CTX PIA

Nicotine CPP blocked Jackson et al. [95]; Sanjakdar et al. [98]

Nicotine self-administration blocked (infusion NAc and VTA) Brunzell et al. [96]; Gotti et al. [97]

Blocks nicotine-stimulated DAergic neuron firing Liu et al. [99]

α7 KO Leftward shift in nicotine CPP (enhanced at low doses) Harenza et al. [107]

Nicotine self-administration unaffected Pons et al. [83]

Nicotine-stimulated DA release increased, nicotine self-
administration blunted

Besson et al. [111]

Chronic oral nicotine intake decreased Levin et al. [112]

Anxiety-like behavior unaffected (EPM; light dark; open field) Salas et al. [124]; Jackson et al. [119]

Loss of nicotine withdrawal-induced increases in somatic signs Jackson et al. [119]; Stoker et al. [125]

Spontaneous nicotine withdrawal-induced increases in anxiety
intact

Jackson et al. [119]

MEC precipitated nicotine withdrawal-induced anxiety reduced Jackson et al. [119]

Leftward shift in MEC dose response curve, as measured by
withdrawal-
induced increases in ICSS thresholds

Stoker et al. [125]

MLA Nicotine self-administration unaffected Grottick et al. [108]

Nicotine self-administration blocked Markou and Paterson [109]

Reversed nicotine-induced anxiogenesis Tucci et al. [146]

Antidepressant (tail suspension; forced swim) Andreasen et al. [139]

Precipitates nicotine withdrawal-induced increases in somatic
signs

Markou and Paterson [109]; Damaj et al.
[116]; Salas et al. [124]

No effect on nicotine withdrawal-induced increases in anxiety
(EPM)

Damaj et al. [116]

No effect on nicotine withdrawal-induced increases in ICSS
thresholds

Markou and Paterson [109]

α-CTX ArIB Nicotine self-administration increased (NAc and ACC infusion) Brunzell et al. [106]

PHA-543613 Nicotine CPP blocked Harenza et al. [107]

PNU-282987 Nicotine self-administration blocked (NAc infusion) Brunzell et al. [106]

Increased anxiety levels Pandya et al. [147]

Abbreviations: nicotinic acetylcholine receptor non-selective antagonist mecamylamine (MEC), semi-selective antagonist methyllycaconitine (MLA),
selective antagonists dihydro-beta-erythroidine (DHβE), α conotoxin MII (α-CTX MII), PIA (α-CTX PIA), ArIB (α-CTX ArIB) and AuIB (α-CTX
AuIB), selective partial agonists (cytisine, varenicline, sazetidine, ABT-089), selective agonists (A-85830; PHA-54613; PNU282987); leucine to serine
(L9S) or leucine to alanine (L9A) single point mutation in pore forming domain resulting in gain-of-function phenotype; null mutation of subunit
resulting in total Bknock out^ of the receptor (KO); brain areas tested include ventral tegmental area (VTA), nucleus accumbens (NAc) and anterior
cingulate cortex (ACC); and behavioral assays tested include conditioned place preference (CPP), elevated plus maze (EPM), novelty induced
hypophagia (NIH) and intracranial self stimulation (ICSS)
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withdrawal-induced conditioned place aversion (CPA) and
had no effect on somatic withdrawal measures [95]. In con-
trast, deletion of theα7 subunit blocked observation of somat-
ic withdrawal [119, 125]. Together these data indicate a deci-
sive role for α7 nAChRs in the expression of physical with-
drawal. α7 nAChR-mediated affective signs, however, are
somewhat inconclusive. Whereas MLA-precipitated with-
drawal does not elevate anxiety in the EPM [116] or elevate
ICSS thresholds following chronic nicotine exposure [109],
studies using α7KO mice indicate a potential role of α7
nAChRs in affective withdrawal. Spontaneous withdrawal
does not change anxiety in the α7KO compared to wild-type
mice [119], however precipitated withdrawal with 2 mg/kg
MEC results in reduced anxiety-like behavior in the EPM task
[119]. Indeed, α7KO mice show elevated ICSS thresholds in
response to precipitation of nicotine withdrawal at lower doses
of MEC (1.5 mg/kg) than WT mice (3 and 6 mg/kg) [125],
suggesting a leftward shift in the dose response curve for MEC
effects rather than a withdrawal deficit in these mice. Since
mRNA levels of other nAChR subunits are unchanged in the
α7KO mouse [126], differences in responses to MEC are un-
likely due to compensatory changes in other nAChRs but this
does not preclude alterations in other neurotransmitter systems.

The habenula, a brain area enriched with α3β4*nAChRs
and α5*nAChRs, is receiving increasing attention for its con-
tributions to nicotine dependence. Genetic deletion of the β4
nAChR subunit is associated with reduced somatic withdrawal
signs [117, 125, 127] and hyperalgesia [117]. Somatic signs of
nicotine withdrawal can also be precipitated by intracerebro-
ventricular (i.c.v) administration of AuIB, a selective α3β4
antagonist [127]. This effect is not altered by deletion of the
α5 subunit, suggesting that α3α5β4*nAChRs are not critical
f o r exp r e s s i on o f phys i c a l w i t hd r awa l . O the r
(non-α3β4)α5*nAChRs may contribute to withdrawal, as de-
letion of theα5 subunit results in decreased somatic signs when
withdrawal is precipitated with the non-specific nAChR antag-
onist, MEC [119, 127, 128]. α5KO studies suggest that
α5*nAChRs do not contribute to withdrawal-associated in-
creases in anxiety behavior [119]. These data suggest a role
for independent α5* and β4*nAChRs in mediating physical
signs of withdrawal, but further validation is required to con-
firm a role for these subunits in affective behavioral withdrawal
signs.

Anxiety- and Depression-Like Behavior

Many smokers report that they smoke to relieve anxiety and
there is a high concordance of anxiety and major depression
diagnoses with smoking [129]. Although these are complex
emotions that cannot be entirely assessed in animals, rodent
models of anxiety and antidepressant efficacy suggest that
nAChRs contribute to the biology of affective behaviors asso-
ciated with nicotine use.

Unlike reward and reinforcement, where a preponderance
of the evidence suggests that activation of β2*nAChRs is
essential for these behaviors, an accumulation of rodent data
indicate that inhibition of β2*nAChRs promotes anxiolysis-
like behavior. The β2*nAChR antagonist, DHβE, and partial
agonists varenicline, ABT-089, and sazetidine promote
anxiolysis-like behavior in the EPM, marble burying, and
conditioned inhibition tasks [130–133]. Low-dose nicotine
mimics anxiolysis-like effects of DHβE, suggesting that de-
sensitization of nAChRs by low doses of nicotine may de-
crease anxiety [131]. A study using mice lacking nAChR α4
subunits in the VTA showed that these mice failed to benefit
from the anxiolytic-like effects of low-dose nicotine, suggest-
ing that α4β2*nAChRs in the VTA are required for nicotine-
induced anxiolysis in the EPM [92] (but see [134]). In con-
trast, L9A mice with gain-of-function α4β2*nAChRs show
increased basal anxiety in the EPM [135] to suggest that stim-
ulation of the α4*nAChRs is sufficient to promote anxiety,
presumably in brain areas other than those that support nico-
tine reward and reinforcement.

Similarly, DHβE and the α4β2*nAChRs partial agonists
varenicline, sazetidine, and cytisine have been shown to pro-
duce antidepressant-like effects in the forced swim and tail
suspension tests in mice [130, 136–140]. Studies in knockout
mice reveal that β2*nAChRs regulate the antidepressant-like
efficacy of MEC and its potentiation of the classic antidepres-
sant, amitriptyline [141, 142]. Curiously, recent data suggest
that stimulation of α4β2*nAChRs promotes antidepressant
effects of sazetidine [140]. Further data are necessary to deter-
mine whether stimulation or inhibition of α4β2*nAChRs
may benefit smokers with depression.

Studies implicate other nAChR subunits in affective behav-
ior. Mice with a null mutation of theβ4 orβ3 subunit show less
basal anxiety-like behavior than wild-type mice in the EPM,
light dark, and prepulse inhibition tasks [143–145], suggesting
that cholinergic tone at these receptors may support anxiety
phenotype. α7KO mice show similar basal anxiety levels as
WT mice in open field, EPM, and light dark tests [119, 124].
Other studies show that intrahippocampal MLA reverses
nicotine-induced anxiogenesis in the social interaction test
[146] and that systemic administration of the selective α7
nAChR agonist, PNU-282987, increases anxiety-like behavior
[147], suggesting that inhibition of α7 nAChRs may decrease
anxiety behavior. Together, these studies suggest that the endog-
enous cholinergic system regulates emotive behaviors that could
be targeted by nicotine in individuals who use tobacco products.

Summary and Therapeutic Implications

Although FDA-approved first-line smoking cessation drugs
greatly improve quit outcomes, a limited number of smokers
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are successful at quitting with currently available therapeutics
[148]. A diversity of neuronal nAChRs may provide novel
targets for assisting unique populations of smokers to quit.
Human genetics studies have implicated a variety of nAChR
subunits as contributing to risk for tobacco dependence phe-
notype. The strongest GWAS candidate thus far is CHRNA5.
The α5 nAChR subunit affects agonist and antagonist binding
affinity and potency, but as an accessory subunit does not
contribute to agonist binding and therefore is not an ideal drug
target. Large GWAS studies have relied primarily upon the
FTND scores. Smaller gene-targeted studies have begun to
assess alternate nAChR subunit contributions to a variety of
behavioral phenotypes that support tobacco use. Where
GWAS failed to identify strong associations of α4, α6, β2,
or α7 with tobacco dependence, targeted gene studies have
implicated variations in these subunits as contributing to
smoking phenotype. This is relevant as these nAChR subunits
assemble to make nAChRs that are targeted by the smoking
cessation therapeutic, varenicline. Although genetic studies
identify risk variants for tobacco dependence, they do not rule
out the relevance of targets that do not show significant ge-
netic variability across the populace. Human and animal pre-
clinical laboratory studies are necessary to identify these alter-
native viable nAChR targets for smoking cessation and to
establish a functional strategy for inhibition or stimulation of
specific nAChR subtypes to promote a desired phenotypic
effect. As with animal models, controlled human laboratory
studies should strive to parse behaviors that are relevant to
tobacco addiction in order to develop tailored treatments for
individuals according to their motives for smoking. With clin-
ical assessment tools to reliably identify motives for smoking,
we can perhaps expect the best outcomes for identifying strat-
egies for quitting.
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