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Abstract
Introduction Adverse drug event (ADE) detection is a vital step towards effective pharmacovigilance and prevention of 
future incidents caused by potentially harmful ADEs. The electronic health records (EHRs) of patients in hospitals contain 
valuable information regarding ADEs and hence are an important source for detecting ADE signals. However, EHR texts 
tend to be noisy. Yet applying off-the-shelf tools for EHR text preprocessing jeopardizes the subsequent ADE detection 
performance, which depends on a well tokenized text input.
Objective In this paper, we report our experience with the NLP Challenges for Detecting Medication and Adverse Drug 
Events from Electronic Health Records (MADE1.0), which aims to promote deep innovations on this subject. In particular, 
we have developed rule-based sentence and word tokenization techniques to deal with the noise in the EHR text.
Methods We propose a detection methodology by adapting a three-layered, deep learning architecture of (1) recurrent 
neural network [bi-directional long short-term memory (Bi-LSTM)] for character-level word representation to encode the 
morphological features of the medical terminology, (2) Bi-LSTM for capturing the contextual information of each word 
within a sentence, and (3) conditional random fields for the final label prediction by also considering the surrounding words. 
We experiment with different word embedding methods commonly used in word-level classification tasks and demonstrate 
the impact of an integrated usage of both domain-specific and general-purpose pre-trained word embedding for detecting 
ADEs from EHRs.
Results Our system was ranked first for the named entity recognition task in the MADE1.0 challenge, with a micro-averaged 
F1-score of 0.8290 (official score).
Conclusion Our results indicate that the integration of two widely used sequence labeling techniques that complement each 
other along with dual-level embedding (character level and word level) to represent words in the input layer results in a deep 
learning architecture that achieves excellent information extraction accuracy for EHR notes.

Part of a theme issue on “NLP Challenge for Detecting Medication 
and Adverse Drug Events from Electronic Health Records (MADE 
1.0)” guest edited by Feifan Liu, Abhyuday Jagannatha and Hong 
Yu.
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Key Points 

Simple but effective preprocessing strategies aid in 
improving the overall performance of the system.

Morphological features obtained through character-level 
representations of the word enhance the overall represen-
tation of a word.

Structured prediction models based on conditional 
random fields help improve the prediction accuracy 
of named entities that span across multiple words and 
phrases.

1 Introduction

Adverse drug events (ADEs) are known to be a leading 
cause of death in the United States [1]. Early detection of 
ADE incidents aids in the timely assessment, mitigation 
and prevention of future occurrences of severe, potentially 
fatal ADEs. Natural language processing (NLP) techniques 
towards recognizing ADEs and related information from 
spontaneous reports, clinical reports, and electronic health 
records (EHRs) provide an effective method for drug safety 
monitoring and pharmacovigilance.

A major challenge with processing EHR records is that 
EHR notes, while containing valuable knowledge, cor-
respond to unstructured text. Numerous challenges arise 
when extracting entities from such narratives. Often the 
notes contain medical and non-medical abbreviations, acro-
nyms, numbers and misspelled words, which make it dif-
ficult to recognize the critical information in the notes. In 
other words, certain types of information such as ADEs, 
indications, and signs and symptoms are harder to detect 
than other information such as drug names. This can be 
explained by the following. First, these entities can span 
across multiple words, about one to seven words per entity. 
Also, some entities could be expressed as a combination of 
entity-specific medical terms as well as non-medical descrip-
tive text [2]. For instance, in the phrase “coronary artery 
disease related event prophylaxis,” the words “related” and 

“event” are descriptive text, while the rest are medical terms. 
Moreover, there is a lot of ambiguity among relevant named 
entities. Depending upon the context, the same exact phrase 
can be an ADE, indication, or a sign and symptom (SSLIF). 
Table 1 states key challenges of textual notes. The example 
text is taken from a de-identified data set of EHR notes of 21 
cancer patients from the University of Massachusetts Medi-
cal School.

To tackle these challenges, an ADE detection system 
should [1] capture both syntactic and semantic features of 
the words to best distinguish between ADE-related terms 
and non-medical words, [2] model the dependencies among 
words within a sentence so that ADR-related phrases con-
sisting of multiple strongly associated words (including 
non-medical words) can be identified, and [3] master plan 
the ADE detection by considering the possible labeling 
outcomes for each word so that the detected ADE words 
or phrases as a whole in a sentence make sense. Follow-
ing this principle, we propose our Dual-Level Embedding 
for Adverse Drug Event Detection (DLADE) framework—
a three-layered, deep learning architecture that solves the 
listed three challenges jointly within one model. In addition, 
due to the noisy nature of the EHR text data, we design 
a rule-based EHR text preprocessor for providing clean 
tokenized text input essential for the success of the subse-
quently applied computational detection method.

2  Related Work

2.1  Rule‑based method

Rule-based extraction techniques are user-created pattern 
matching rules that require human expertise. In [3, 4] a rule-
based approach that combines rules with semantic lexicons 
is used to extract drugs and related information such as dos-
age, duration and signs or symptoms from clinical records.

2.2  Machine learning method

In [3, 5] statistical and machine learning techniques such 
as Hidden Markov Models (HMMs) and conditional ran-
dom fields (CRFs) are used to extract information from 

Table 1  Examples showing key 
challenges of biomedical text

ADE adverse drug event

Challenges Example

Multiple words Lymphoplasmacytoid lymphoma involving bone 
marrow and spleen

Medical and non-medical words Cervix again is significantly stenotic
Abbreviations IgG (stands for immunoglobulin G)
Ambiguous named entities Headaches (indication or ADE or sign or symptom)
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biomedical text. Ramesh et al. [6] developed a machine 
learning–based biomedical named entity tagger using sup-
port vector machines (SVMs), to extract medication and 
ADE information from medical narratives.

In recent years, deep learning models, especially recur-
rent neural network (RNN) models, have been shown to be 
promising techniques for sequence tagging and named entity 
recognition (NER) tasks due to their ability to learn from the 
context surrounding the words in a sequence [7]. Long short-
term memory (LSTM) [8] is a type of RNN that is effec-
tive at learning the long-term dependencies between words 
in a sequence. CRFs [9] are probabilistic graphical models 
that have been used for sequence labeling tasks because of 
their ability to model the dependencies in the outputs of a 
sequence. A combination of RNN and CRF models have also 
been explored and found to be effective for sequence tagging 
[10–12]. Most of the deep learning models developed for 
NER tasks use word embeddings as an input to the models. 
Word embeddings are vector representations of words in 
the text. These word embeddings can either be trained on 
domain-specific text, such as biomedical texts, EHR notes, 
and PubMed articles [13, 14], or they can be trained on a 
wide variety of general text, such as Wikipedia articles [15].

3  The MADE1.0 NLP Challenge

This section provides a brief introduction to the MADE1.0 
NLP Challenges for Detecting Medication and Adverse Drug 
Events from Electronic Health Records hosted by University 
of Massachusetts at Lowell, Worcester, and Amherst.1 The 
main objective of the challenge is to advance ADE detection 
techniques to improve patient safety and healthcare quality. 
The challenge consists of the following three tasks: [1] NER, 
[2] relation identification (RI), and [3] integrated task (IT).

3.1  The Task

We have developed our system DLADE [16] specifically for 
“Task 1, the Named Entity Recognition (NER) problem” of the 
challenge. The task is to develop a system capable of automati-
cally detecting any mentions of medication names and their 
attributes (dosage, frequency, route, and duration) as well as 
mentions of ADEs, indications, and other signs and symptoms. 
Tasks 2 and 3 (RI and IT) are beyond the scope of this paper.

3.2  Data Set

The MADE1.0 challenge used a total of 1089 de-identified 
EHR notes from 21 cancer patients. The notes are annotated 
with medication information (such as medication name, dosage, 

route, frequency, and duration), ADEs, indications, and other 
signs and symptoms. The annotated notes were released in the 
BioC format [17]. Of these reports, 876 were released to partici-
pants of the competition for the development of their learning 
system along with the gold standard annotation.

3.3  Resources

This challenge restricted the usage of existing NLP tools 
such as NLTK [18], Stanford NLP [19], and Mayo clinical 
Text Analysis and Knowledge Extraction System (cTAKES) 
[20], which should only be used for text preprocessing, in 
order to assure fairness among competition participants, who 
included both university as well as company contributors 
with diverse resource access. The term standard resources 
refers to the training data released to the participating teams, 
the pre-trained word embedding trained using wiki, and de-
identified Pittsburgh EHR and PubMed articles [10, 21] and 
the Unified Medical Language System (UMLS) [22]. The 
term extended resources refers to publicly available tools 
designed to work with medical concepts and medical rela-
tions as well as any ancillary corpus in addition to the stand-
ard resources. Our system, DLADE, is developed using only 
the standard resources released as part of the challenge—the 
training data and the pre-trained word embedding.

3.4  Evaluation Process for MADE1.0 Challenge

The developed system was then evaluated by the MADE1.0 
organizers on two different tracks: [1] the Standard track, 
using only the standard MADE1.0 resources, and [2] the 
Extended track, using customized resources available publicly. 
The top teams for the AMIA 2018 Informatics Summit panel 
presentation were selected based only on the performance 
of each team for the Standard track. The evaluation is based 
on the strict matching in F1-score using exact phrase-level 
evaluation. Relaxed matching using word-level evaluation is 
not considered. The metrics used for evaluating the systems 
are precision, recall, F1-score and the micro-averaged score, 
which sums up the individual true positives, false positives, 
and false negatives of the system for different sets and then 
applies them to get the statistics. The best score is determined 
by the micro-averaged F1-score for the Standard track using 
an exact phrase-level evaluation. This simplified method 
selected a winner for this task of the competition.

4  Our Approach: the DLADE System

4.1  Preprocessing

As we will explain in Sect. 5.2, our model considers the EHR 
notes as a set of sentences, where each individual sentence 1 See https ://bio-nlp.org/index .php/proje cts/39-nlp-chall enges .

https://bio-nlp.org/index.php/projects/39-nlp-challenges
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in turn consists of a sequence of words. Therefore, we first 
tokenize the EHR notes into sentences and then tokenize 
the words within each sentence. MADE1.0 EHR notes con-
tain noise (Fig. 1), e.g., section headings with repeating 
punctuation and abnormal text formatting, and unexpected 
line breaks, where existing off-the-shelf tokenizers such as 
NLTK [23] fail to produce promising results, which we show 
in the results section. For this reason, we instead built a 
rule-based tokenizer that processes the EHR note character 
by character for sentence (see algorithm 1) and word chunk-
ing while concurrently recording the character offsets with 
respect to the original text file. The rule-based processes the 
text narrative character by character. It decides the sentence 
boundary by considering the period sign with additional 
conditions to avoid false alarms, such as “Dr.”, “Mr.” and 
“1.23” etc. The sentences (except the first one, which usually 
consists of encrypted headings) are then passed to a rule-
based word tokenizer which decides the word boundary by 
considering the spacing among the words. The tokenizers 
also record the boundary offsets for evaluation purposes. The 
source code of the preprocessor is released.2

Some named entities correspond to multiple words. 
Hence, we use the inside, outside, beginning (IOB) [24] 
tagging scheme to distinguish between the beginning of an 
entity (tag B: named entity) and the inside of an entity (tag I: 
named entity). The no-entity tag is O.

4.2  Word Embedding

Word embeddings are dense representations of words that 
encode both syntactic and semantic features of the words 
into a vector. Each word is mapped to a real-valued vector of 
a low dimensional space, the dimensionality typically rang-
ing between 50 and a few hundred (such as 200 or 300). This 
is much smaller than that for the one-hot vector representa-
tions of the words, the dimensions of which are usually in 
the thousands with sparse vectors.

Word embeddings have been shown to improve the per-
formance of sequence tagging tasks [25] and are an inte-
gral part of deep learning models. Word embeddings can 
be learned from the training data if the training corpus is 
large enough and has a good vocabulary size. In this case, 
the vectors are randomly initialized and passed to the neu-
ral network in order to learn and further tune the random 
vectors to provide a good meaningful representation of the 
words. Alternatively, there are publicly available pre-trained 
word embeddings which can be readily passed as input to 
the deep learning models. Some of these pre-trained word 
embeddings are trained specifically for a domain or task, 
such as biomedical text [13, 14], while others are more gen-
eral purpose and are trained on Wikipedia articles [15]. The 
pre-trained embeddings can either be fixed while training 
the network or can be further tuned to make them better 
representations specific to the task.

Word embeddings can also be learned from the charac-
ters in the word. Character-level representations of the word 
capture the morphological features such as the prefix or the 

Messy heading

Unexpected line breaks

Section heading Special tag

Fig. 1  Noise in the electronic health record text

2 See https ://githu b.com/qinxi ao/DLADE .

https://github.com/qinxiao/DLADE
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suffix of a word, words starting with upper-case letters, and 
abbreviations, which can be encoded into a dense represen-
tation [26]. The character-level embeddings can be used to 
supplement the learned or pre-trained word-level embed-
dings to train a deep learning model.

In the context of an ADE detection task, one of the chal-
lenges with EHR text (as shown in Table 1) is that it includes 
various medical terms and abbreviations. The pre-trained 
word embedding for such words and phrases might not be 
available, especially if they occur not too frequently in the cor-
pus on which the word embeddings are learned from. In such 
cases where a pre-trained word embedding is unavailable, the 
learned character-level representation of the word will enable 
us to extract the meaning of words. Neural network models 
such as convolutional neural networks (CNNs) or RNNs can 
be used to run over the sequence of characters in a word to 
learn the character-level representation of the word.

4.3  Methods

In this section, we describe the methods used in our system: 
bi-directional long short-term memory (Bi-LSTM), CRF, 
and Bi-LSTM-CRF.

4.3.1  Bi‑LSTM

RNN models are designed to capture the long-term dependen-
cies in a sequence. They have an input layer, hidden layer and 
output layer. The input layer takes the word features in the 
form of word embeddings. The hidden layer maintains infor-
mation on previous outputs, enabling it to predict the current 
output based on the past information and previous word in the 
sequence. The output layer produces the probability distribu-
tion for each label. However, RNNs are less effective with 
longer sequences because of the problem with vanishing or 
exploding gradient [27, 28], and thus result in a network that 
cannot learn well from the longer training sequences.

LSTM neural network [5] is a type of RNN that is 
designed to overcome the gradient vanishing/exploding 
problem and thus efficiently learn the long-term dependen-
cies in a sequence [29]. They have a built-in memory cell 
within the hidden layer which is responsible for controlling 
the flow of previous outputs to the current output without 
exploding the gradient. However, an LSTM network only 
captures information about the previous context and does 
not take into account the future context of the current output.

Bi-LSTM networks [30] have proven to be very useful to 
capture the entire context by processing the sequence in both 
forward and backward directions with two hidden layers, one 
for each direction. The output from both directions is con-
catenated to form the final output. In the context of an ADE 
detection task, the sentences in the EHRs are often long 
sequences including named entities that often span across 

multiple words within the sequence. The named entities are 
also heavily dependent upon the context they occur in, and 
more often the same word or phrase can be tagged as two 
different named entities depending upon the context.

4.3.2  CRF

CRF models [9] are widely used for sequence labeling tasks. 
Given a sequence, the model uses contextual information 
from preceding and succeeding information in the sequence 
to predict the current label. The models predict the label 
sequence jointly instead of predicting each label individually. 
These models can predict sequences where multiple words 
depend on each other. In the context of ADE detection, one 
of the challenges with EHR text is that the named entities can 
occur as a combination of medical and non-medical words. 
For instance, in the named entity phrase “cervix again is sig-
nificantly stenotic,” the label for each of the words in the 
phrase is greatly dependent on the label of the previous word.

4.3.3  Bi‑LSTM and CRF

LSTM and CRF have their own advantages and disadvan-
tages. LSTM is better for modeling long sequences of words, 
but the label for each word is predicted independently and 
not as a part of the sequence. CRF is better for modeling 
the entire sequence jointly, but needs handcrafted features 
to obtain significantly good results. A combination of Bi-
LSTM and CRF models [7] has been used for sequence 
tagging where each one of the models contributes to the 
combined model while complementing each other. In the 
sequence tagging task, Bi-LSTM is used to capture the con-
textual representation of the words from the input features. 
The outputs from the Bi-LSTM are fed to the CRF layer to 
jointly predict the best label sequence.

4.3.4  DLADE Model

Given the success of deep learning models for NLP tasks 
[10, 31], we have developed a deep learning–based system 
that utilizes the combined effectiveness of RNNs, more pre-
cisely Bi-LSTM [30] models and CRF by integrating them 
into one deep network architecture. The Bi-LSTM networks 
have been widely used for NLP tasks to learn the context 
representation of a word in a sequence by traversing through 
the sequence in both forward and backward (i.e., reverse 
order) directions.

In a nutshell, our model is composed of a Bi-LSTM 
neural network for an input layer responsible for charac-
ter embedding and a second Bi-LSTM for word embedding 
followed by a linear-chain CRF output layer. We have used 
the pre-trained medical word embedding provided by the 
MADE1.0 challenge [21, 10]. More precisely, first at the 
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bottom, character-level representations which capture the 
morphology of a word are computed by running a Bi-LSTM 
over the sequence of characters in the input words. Con-
solidated dense embedding, comprising pre-trained medical 
word embedding concatenated with a learned character-level 
representation, is used to represent a word. Figure 2 shows 
our system architecture. Although for the MADE1.0 chal-
lenge we have used the MADE1.0 pre-trained word embed-
ding, our system is designed to plug-and-play with any pre-
trained word embedding.

We feed this dense embedding of each word into a second 
Bi-LSTM. This second Bi-LSTM then extracts the contex-
tual representation of each word in the sentence that captures 
information from the meaning of the word, its characters 
and its context. The output from the Bi-LSTM is used as the 
input to a feed-forward neural network to compute a vector 
of scores, where each entry corresponds to a score for each 
tag. Tags are the individual named entities. To make the 
final prediction, the output of the feed-forward network is 
passed to a linear-chain CRF. The overall model is trained 
by minimizing the negative log-likelihood.

5  Experimental Results

5.1  Hyperparameter Settings

The named entities are Drug, Indication, Frequency, Sever-
ity, Dose, Duration, Route, ADE, and SSLIF (other sign, 
symptom or disease). The model operates on the tokenized 
sentences. We used a batch size of 20 sentences. We did not 
make any restrictions on the sentence length. Rather, we 
used the maximum length of the sentences in a batch. All 
shorter sentences in that batch are padded with masks. As 
input, the pre-trained word embeddings are 200 dimensional 
vectors and the learned character-level embeddings are 100 
dimensional vectors. The hidden state is set to 100 dimen-
sions for running Bi-LSTM for learning character embed-
ding. The hidden state is set to 300 dimensions for running 
Bi-LSTM with dense word embedding. To avoid overfitting, 
we applied a dropout strategy [31, 32] of 0.5 in our model. 
All the models were trained with a learning rate of 0.001 
using Adam [33]. Our models are trained on  Intel®  Xeon® 
2.10 GHz, with a total memory of 251 GB. They are imple-
mented using the TensorFlow framework [34].

Fig. 2  DLADE system architecture. ADE adverse drug event, Bi-LSTM bi-directional long short-term memory, CRF conditional random field, 
DLADE Dual-Level Embedding for Adverse Drug Event Detection, LSTM long short-term memory

Table 2  Evaluation results on the final MADE1.0 holdout test set

ADE adverse drug event, avg averaged, SSLIF other sign, symptom or disease

ADE Dose Drug Duration Frequency Indication Route Severity SSLIF Micro-avg

Precision 0.7261 0.8721 0.9066 0.7143 0.8438 0.6587 0.9100 0.7798 0.8309 0.8373
Recall 0.5644 0.8874 0.9019 0.8271 0.8412 0.6216 0.9381 0.8362 0.8570 0.8454
F1-score 0.6351 0.8797 0.9042 0.7666 0.8425 0.6396 0.9239 0.8070 0.8438 0.8413
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5.2  Methodology

Our system DLADE is trained on the 876 EHR notes from 
MADE1.0. From the training set of sentences, 10% of the 
sentences are held out as a validation set. This allows us to 
evaluate the model in the training phase by determining the 
best F1-score for early stopping. If there is no improvement 
in the F1-score within the last three consecutive epochs, the 
system performs an early stopping.

5.3  Results on MADE1.0 Test Data Set

On the evaluation test set consisting of 213 EHR notes, our 
deep network achieves a micro-averaged precision, recall 
and F1-score of 0.8373, 0.8454, and 0.8413, respectively, for 
the exact phrase-level evaluation. Table 2 shows our evalu-
ation results on the MADE1.0 evaluation test set for each of 
the entities. Our system has been selected as one of the top 
three performers and ranked first in the MADE1.0 challenge 
for the Standard NER task.

To demonstrate the effectiveness of our rule-based 
tokenizer, we compared the prediction results from DLADE, 
which uses our proposed rule-based tokenizer, with a base-
line system that uses the NLTK tokenizer. Table 3 shows that 
the baseline system achieves higher micro-averaged recall; 
however, it gets a lower micro-averaged F1-score.

To demonstrate the effectiveness of utilizing dual-level 
embedding, we compared the prediction results from 
DLADE, which uses both the learned character-level repre-
sentations of a word and the pre-trained word-level embed-
ding, with a baseline system that utilizes only the pre-trained 
word-level embedding.

Table 4 compares the F1-scores of individual entities 
as well as the overall micro-averaged F1-score of all enti-
ties combined. It shows the percentage improvement with 
DLADE using dual-level embedding over the baseline sys-
tem using only word embedding. We used the pairwise t test 
to examine the statistical significance of the differences in 
performance scores obtained from the two systems on the 
same test set. F1-scores of individual named entity types as 
well as the overall (micro-averaged) score from both systems 
are paired. The improvement in F1-score for DLADE as 
compared to our baseline is statistically significant (p  < 0.05 
and p  < 0.01). Of all the entities, Duration showed a large 
improvement (11.4%) from utilizing the dual-level embed-
ding. Duration labels are challenging to detect because they 
often comprise phrases that contain non-medical text and 
contain numbers, such as “four cycles,” “14 days,” “day 1 
through 14,” “over 15 min,” and “two weeks.” They can be 
easily misclassified and treated as the outside or no-entity 
tag O.

5.4  Impact of Pre‑trained Word Embedding

We demonstrated the effect of using different pre-trained 
word embedding in the input layer, and we compared the 
results from DLADE, which uses domain- and task-specific 
MADE1.0 word embedding trained using wiki, and Pitts-
burgh EHR and PubMed articles (1,352,550 word vectors) 
[10, 21], with two systems that use [1] general purpose 
GloVe Common Crawl 840B, 300 dimensional word embed-
ding [15] (4,087,447 word vectors), and [2] the domain-
specific PubMed, 200 dimensional word embedding induced 
from a combination of PubMed and PMC texts using the 
word2vec tool for biomedical data purposes [35] (2,196,016 
word vectors).

Table 5 shows the F1-scores when using different pre-
trained word embedding (columns 2, 3 and 4) and the per-
centage change in F1-scores for each type of word embed-
ding over the others (columns 5, 6 and 7). We used the 

Table 3  Evaluation results on the final MADE1.0 holdout test set with NTLK tokenizer

ADE adverse drug event, avg averaged, SSLIF other sign, symptom or disease

ADE Dose Drug Duration Frequency Indication Route Severity SSLIF Micro-avg

Precision 0.7081 0.8451 0.9066 0.8889 0.8398 0.7024 0.9073 0.7649 0.8206 0.8337
Recall 0.5236 0.8811 0.8988 0.782 0.8563 0.6006 0.9330 0.8723 0.8654 0.8474
F1-score 0.6020 0.8627 0.9027 0.8320 0.8480 0.6475 0.9200 0.8151 0.8424 0.8405

Table 4  Improvement for MADE1.0 in F1-score when using dual-
level embedding

ADE adverse drug event, SSLIF other sign, symptom or disease

Word embedding Dual-level (charac-
ter + word) embed-
ding

Improve-
ment (%)

ADE 0.5848 0.6351 8.6
Dose 0.8172 0.8797 7.6
Drug 0.8780 0.9042 3.0
Duration 0.6879 0.7666 11.4
Frequency 0.7964 0.8425 5.8
Indication 0.6151 0.6396 4.0
Route 0.8705 0.9239 6.1
Severity 0.7648 0.8070 5.5
SSLIF 0.8290 0.8438 1.8
Micro-averaged 0.8147 0.8413 3.3
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pairwise t test on the F1-score of the individual entity types 
as well as the overall (micro-averaged) score to determine 
if these differences are statistically significant. Our results 
indicate that for detecting some of the entity types, there is a 
minor improvement in the F1-scores when using MADE1.0 
word embedding over GloVe (ADE, Dose, and Route) or 
PubMed (ADE, Dose, Drug, and Route). However, these 
improvements are not statistically significant (p  > 0.05). 
Although there is a 0.49% improvement in the overall micro-
averaged F1-score with MADE1.0 over PubMed, it is not 
statistically significant (p  > 0.05). However, the 0.94% 
improvement with GloVe over PubMed is statistically sig-
nificant (p  < 0.05) for this EHR data set and ADE detection 
task.

6  Error Analysis of DLADE System

An error analysis was performed to understand the source 
of errors generated by the NER system. We inspected and 
evaluated instances for which the system incorrectly pre-
dicted the phrases, considering both false positive and false 
negative cases.

• One of the challenges as shown in Table 1 is that the 
entity can span across multiple words. In this case, it is 
critical to extract the phrase in its entirety to retain the 
true meaning of the phrase. For this example, our system 
was able to correctly extract the entire phrase “nodular 
sclerosing Hodgkin disease involving the mediastinum 
and both necks.” This contains ten words. However, the 
phrase was misclassified as Indication, when it actually 
is an SSLIF.

• Another challenge is the mixture of medical and non-
medical text in the entity phrase. This makes it difficult 

to detect the entity as a whole. For instance, the phrase 
“inflammation of your liver or gallbladder or your pan-
creas” was annotated as SSLIF. Although our system 
detected the phrase correctly as SSLIF, it missed the last 
two words “your pancreas” of the phrase. This meant that 
our result was labeled as Other entity—O wrongly, even 
though it mostly was correct.

• The occurrence of medical abbreviations text is rare in 
the training set. Although our system was able to cor-
rectly detect certain entities that contained abbreviations, 
such as “stage IIA” (Severity), “HPV” (SSLIF), there 
are a few other entities with abbreviations, such as “SIL 
cytology” (SSLIF), where our system failed to recognize 
the phrase and categorized it as a no-entity label O.

• Due to the ambiguous nature of Indication, ADE, and 
SSLIF entity words and phrases, it is very challenging 
to differentiate between these two types of labels. For 
example, in the two sentences “the back pain [Indication] 
started about 10 o’clock last night” and “reports weight 
gain [ADE] and increased [ADE] appetite from corticos-
teroid therapy,” our system misclassified the Indication 
and ADE labels as SSLIF.

7  Discussion

In this paper, we report our experience with the MADE1.0 
competition and describe our system, which was ranked first 
in the NER task. We study the problem of detecting ADE-
related terms and phrases from EHRs. Unlike other research 
domains such as computer vision where billions of labeled 
images are made publicly available for research purposes, 
making large-scale labeled medical corpus publicly available 
is an open challenge as it is a human resource–intensive task 
and it involves many legal issues. We appreciate the effort 

Table 5  Percentage change in 
F1-scores

ADE adverse drug event, SSLIF other sign, symptom or disease

F1-score with using word embedding Percentage change in F1-scores

1. MADE1.0 2. GloVE 3. PubMed 4. MADE1.0 
over GloVe 
(%)

5. MADE1.0 
over PubMed 
(%)

6. GloVe over 
PubMed (%)

ADE 0.6351 0.6197 0.6055 2.48 4.88 2.34
Dose 0.8797 0.8787 0.8575 0.11 2.58 2.47
Drug 0.9042 0.9100 0.8838 − 0.63 2.31 2.96
Duration 0.7666 0.8015 0.7943 − 4.36 − 3.50 0.90
Frequency 0.8425 0.8529 0.8580 − 1.22 − 1.81 − 0.59
Indication 0.6396 0.6512 0.6429 − 1.78 − 0.52 1.28
Route 0.9239 0.9133 0.9221 1.16 0.19 − 0.96
Severity 0.8070 0.8209 0.8098 − 1.70 − 0.35 1.37
SSLIF 0.8438 0.8453 0.8454 − 0.18 − 0.19 − 0.01
Micro-averaged 0.8413 0.8451 0.8372 − 0.45 0.49 0.94
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of the MADE organizers who provided annotated EHRs. 
However, the size of the corpus is still considerably small. 
The generality of our method could not be validated even 
with the great results we have shown in the experiments.

For this competition, we used the same methodology for 
all entity types. However, the challenge of detecting each 
individual entity type varies. For example, the ability to cap-
ture morphological features is important to the entity types 
if they often consist of special representations as compared 
to common words, whereas the ability to capture the context 
information is crucial to differentiate Indication and ADE 
as they may share the same vocabulary, but are expressed 
differently in the text narrative.

Overall, our system achieved excellent detection accu-
racy, with a micro-averaged precision of 0.8373, recall of 
0.8454 and F1-score of 0.8413. However, the detection 
accuracy among the nine individual entity types varied, with 
some entity types achieving better F1-scores, such as Route 
(0.92), Drug (0.90), Dose (0.88), SSLIF (0.84), Frequency 
(0.84), Severity (0.81), and Duration (0.77), over other entity 
types, such as ADE (0.64) and Indication (0.64). Given that 
ADE and related information detection from EHR is a chal-
lenging task, our system showed an incremental improve-
ment in the scores compared to the benchmark studies [10, 
21]. Yet ADE and Indication have proved to be the most 
challenging of the entity types to detect, with a lower recall 
(0.56 and 0.62, respectively). These challenging entity types 
might require customized models that are able to tackle the 
issues with ambiguity that is often encountered while detect-
ing these entities.

8  Conclusion

We have shown that the integration of two widely used 
sequence labeling techniques that complement each other 
along with dual-level embedding (character level and word 
level) to represent words in the input layer results in a deep 
learning architecture that achieves excellent information 
extraction accuracy for EHR notes. Our system was ranked 
first in the MADE1.0 competition for the NER task. Addi-
tional work must be done to improve the accuracy in detect-
ing the challenging entity types such as ADE and Indication. 
In the future, we will further analyze the results for these 
entity types and design customized models to improve the 
detection performance of each individual entity type as well 
as the overall performance for all entity types.
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