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Abstract In brain tumors, imaging by magnetic resonance

imaging (MRI) can very accurately visualize anatomy and

morphology of healthy and malignant tissue, but neither

contrast-enhancing areas in T1-weighted sequences, nor

hyperintensities in T2/FLAIR sequences are specific for

tumor tissue, especially when considering the manifold

alterations resulting from previous treatment. Imaging the

biology of tumor tissue by positron emission tomography

(PET), therefore, is a highly interesting approach to

improve the detection of macroscopic tumor which is the

prerequisite for high-precision radiotherapy treatment

planning. This review will focus on the benefits of amino

acid tracers (L-[methyl-11C]methionine (MET) and O-(2-

[18F]fluoroethyl)-L-tyrosine (FET)) in neurooncology and

their implementation in radiation oncology. Furthermore, a

brief overview of the current impact of 2-deoxy-2-

(18F)fluoro-D-glucose (FDG), nucleic acid analogs,

hypoxia tracers, and Somatostatin receptor (SSTR) analogs

on radiotherapy planning in brain tumors is provided.

Among advances in multiparametric MRI, Diffusion-

weighted imaging (DWI) has attracted particular attention

since it can predict prognosis, as well as indicate response

to treatment and has already been introduced into target

volume definition for radiotherapy of various cancers (e.g.,

prostate and rectal cancer). Additionally, advances in MR

spectroscopy (MRS) are mentioned. Finally, these findings

will be discussed concerning their influence on current

aspects of integrated PET/MR hybrid imaging.

Keywords O-(2-[18F]Fluoroethyl)-L-tyrosine � L-
[Methyl-11C]methionine � 30-Deoxy-30-[18F]-
fluorothymidine � 1H-1-(3-[18F]Fluoro-2-hydroxypropyl)-
2-nitroimidazole � Radiotherapy � Target volume definition

Introduction

In brain tumors, imaging by magnetic resonance imaging

(MRI) can very accurately visualize anatomy and mor-

phology of healthy and malignant tissue, is widely avail-

able and, therefore, the standard imaging modality after

onset of symptoms or in follow up after multimodal (sur-

gery, chemotherapy, radiotherapy) treatment. Nevertheless,

neither contrast-enhancing areas in T1-weighted sequen-

ces, nor hyperintensities in T2/FLAIR sequences are

specific for tumor tissue, especially when considering the

manifold alterations resulting from previous treatment [1].

New concepts such as pseudoprogression and pseudore-

sponse [2] add another level of complexity and underline

the limits of conventional MRI in the care of patients with

brain tumors [3].

In the brain, it is now possible to irradiate irregularly

shaped and complex target volumes with a precision of less

than 1 mm without the need of invasive fixation, while in

parallel vastly sparing normal tissue. This setting is the

prerequisite for a significant escalation of the radiation

dose for the tumor tissue and by that increasing local
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control rates. The advantages of high precision radiother-

apy can only be achieved, however, when the tumor extent

can be accurately determined [4]. Along this line, imaging

the biology of tumor tissue by positron emission tomog-

raphy (PET) is a highly interesting approach to improve the

detection of macroscopic tumor (gross tumor volume,

GTV) for radiotherapy treatment planning [5, 6].

This review will focus on amino acid (AA) tracers and

their implementation in radiation oncology treatment

planning, and give a brief overview of recent reports on

2-deoxy-2-(18F)fluoro-D-glucose (FDG), proliferation and

hypoxia tracers in this context, as well as the impact of

somatostatin receptor (SSTR) analogs for target volume

delineation of meningeoma. Among advances in multi-

parametric MRI, Diffusion-weighted imaging (DWI) has

attracted particular attention since it can predict prognosis,

as well as indication response to treatment and has already

been introduced into target volume definition for radio-

therapy of various cancers (e.g., prostate and rectal cancer).

Additionally, advances in MR spectroscopy (MRS) are

mentioned. Finally, these findings will be discussed against

the background of current aspects of PET/MR hybrid

imaging.

PET for radiation oncology treatment planning

2-Deoxy-2-(18F)fluoro-D-glucose (FDG)

PET imaging using 2-deoxy-2-(18F)fluoro-D-glucose

(FDG) nowadays is of limited use either in the primary

diagnostic setting, or in the differentiation between tumor

recurrence and post-treatment changes due to its high

physiological glucose uptake in normal brain tissue [8] and

its accumulation in macrophages and granulation tissue [8].

A potentially interesting method to improve the dis-

tinction between tumour and normal gray matter is delayed

scanning [9]. Results on a voxel-based level indeed

demonstrated a significant improvement in sensitivity for

brain tumor diagnosis using dual-time-point imaging,

compared with standard 18F-FDG, but the methodology

was of limited value for tumor volume delineation [10].

Amino acid tracers

The most commonly used amino acid (AA) tracers in brain

tumor diagnostic, radiation oncology treatment planning,

and response assessment in Europe are L-[methyl-11C]me-

thionine (MET) and O-(2-[18F]fluoroethyl)-L-tyrosine

(FET) [11]. Shortly after the introduction of brain imaging

with radiolabeled AA [12], the first reports already indi-

cated its potential benefit in diagnostic accuracy, as well as

tumor extent of glioma compared to CT [13] or MRI [14].

In contrast to FDG, especially FET shows significantly

lower uptake in non-neoplastic inflammatory cells [15]. In

the following decades, the higher sensitivity and specificity

of AA-PET in the diagnosis of gliomas in comparison to

CT and standard MRI was demonstrated in many clinical

trials involving over 2000 patients in general and nearly

700 investigated by PET/MRI/CT and verification by

stereotactical biopsies [6]. Taken together, these studies

have shown that the specificity of MET- and FET-PET for

malignant gliomas is significantly higher (85–95 %) in

comparison to standard MRI, which also has a high sen-

sitivity but a lower specificity [6, 16]. Furthermore, AA-

PET may have the potential to predict treatment response

and survival time at an early stage of disease [17], as well

as differentiating pseudoprogression from early progres-

sion [18].

Whereas the use of MET is limited to centers with an

on-site cyclotron due to the short half-life (20 min) of

carbon-11 [12], the possibility to radiolabel FET with flu-

orine-18 (physical half-life 110 min) [19, 20] helped to

distribute metabolic brain tumor imaging to smaller centers

without on-site cyclotron. Despite the development of

amino acid tracers with longer half-lives, molecular

imaging in neurooncology is still far more limited than

oncologic PET scans using 18F-FDG for non-CNS malig-

nancies [21].

In an experimental setting, FET accumulated to a sig-

nificantly greater extent in tumour cells than in inflam-

matory cells, compared to MET. These marked differences

suggest that FET and MET are substrates of different

subtypes of the L system of amino acid transport [22].

Clinically, both tracers have a comparable uptake and

image contrast [23], and are, therefore, considered equiv-

alent concerning their application in radiation oncology

treatment planning [24].

Along the line of improved detection of glioma tis-

sue, amino acid PET imaging found its way into

adjuvant radiotherapy treatment planning [25] of high-

grade glioma (HGG). In 39 patients with high grade

gliomas imaged postoperatively, tumor contrast

enhancement in MRI and AA uptake significantly cor-

responded in only 13 % of the patients. On average,

only 32 % of the tumor volume defined on AA-PET

also showed contrast enhancement on MRI. For radio-

therapy treatment planning, these significant non-over-

lap volumes would result in critically different target

volumes. In a small single-center prospective nonran-

domized cohort of 44 patients, the implementation of

biological imaging into radiation oncology treatment

planning of recurrent HGG resulted in a significant

increase in overall survival, compared to patients trea-

ted based on CT and/or MRI only [26].
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However, up to date there are no data from randomized

trials demonstrating the impact of AA-PET based irradia-

tion treatment on the clinical follow-up in comparison to a

traditional MRI based treatment. This lack of data is sought

to be filled by the results of the GLIAA trial (Amino-acid

PET versus MRI guided re-irradiation in patients with

recurrent glioblastoma multiforme, NCT01252459, clini-

caltrials.gov), a randomized prospective multicenter phase

II trial, which is actively recruiting in 15 centers through-

out Germany (Principal Investigator: Dept. of Radiation

Oncology, Medical Center—University of Freiburg). All

patients in this trial will receive pretreatment FET-PET and

MRI and will then be randomized either into reirradiation

(39 Gy in 13 fractions of 3 Gy, 59 per week) planned

according to a target volume derived from AA-PET GTV,

or according to contrast-enhancement on T1-weighted MRI

(standard arm, see Fig. 1). This is, to our knowledge, the

first phase II randomized study evaluating the impact of

molecular imaging on patient outcome (primary endpoint:

progression-free survival 6 months after randomization)

after radiotherapy for brain tumor patients.

Early-phase nonrandomized clinical trials have been

undertaken to further investigate the possible impact of

implementing AA-PET in dose-intensified radiotherapy

treatment planning for HGG at initial diagnosis [27, 28],

but failed to show a clear clinical benefit in terms of pro-

gression-free or overall survival. This could potentially be

explained by the fact that for over 90 % of the patients

[29], the FET-PET-positive volume can be found inside the

clinical target volume (CTV) based on contrast-enhance-

ment in T1-weighted MRI with 20 mm margin [30].

Nucleic acid analogs

As for all malignant tumors, proliferation of cells is the

basic mechanism for progressive disease. The thymidine

Fig. 1 Impact of AA-PET in

target volume delineation of

recurrent HGG. a Contrast-

enhanced T1-weighted MRI of a

47 year old male patient with a

multifocal recurrence of a

glioblastoma surrounding the

resection cavity. b The

corresponding FET-PET

acquired at the same day shows

an additional lesion dorso-

cranial to the left lateral

ventricle that does not take up

contrast in MRI. The images in

the lower row depict the

resulting radiotherapy treatment

plans, either according to MRI

(c) or FET-PET (d). The gross

tumor (violet), planning target

volumes (pink), and isodose

distribution (yellow 95 %

isodose, green 50 % isodose)

differ significantly (Courtesy of:

Dept. of Radiation Oncology,

Medical Center—University of

Freiburg)
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analog 30-deoxy-30-[18F]-fluorothymidine (FLT) is

retained in the cell after phosphorylation by thymidine

kinase 1, whose levels correlate with cell proliferation [31].

The kinetics of FLT uptake in malignant gliomas correlates

with cell proliferation measured by Ki-67 [32, 33]. Since
18F-FLT does not cross intact brain-blood-barrier (BBB) it

does not show increased uptake in low-grade tumors but

visualize high-grade lesions with a disruption of the BBB

[34]. Due to this limitation, FLT in radiotherapy treatment

planning of glioma has not been clinically validated, as it

has been shown for head and neck squamous cell carci-

noma (HNSCC) for example [35].

Hypoxia tracers

1H-1-(3-[18F]fluoro-2-hydroxypropyl)-2-nitroimidazole ([18F]-

Fluoromisonidazole, FMISO) is a nitroimidazole derivative

used to image the hypoxic cell fraction of tissue [36], a marker

for radioresistance [37]. Although initial data demonstrating a

subpopulation of hypoxic cells in malignant glioma were pub-

lishedmore than 20 years ago [38], still today FMISO is not yet

well established as a potential tracer to guide adaption of

established radiotherapy treatment planning and dose prescrip-

tion concepts [39, 40], whereas data again in HNSCC suggest a

strong correlation of degree of hypoxia with outcome after

radiochemotherapy [41, 42].

Somatostatin receptor (SSTR) analogs

Analogs of the somatostatin receptor subtype 2 (SSTR2),
68Ga-DOTA-D-Tyr3-octreotate (68Ga-DOTATATE) or
68Ga-DOTA-D-Phe1-Tyr3-octreotide (68Ga-DOTATOC),

are used for improved target volume delineation for

meningiomas [43] and glomus tumours [44]. In both enti-

ties, PET indispensably improves target volume delineation

(especially following surgery), helps to reduce interob-

server variability, and significantly alters the assessment of

tumor extent compared to MRI alone.

Advances in MR imaging for radiation oncology
treatment planning

Among the advances in multiparametric MR imaging,

Diffusion-weighted imaging (DWI) has attracted particular

attention (for a concise review see [45]). DWI measures the

mobility of water within a tissue and is independent on the

application of a contrast agent [46]. Impaired diffusion

correlates with high cellularity due to the impaired move-

ment of water through the densely packed cluster of cells

[47]. The apparent diffusion coefficient (ADC) inversely

correlates with cellularity, meaning that low ADC values

are observed in proliferative areas of a tumor. An increase

in ADC values reflects decrease in cellularity [48], which is

a surrogate for therapy response in glioma [49]. Low ADC

values are associated with a poor prognosis [50]. The

potential of DWI for integration in target volume definition

is furthermore reflected by the fact that it is already in

clinical use in radiotherapy of prostate [51, 52] or rectal

cancer [53], among others [45]. Although a biopsy con-

trolled study in glioma showed that ADC mapping may

insufficiently distinguish tumour from peritumoral tissue

[54], a recent report introduced the low ADC subvolume,

that is not fully covered by the 95 % isodose of prescribed

radiation dose, as a significant negative predictor for PFS

[55].

Along this line, a surgical series of 15 patients with

proton MR spectroscopy (1H-MRS) integrated with neu-

ronavigation for metabolic glioma resection indicated that

it contributes to a better prognosis [56]. Outcome evalua-

tion of integration of MRS data into radiotherapy treatment

planning is currently under investigation in a French

prospective phase III trial [57].

Integration of Perfusion-weighted imaging (PWI) into

radiotherapy treatment planning of glioma has not been

reported so far, but PWI can be a very useful modality in

the question of tumor recurrence vs. radiation necrosis

[58, 59].

PET/MRI for target volume definition in radiation
oncology

Integration of imaging modalities into 3D conformal

radiotherapy always required image fusion with the

underlying planning CT depicting the patient in treatment

position. In the brain, this task can be accomplished in an

automated fashion with great accuracy due to the possi-

bility to easily immobilize the head of the patient and due

to the lack of intrinsic intracranial motion of organs [60],

raising the question of the clinical need for integrated PET/

MRI [61]. This review will in general not cover the

physical and technical disadvantages of missing attenua-

tion correction in PET/MR hybrid imaging (for review see

[62]), but it should be mentioned that omission of bone and

its replacement by soft tissues in attenuation maps may in

the brain lead to SUVs that differ by as much as 25 % from

the correct values [63, 64].

In initial studies comparing MET or 68Ga-DOTA-D-

Phe1-Tyr-octreotide (68Ga-DOTATOC) PET/CT and

PET/MRI performed on the same day, no significant

artifacts and very good accordance of tumor-to-reference

tissue ratios have been observed, indicating that anatom-

ical and molecular imaging in patients with brain tumors

is feasible with diagnostic imaging quality using simul-

taneous hybrid PET/MR image acquisition [65]. With
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advancing scanner technology, 68Ga-DOTATOC-PET/

MRI now provides flawless image quality and presents an

ideal combination of high sensitivity/specificity of tumor

detection (PET) with the best possible morphological

visualization of meningiomas (MRI) [66]. Indeed, clinical

superiority of simultaneous PET/MR compared to sepa-

rate MR and PET/CT has been prominently demonstrated

in a case report describing target volume delineation for

radiotherapy treatment planning in a patient with menin-

gioma [67]. However, it has to be noted that the brain

PET insert used in this study outperforms the spatial

resolution in commercially available whole-body PET/MR

scanners.

The only study describing the use of integrated PET/MR

imaging for the definition of radiotherapy target volumes in

high grade glioma describes a certain amount of MET

uptake even in patients who received a gross total resection

on MRI. When defining hyperintensities in FLAIR MRI

sequences plus a 10 mm margin as the clinical target vol-

ume, areas of MET uptake where in all cases included in

this volume without any requirement to increase the target

volume [68]. These findings, however, could have also

been made by separate MET-PET/CT and MRI with sub-

sequent image fusion.

A potential application, where integrated PET/MR

imaging in neurooncology is superior to separate PET and

MRI, may emerge elsewhere. Treatment options in recur-

rent high-grade glioma are limited so that many patients

will ultimately receive antiangiogenic therapy, despite the

fact that two large phase III trials failed to show a survival

benefit for glioma patients treated by antiangiogenic ther-

apy with bevacizumab, an antibody against vascular

endothelial growth factor (VEGF), in addition to standard

radiochemotherapy [69] in the first line [70, 71]. The

increasing use of bevacizumab in glioma patients intro-

duces new challenges in response assessment and follow-

up, because bevacizumab, by restoring the BBB, reduces

contrast enhancement in T1-MRI and also hyperintensities

in T2 and FLAIR sequences, and may hence mask detec-

tion of progression (Fig. 2) [72]. Patients under antian-

giogenic therapy may profit from integrated PET/MR

imaging during follow-up, because AA-PET imaging is

promising in detecting response to bevacizumab [73] or,

vice versa, treatment failure before morphological changes

become evident [74]. However, the advantage of integrated

PET/MR imaging in this context is mainly achieved due to

logistic advantages (one scan instead of two), all diagnostic

questions are possible to answer by separate AA-PET/CT

and MRI.

Summary and conclusion

Integration of functional imaging (multiparametric MRI

and PET) has already critically influenced modern target

volume concepts in radiation oncology, as well as con-

tributed to a more and more individualized cancer treat-

ment in general [75, 76]. To date, at least for its application

in radiotherapy treatment planning in neurooncology, there

is no distinct indication where PET/MRI clearly outper-

forms separate PET/CT and MRI with subsequent image

fusion. Nevertheless, with emerging therapeutic strategies

influencing conventional and advanced imaging, such as

antiangiogenic therapy [74, 77] or immunotherapy [78],

simultaneous non-invasive assessment of anatomic, physi-

ological and molecular information will become more and

Fig. 2 Pseudoresponse after antiangiogenic therapy with beva-

cizumab. a Contrast-enhanced T1-weighted MRI of a patient with

recurrent glioblastoma. b After antiangiogenic therapy with beva-

cizumab, contrast enhancement, as well as peritumoral edema, shows

a complete remission. c In contrast to the morphological response to

bevacizumab in T1-MRI, FET-PET shows a significant amount of

biologically active tumor in the area of former contrast enhancement

(Courtesy of: Dept. of Radiological Diagnostics and Therapy,

Medical Center—University of Freiburg)
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more important, and may account for an increased demand

of integrated PET/MR imaging [79], but it should be

pointed out that at the moment there is no distinct physi-

ological aspect in brain tumor diagnosis, radiotherapy

treatment planning, or response assessment that inevitably

requires hybrid imaging with PET and (functional) MRI.
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