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Abstract
Background and Significance  Adverse drug events (ADEs) occur in approximately 2–5% of hospitalized patients, often 
resulting in poor outcomes or even death. Extraction of ADEs from clinical narratives can accelerate and automate phar-
macovigilance. Using state-of-the-art deep-learning neural networks to jointly model concept and relation extraction, we 
achieved the highest integrated task score in the 2018 Medication and Adverse Drug Event (MADE) 1.0 challenge.
Methods  We used a combined bidirectional long short-term memory (BiLSTM) and conditional random fields (CRF) neural 
network to detect medical entities relevant to ADEs and a combined BiLSTM and attention network to determine relations, 
including the adverse drug reaction relation between medication and sign or symptom entities. Using these models, we con-
ducted three experiments: (1) separate and sequential modeling of entities and relations; (2) joint modeling where relations 
between medications and sign or symptoms determined ADE and indication entities; (3) use of information from external 
resources such as the US FDA’s adverse event database as additional input to the second method.
Results  Joint modeling improved the overall task accuracy from 0.62 to 0.65 F measure, and the additional use of external 
resources improved the accuracy to 0.66 F measure. Given the gold-standard medical entity labels, the joint model plus exter-
nal resources method achieved F measures of 0.83 for ADE-relevant medical entity detection and 0.87 for relation detection.
Conclusion  It is important to use joint modeling techniques and external resources for effectively detecting ADEs from clini-
cal narratives in electronic health record (EHR) systems. While the extraction of entities and relations individually achieved 
high accuracy, the integrated task still has room for further improvement.
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Key Points 

Harmful side effects of medications are an important 
concern because of their economic and health impact.

Physician-authored clinical narratives are a reliable 
source for identifying such side effects, but the technical 
challenges of automatically analyzing them remains a 
limiting factor.

This study demonstrates that recent advances in neural 
network-based deep-learning techniques provide an 
effective means to address this limitation.

1  Introduction

An adverse drug event (ADE) is commonly defined as an 
injury resulting from medical intervention related to a 
drug. Prevention, early detection and mitigation of ADEs 
improve patient safety. Consequently, reducing prevent-
able patient harm is emphasized by national, regional 
and global health authorities. Electronic health records 
(EHRs) contain provider-recorded documentation of ADEs 
in clinical narratives and are an important source for phar-
macovigilance. Natural language processing (NLP)-based 
extraction of ADEs from the clinical narratives in EHRs 
can simplify and automate pharmacovigilance.

Effective NLP techniques for medical entity and rela-
tion identification are a fundamental requirement in auto-
matic ADE extraction. Accuracy of these foundation 
analytics will significantly impact ADE curation and phar-
macovigilance. Combined bidirectional long short-term 
memory (BiLSTM) and conditional random fields (CRF) 
models [1] have previously been shown to accurately rec-
ognize entities in biomedical and clinical corpora [2–5]. 
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Therefore, we studied the use of BiLSTM-CRF for recog-
nizing medical entities, formally known as named entity 
recognition (NER), related to ADEs in clinical narratives.

Attention mechanism, introduced in Bahdanau et al. [6], 
is a technique often used in neural translation of text. The 
attention mechanism allows neural networks to selectively 
focus on specific information, which has benefited several 
NLP tasks such as factoid question answering [7], machine 
translation [6] and relation classification [8]. In this study, 
we used BiLSTM with attention mechanism for classifying 
ADE (and other) relations in clinical narratives.

This research was motivated by the 2018 Medication 
and Adverse Drug Event (MADE) 1.0 challenge [9], which 
consisted of three tasks:

1.	 Detect mentions of medication name and its attributes 
(dosage, frequency, route, duration), as well as mentions 
of ADEs, indications, other signs or symptoms (SSLIF) 
and severity.

2.	 Given the gold standard entity annotations, identify the 
attributes of a medication, relations between medica-
tions and ADEs (called “adverse” relations), medica-
tions and indications (called “reason” relations), and 
severity of an ADE or sign or symptom.

3.	 An integrated system of the two tasks, where entities 
recognized by the system in task 1 (in place of gold-
standard annotations) are used for relation identification.

Figure 1 illustrates the key tasks and shows a few syn-
thesized sentences (based on the original sentences) from 

a clinical note with entities and relations that need to be 
extracted. Note that the relations may exist between entities 
anywhere in the note, spanning across multiple sentences.

We studied three methods using the neural networks for 
the adverse reaction extraction:

1.	 Sequential modeling The traditional approach of sequen-
tially extracting medical entities first and then relations 
among them.

2.	 Joint modeling A joint modeling approach where rela-
tions between medications and signs or symptoms were 
used to determine ADEs and indication entities.

3.	 Joint modeling + external resources Method 2 
enhanced with information from external resources 
such as the US FDA’s Adverse Event Reporting Sys-
tem (FAERS) database [10] for a medication as addi-
tional input.

Only the results of the second method were submitted to 
the MADE 1.0 challenge. Our system achieved first place in 
the integrated final task 3 of the challenge and second place 
in tasks 1 and 2. The accuracy analysis of the three methods 
showed that the joint modeling technique improved perfor-
mance (F measure) by nearly 3% points (4.5% relative) over 
the traditional approach, and the addition of information 
from FAERS [10] further improved the system performance 
by one more percentage point (1.4% relative)—achieving an 
overall F measure of 0.661.

Fig. 1   Examples of the entities 
and relations that are a part 
of the adverse drug reaction 
extraction task

ALLERGIES :        Bleomycin
DRUGADE

adverse

Patient denies any   fevers,       chills or  weight loss.
SSLIF SSLIF SSLIF

PAST MEDICAL HISTORY : Hodgkin lymphoma as noted above.
SSLIF

DRUG DOSE ROUTE FREQUENCY INDICATION

MEDICATIONS : Zofran 8 mg p.o. every 8 hours as needed for nausea.

do

fr

reason

manner/route
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2 � Methods

With recent advances in NLP research, several neural net-
work architectures have been successfully applied to entity 
and relation extraction tasks. Specifically, BiLSTM-based 
architectures have proven to be effective [1, 8, 11, 12]. We 
now describe how they are used for entity and relation iden-
tification in our system.

2.1 � Entity Extraction

Long short-term memory (LSTM) [13] is a type of recur-
rent neural network (RNN) that models interdependencies 
in sequential data and addresses the so-called vanishing or 
exploding gradients problem [14] of vanilla RNNs by using 
an adaptive gating mechanism. Unidirectional LSTMs do 
not utilize future contextual information. BiLSTM [15, 16] 
addresses this by using two independent LSTMs (forward 
and backward) in which one processes the input sequence 
in the forward direction and the other processes the input in 
the reverse direction.

Although BiLSTM networks can capture long-distance 
interdependencies, research suggests that additionally cap-
turing the correlations between adjacent labels can help in 
sequence labeling problems [1, 17, 18]. CRF [19] helps in 
capturing these correlations. Therefore, similar to Huang et al. 
[1], we used BiLSTM-CRF for entity extraction, as shown in 
Fig. 2.

Given an input sequence x = (x1, x2,… , xt) , where t is the 
sequence length, LSTM hidden state at timestep t is computed 
by: 

where �(⋅) and tan h(⋅) are the element-wise sigmoid and 
hyperbolic tangent functions, ⊗ is the element-wise multi-
plication operator, and it , ft , and ot are the input, forget, and 
output gates. Lastly, ht−1 and ct−1are the hidden state and 
memory cell of previous timestep, respectively.

The forward LSTM computes the forward hidden states ( ���⃗h1 , 
���⃗h2 , …, ��⃗ht ), while the backward LSTM computes backward 
hidden states ( ⃖���h1  , �⃖��h2  , …, �⃖�ht ). Then, for each timestep t, the 
hidden state of the BiLSTM is generated by concatenating ��⃗ht 
and �⃖�ht as in:

Given an observation sequence h = [h1, h2,… , ht] (out-
puts from BiLSTM), CRF jointly models the probability 
of the entire sequence of labels y = (y1, y2,… , yt) and we 
denote φ as the set of all possible label sequences. Using 
a linear-chain CRF model, the conditional probability of 
the output sequence given the input hidden state sequence 
can be written as: 

(1)

it = 𝜎(Wixt + Uiht−1 + bi)

ft = 𝜎(Wf xt + Uf ht−1 + bf )

ot = 𝜎(Woxt + Uoht−1 + bo)

gt = tanh(Wgxt + Ught−1 + bg)

ct = ft ⊗ ct−1 + it ⊗ gt

ht = ot ⊗ tan h(ct),

(2)ht = (���⃗ht, �⃖�ht).
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Fig. 2   Combined bidirectional 
long short-term memory (BiL-
STM) and CRF (conditional 
random fields) neural network 
for the entity extraction. POS 
parts of speech
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where W and b are weight matrices and their subscripts indi-
cate the weight vector for the given label ( yi−1, yi). We used 
maximum conditional likelihood estimates to train the CRF 
layer. For a training dataset {(hi, yi)}, the final log-likelihood 
is: 

For the decoding phase, a Viterbi algorithm was used 
to generate the optimal label sequence y∗:

Our neural network model used a comprehensive rep-
resentation of tokens from the text as inputs. For each 
token, we used embeddings of its character, word level, 
and parser-provided syntactic elements. A convolutional 
neural network (CNN) [20] was used to encode character-
level embedding of a word.

2.2 � Relation Identification

The attention mechanism, introduced in Bahdanau et al. 
[6], is a technique often used in neural translation of text. 
It allows the networks to selectively focus on specific infor-
mation. This benefited several NLP tasks such as factoid 
question answering [7], machine translation [6] and relation 
classification [8]. Here, we used the attention mechanism for 
the relation classification task, similar to the implementation 
in Zhou et al. [8], but the addition of the knowledge layer is 
novel (see Fig. 3).

Formally, let H be a matrix consisting of output vectors 
[ h1, h2,… , ht] (the outputs from the BiLSTM network), the 
representation r of the input is formed by a weighted sum of 
these output vectors:

L(W, b) =
∑

(hi,yi)

logP(yi|hi;W, b).

y∗ = argmax
y∈�

P(y|h;W, b).

where H ∈ Rdw×t , dw is the dimension of vectors, wT is the 
transpose of the trained parameter vector. We obtain the final 
representation from:

This network takes tokens, entity types (outputs of entity 
extraction model) and positional indicators around source 
and target concepts as inputs. As mentioned earlier, this 
challenge requires identifying both intra- and inter-sentential 
relationships. Table 1 shows the number of inter- or intra-
sentential relationships in training data between two entity 
types. In principle, the entities participating in an inter-sen-
tential relation may occur anywhere in a document, which 
results in a large number of possible entity pairs that should 
be considered. While it may seem expedient to consider 
every possible entity pair in a clinical note as a potential 
relation, computing it will be computationally very expen-
sive. Additionally, a very large proportion of these rela-
tions will serve as negative relation instances, resulting in a 
highly unbalanced dataset. Research [21, 23] suggests that a 
model trained over such an imbalanced dataset may not opti-
mally differentiate among positive and negative relations. 
To address this, we developed a machine learning model 
for a priori refinement of negative instances using a set of 
structural and heuristic-based features. Using this model, 
our method generated candidate relations, which we call the 
“candidate relations generation phase.” In this phase, for 
each entity pair, we extracted the following features:

(3)
M = tan h(H)

� = softmax(wTM),

r = H�T

(4)h∗ = tan h(r).

Fig. 3   Combined bidirectional 
long short-term memory 
(BiLSTM) and attention layer 
neural network for relation 
identification. The elements in 
the right-most box were used to 
add “knowledge” from external 
resources. KB knowledge base
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•	 Since each relation type has a dominant pair of source 
and target entity types, we used the source and target 
entity types as features. For example, the majority of 
dosage (do) relation instances in the training data have 
Drug as the source entity and Dose as the target entity, 
although a handful of Dose to Dose relations were also 
marked with the same relation label.

•	 We developed a rule-based method to identify section 
boundaries in clinical notes (e.g., medication section, 
assessment and plan section, etc.), and used the names 
of the sections where an entity pair occurred as a feature. 
We also used the number of sections between the two 
entities as an additional feature.

•	 The number of sentences between the entity pair.
•	 The number of tokens between the entity pair.
•	 The count of entity types that appear between the entity 

pair.

We used an alternating decision tree (ADT) to train the 
model. We empirically determined the optimal thresh-
old value by computing the precision-recall curve on the 
development dataset. At this optimal threshold value, we 
were able to remove 92% of candidate negative instances 
yet retain 98% of positive instances. However, this still 
left a large number of negative instances to be considered. 
Research on inter-sentential relation extraction [21–23] 
suggests addressing this issue either by under-sampling the 
negative class or by training a cost-sensitive classifier. Dur-
ing training, for each epoch, we sampled as many negative 
instances as the number of entity pairs with corresponding 
types. For example, if we had n positive entity pairs of type 
SSLIF-Drug, we sampled n SSLIF-Drug pairs from nega-
tive instances. Finally, for each pair of entities, sentences in 
which the entities appeared, as well as the sentences between 
them, served as the contextual input to the model.

2.3 � Dataset

The total dataset contained 1089 de-identified clinical notes 
of 21 patients with cancer, of which 213 were the unseen 
test dataset and 876 were the training dataset. We used 86 
clinical notes of the training dataset as the development set 
for model tuning. Each clinical note was manually anno-
tated, identifying medications (drug name, dosage, route, 
frequency, duration), ADEs, indications, SSLIFs, and rela-
tions among those entities.

Table 2 shows the statistics for the entities in the training 
and test datasets. We observed that SSLIFs constituted the 
largest percentage of instances (about 50%) in the datasets, 
whereas drugs and ADEs were only about 20% and 2–4% of 
instances, respectively. An SSLIF was labeled as an ADE if 
the context in the clinical note implied it was a side effect of 
a drug; it was labeled as an indication if the context implied 
it was an affliction that a provider was actively treating with 
a drug.

Table 3 shows the relation types and their statistics in the 
training and test datasets. Dosage relations were the largest 
fraction of the relations, with about 21–22%, whereas the 
adverse relations accounted for only about 9–13%. These 
statistics indicated an imbalanced distribution of entities and 
relations that the methods need to consider.

2.4 � Text Preprocessing

Sentence boundary detection (SBD) is a critical preprocess-
ing task for many NLP applications. It is often treated as a 
solved problem and carried out using default approaches 
in off-the-shelf NLP toolkits. However, recent research 
[24] suggested that SBD remains a difficult and critical 
problem in the clinical domain, and renewed efforts are 
needed. One important challenge is that authors of clini-
cal notes frequently indicate sentence ends by layout and 
not by punctuation. Thus, an SBD algorithm can sometimes 
incorrectly interpret physically adjacent text segments as 
being part of the same sentence. To address this, we used 
medical domain-adapted English Slot Grammar parser [25], 
which overcomes this problem by running a preprocessor 
that is sensitive to low-level features such as punctuation, 
capitalization, text-wrap properties, and indentation to detect 
implicit sentence breaks.

2.5 � Experiments

Extraction of entities and relations from text has traditionally 
been treated as a pipeline of two separate subtasks: entity 
recognition and relation extraction. Thus, in our first method, 
called sequential modeling, we first applied our BiLSTM-
CRF model introduced in Sect. 2.1 for entity recognition, 
a task typically addressed by assigning BIO (begin, inside, 

Table 1   Number of inter- and intra-sentential relations for each rela-
tion type

Data are presented as N (%)
do dosage, du duration, fr frequency

Relation type Inter-sentential 
relations

Intra-sentential relations

Adverse 647 (32) 1435 (68)
Reason 2307 (51) 2243 (49)
do 113 (2) 5053 (98)
fr 473 (12) 3688 (88)
Manner/route 34 (2) 2056 (98)
Severity_type 42 (1) 3424 (99)
du 79 (9) 827 (91)
Total 3695 (100) 18,726 (100)
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and outside) labels to each word, indicating the token’s posi-
tion within an entity mention as well as its type (as shown 
in Fig. 4). Sentences served as logical units of contextual 
information for the entity extraction task. Subsequently, we 
applied the attention-BiLSTM model to relation identifica-
tion on the entity pairs that were extracted from clinical nar-
ratives and filtered as described in Sect. 2.2.

Overall, the sequential modeling method performed 
fairly well on categories such as medications and their asso-
ciated constituents but struggled on the more challenging 
and important categories, “reason” and “adverse” relation 
types. Subsequent error analysis revealed several categories 
of errors. Among these, misclassifying ADEs or indica-
tions as SSLIFs was a major error category, highly critical 
to the overall accuracy. Further analysis revealed two distinct 
issues: (1) document-level contextual information was vital 
and (2) domain knowledge can be beneficial in identifying 
these clinical entity types. Consequently, we tried to address 

these two issues to improve identification of the reason and 
adverse relation types.

An important characteristic of signs and symptoms 
(SSLIFs, ADEs or indications) is that “the type of these 
entities is determined by the relationship it keeps”. By defi-
nition, a certain sign or symptom is marked as an ADE or 
indication by its relationship to one or more medications. 
Furthermore, only 61% of the ADEs and 46% of indications 
participate in an adverse or reason relationship with a medi-
cation within the same sentence. Thus, any entity-extraction 
model that relies only on contextual information within a 
sentence is insufficient, which highlights the need for a bet-
ter approach to recognizing the ADE and indication entities. 
To address this issue, we performed our entity extraction 
over two steps. In the first step, we used a BiLSTM-CRF 
neural network to model generic entity types. Generic entity 
types were obtained by replacing the ADE and indication 
labels with the SSLIF label in the original training data. In 

Table 2   Entities in the dataset

Data are presented as N (%) unless otherwise indicated
ADE adverse drug event, PHI protected health information, SSLIF other signs or symptoms

Annotation Training data Test data Example Description

Annotations No. of dis-
tinct annota-
tions

Annotations No. of dis-
tinct annota-
tions

SSLIF 34,056 (50.2) 7243 5328 (47) 1614 Worsening renal function All signs and symptoms
Drug 13,507 (19.9) 1231 2395 (21.1) 420 Vicodin Name of the drug
Dose 4893 (7.2) 805 801 (7.1) 253 One tablet, tapered Dosage of the drug
Frequency 4147 (6.1) 615 659 (5.8) 197 Daily Frequency of the prescribed drug
Severity 3374 (5.0) 417 534 (4.7) 104 Significant, slightly Severity of disease or symptom
Indication 3168 (4.7) 872 636 (5.6) 217 Swelling around his eye Affliction that is being treated with a drug
Route 2278 (3.4) 108 389 (3.4) 42 Subcutaneously Route in which the drug is given
ADE 1509 (2.2) 423 431 (3.8) 160 Vertigo SSLIF that is a side effect of a drug
Duration 765 (1.1) 161 133 (1.2) 44 Lifelong, week Duration of the drug
PHI 84 (0.1) 33 27 (0.2) 16 St. Vincent hospital Unannotated PHI
Total 67,781 (100) – 11,333 (100) – – –

Table 3   Relations in the dataset

SSLIF other signs or symptoms

Relation type No. of annotations 
in training data

No. of annotations 
in test data

Description

Do(sage) 5177 (22) 866 (21) Relation between dosage and drug
Reason 4554 (20) 876 (21) Drug prescribed to treat particular indication
Fr(equency) 4419 (19) 730 (18) Relation between frequency and the drug
Severity_type 3476 (15) 559 (13) Relation between severity and SSILF
Manner/route 2551 (11) 455 (11) Relation between route and drug
Adverse 2082 (9) 530 (13) Relation between adverse reaction and drug
Du(ration) 906 (4) 147 (4) Relation between drug and duration
Total 23,165 (100) 4163 (100) –
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the second step, we used the predictions from the relation 
identification task to infer the correct type from the generic 
type. Thus, for a given SSLIF, if our model predicted that 
it participated in an adverse or reason relationship with any 
medication in the clinical note, the corresponding SSLIF 
type was updated to ADE or indication, respectively. We 
called this method “joint modeling” of entities and relations.

Another important characteristic we observed is that 
contextual information present in the current document is 
not sufficient to determine adverse and reason relationships, 
thus indicating the importance of external knowledge. One 
such example is shown in Fig. 5. The third example in the 
figure does not contain any words that inform the relation-
ship. However, the relationship is implicitly understood by 
medical experts. Effective knowledge resources have long 
been known to influence the effectiveness of learning algo-
rithms [26, 27]. Therefore, we experimented with using prior 
medical knowledge in our relation extraction system, and 
we called this method “joint modeling + external resources”.

Specifically, for a drug–SSLIF pair, we incorporated 
additional features obtained using two distinct systems, one 
introduced in Dandala et al. [28] and the other introduced 
in Banda et al. [29]. Both these systems take two sets of 

unified medical language system (UMLS) [30] concept 
unique identifiers (CUIs) as input, with one set being the 
CUIs for an SSLIF and the other set being CUIs for a drug. 
We obtained UMLS CUIs for each SSLIF and drug using an 
ensemble system described in Rajani et al. [31]. The system 
in Dandala et al. [28] returns a single score between 0 and 
1 (1 being the best), indicating the strength of association. 
AELOUS, the system in Banda et al. [29], curates and nor-
malizes the collaboratively captured reports in FAERS [10] 
and provides two scores—the proportional reporting ratio 
and reporting odds ratio—which we normalized to the range 
from 0 to 1 (1 being the best). The scores were additional 
inputs to the attention-BiLSTM model as shown in Fig. 3.

2.6 � Experimental Settings and Metrics

We used 10% of the training data as the development dataset 
to tune the models and the remaining 90% of the training 
dataset for training the neural network models. We fixed the 
word embeddings size to 200, character embeddings size to 
50 and part-of-speech embeddings length to 20. The part-
of-speech and character embeddings were initialized with 
random values. Micro averaged standard precision, recall, 

B-Drug

Daspone

B-Dose

25

I-Dose

mg

B-Frequency

daily

O

for

B-Indication

pneumocytis

I-Indication

prophylaxis

B-Drug

Revlimid

O

was

O

discontinued

O

secondary

O

to

B-ADE

skin

I-ADE

rash

Fig. 4   BIO tagging for the entity extraction

Fig. 5   Different types of rela-
tions in the dataset. Especially 
note that the third relation 
has no indicative words in the 
context

Patient is exhibiting particularly stubborn hypercalcemia.  Following the recent crisis 
admission, his calcium had gone down to the normal range, but is again on the rise. He is 
given normal saline, furosemide and pamidronate today.

He had 1 episode of  shingles , after which he has been put on Valacyclovir .

His major issue has been some tingling and numbness in his fingertips , but none in his feet. 
This is in relation to vincristine therapy.

Intra sentence relation

Inter sentential explicit relation

Inter sentential implicit relation
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and F measures [58] were used as evaluation metrics for the 
entity extraction and relation classification tasks.

2.7 � Hyperparameter Tuning

Our models include four hyperparameters: the dropout rate, 
learning rate, regularization parameter, and hidden layer 
size. The hyperparameters for our models were tuned on 
the development set for each task. Research has suggested 
that using dropout mitigates over-fitting and is especially 
beneficial to the NER task [11]. We experimented by tuning 
the hyperparameters with different settings: dropout rates 
(0.0, 0.1, 0.2, 0.3, 0.4 and 0.5), hidden layer sizes (100, 150, 
200) and regularization parameter (1e−5, 1e−6, 1e−7, 1e−8 ). 
We chose Adam [32] as our stochastic optimizer and tuned 
the learning rate at ( 1e−2, 1e−3, 1e−4 ). We used early stop-
ping [16] based on performance on the development dataset.

3 � Results

3.1 � Optimal Hyperparameter Values

We observed the best performance at around 20 epochs and 
15 epochs for entity and relation extraction, respectively. 
We used both dropout and L2 regularization for optimizing 
the network parameters. Table 4 shows the neural network 
parameters we used after tuning.

Table 5 shows results on the challenge test dataset for 
all our methods. For each method, we trained 40 different 
models, where each of them was trained on a randomly shuf-
fled training dataset from 1089 de-identified clinical notes. 
Each of these models was tested on the test dataset, and we 
calculated the mean precision, recall, F measure and stand-
ard deviations from the results. We also computed 95% con-
fidence intervals of the mean F measure. Furthermore, we 
performed pair-wise t test for performance differences in 
mean F measure among the three methods. The performance 
differences were statistically significant at p < 0.05 for each 
pair of the methods.

Figures 6, 7 and 8 present the results for entity extraction, 
relation extraction with gold labels, and relation extraction 
with system labels (integrated task), broken down by entity 
or relation type for each of the three methods. We discuss 
the specific performance results of the three methods in the 
following subsections.

3.2 � Sequential Modeling

The sequential modeling method achieved an F measure of 
0.829 for entity extraction, 0.858 for relation classification 
using gold labels for entities, and 0.624 for the integrated 
relation extraction task. High F measure was achieved in 
detecting medications, its attributes, and relations between 
them (see Figs. 6, 7). However, performance in extracting 
ADE and indication concepts was poor; in particular, recall 

Table 4   Neural network tuned parameters

Parameter Sequential Joint Joint + external resources

Concept 
extraction

Relation 
classification

Relation 
extraction

Concept 
extraction

Relation 
classification

Relation 
extraction

Concept 
extraction

Relation 
classification

Relation 
extrac-
tion

Dropout 0.4 0.4 0.5 0.5 0.4 0.5 0.5 0.4 0.4
Learning rate 0.02 0.03 0.03 0.02 0.03 0.02 0.02 0.03 0.01
Regularization 1e−7 1e−6 1e−6 1e−5 1e−6 1e−5 1e−5 1e−6 1e−5
Hidden layer size 150 100 100 150 100 100 150 100 150

Table 5   Overall accuracy results for the three methods

Task Sequential Joint Joint + external resources

Mean preci-
sion

Mean recall Mean F 
measure

Mean 
precision

Mean recall Mean F 
measure

Mean 
precision

Mean recall Mean F 
measure

Concept 
extraction

0.847 0.812 0.829 ± 0.05 0.846 0.82 0.833 ± 0.05 0.846 0.822 0.834 ± 0.03

Relation 
classifica-
tion

0.883 0.834 0.858 ± 0.04 0.884 0.831 0.857 ± 0.03 0.888 0.855 0.872 ± 0.05

Relation 
extraction

0.684 0.574 0.624 ± 0.03 0.673 0.635 0.653 ± 0.03 0.696 0.632 0.662 ± 0.02
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was much lower than for the other classes. Poor performance 
of this method on the integrated task (see Fig. 8) is directly 
attributable to its low performance in recognizing ADEs and 
indications.

3.3 � Joint Modeling

As introduced in Sect. 2.5, as a next step, we tried to improve 
upon the performance of the entity extraction by incorporat-
ing the existence of relations (or lack thereof) between enti-
ties. Overall, the micro-averaged F measure of this method 
was 0.833 for the entity extraction, 0.857 for the relation 
classification, and 0.653 for the integrated task. Performance 
improved by a relative 4.5% for the integrated task when 

compared with the sequential model. Entity recognition 
of ADEs and indications improved by a relative 13% and 
14.5%, respectively.

3.4 � Joint Modeling Plus External Resources

The best performance was achieved with the joint modeling 
plus external resources method, i.e., F measures of 0.834 
for entity extraction, 0.872 for relation classification, and 
0.662 for the integrated task, thus indicating the importance 
of incorporating domain knowledge for identifying adverse 
and reason relations, and in turn ADE and indication labels. 
Specifically, performance of ADE and indication extraction 

Fig. 6   Results for the entity 
extraction
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Fig. 7   Results for the relation 
extraction
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improved by a relative 4% and 2%, respectively, when com-
pared with the joint model only.

3.5 � Error Analysis

To gain further insights about our best-performing model, we 
conducted an error analysis (see Table 6). A major category 
of errors resulted from abbreviations and mis-spelled words, 
which are well-known in biomedical text processing. At least 
two other categories of errors resulted from the complexity 
of language processing. For example, “bleomycin toxicity” 
could be an SSLIF when considered as a single phrase or 
it could be two concepts—bleomycin (a drug) and toxicity 
(an SSLIF). The gold label annotation preferred the latter, 
whereas the system identified the former. The context appears 

to indicate that the system prediction was correct, but the sys-
tem was penalized, nevertheless. Another frequent category 
of errors resulted from ambiguity in English words (e.g., 
emend has two meanings: it is the brand name of the drug 
aprepitant and also means to make corrections). Finally, we 
observed our system frequently misclassified the use of coor-
dinating conjunctions (e.g., “left or right ventricular obstruc-
tion” was misclassified as “right ventricular obstruction”).

4 � Discussion

The importance of deep-learning-based approaches is evi-
dent in that most of the submissions in the MADE 1.0 
challenge used variations of deep neural networks rather 

Fig. 8   Results for the integrated 
task
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Table 6   Error analysis

GETA general anesthesia, SSLIF other signs or symptoms

Error category Examples Gold labels Predicted Explanation

Abbreviations Lymph node biopsy under GETA
Bactrim 160 mg of TMP component
HPV was negative

GETA—drug
TMP—drug
HPV—SSLIF

System misclassified rare/ambiguous 
abbreviations

Combination abbreviations OPEA × 2 cycles
COPDAC × 2 cycles

OPEA—drug
COPDAC—drug

System misclassified combination 
abbreviations

Ambiguous terms Continue with Emend for 2 days Emend—drug Emend as a word in English means 
“make corrections”

Spelling errors Vidodin caused nausea
Allergies: prilose statin

Vidodin—drug
Prilose—drug

Spelling errors (should be Vicodin 
and Prilosec)

Phrase splitting History of bleomycin toxicity Bleomycin—drug
Toxicity—SSLIF

Bleomycin 
toxicity—
SSLIF

System predicted injury or poison-
ing caused by an external agent 
(SSLIF)

Coordinating conjunctions No left or right ventricular 
obstruction

Left or right ventricu-
lar obstruction—
SSLIF

Right 
ventricular 
obstruc-
tion—
SSLIF

System misclassified long enti-
ties connected by a coordinating 
conjunction
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than feature-based learning approaches. Several previous 
studies [2, 33, 34] demonstrated the need for LSTM-based 
networks for automated clinical entity recognition and 
relation extraction. Thus, as a first step, we implemented 
a baseline system that relied on LSTM-based networks, 
i.e., BiLSTM-CRF for entity recognition and attention-
BiLSTM for relation classification. In this baseline system, 
we observed the importance of morphological, lexical and 
syntactical features as well as pre-trained embeddings. We 
made observations similar to previously reported results 
regarding the importance of using all three types of fea-
tures as well as pre-trained embeddings for initializing the 
model inputs [33, 35, 36].

Most previous studies were on newswire articles and 
not on biomedical text, so results cannot be directly com-
pared. A recent study by Li et al. [36] also used the joint 
modeling approach on biomedical text, but several criti-
cal differences exist between the studies. In Li et al. [36], 
manually summarized single sentences that were written 
in a textbook style were analyzed, meaning that the data 
analyzed were fundamentally different. The lexical scope 
of relations in the study was always within a sentence, 
whereas, here the scope of relations was an arbitrary num-
ber of sentences. Unlike Li et al. [36], we used the atten-
tion mechanism and knowledge-driven features, which 
improved the system’s performance.

Several teams that participated in the MADE 1.0 chal-
lenge also analyzed clinical text. Table 7 compares the 
performance of our best method with the next two top-
performing systems (as at the time of the challenge) for 
the integrated task. The systems used a method similar 
to our sequential approach but different machine learning 
models. Chapman et al. [37] employed a CRF model for 
concept extraction followed by a random forest model for 
relation extraction. Xu et al. [38] used BiLSTM-CRF for 
medical NER and support vector machine (SVM)-based 
pairwise relation classification between medical entities. 
Our method outperformed these two systems, indicating 
the effectiveness of (1) the state-of-the-art deep-learning 
models, (2) tailored methodologies to handle clinical text, 
(3) joint modeling of concept and relation extraction, and 
(4) knowledge-driven features.

5 � Conclusions

We have reported our experience and results using state-
of-the-art deep-learning neural networks for identifying 
entities and relations relevant to ADEs. We developed and 
assessed the performance of three methods using the neural 
networks: (1) a method that sequentially models entities first 
and then relevant relations among them; (2) a method that 
jointly models relations and certain key entities, leveraging 
the fact that the type of entities involved in a relation are 
predetermined; (3) a method where the information from 
external resources such as FAERS is used as an additional 
input to the neural networks. The methods provided increas-
ing accuracy of the entity extraction and relation identifica-
tion tasks, with the joint modeling plus external resources 
technique adding nearly 4 percentage points (or 6% relative 
improvement) to the current state of the art. The results from 
the second method were submitted to the MADE 1.0 chal-
lenge, where our system finished in first place in the overall 
integrated task and second in individual entity extraction and 
relation identification tasks.

Despite our success in the MADE challenge, there 
remains room for further improvement. Thus, in the future, 
we plan to explore several interesting research directions:

•	 Joint inference for concept and relation extraction tasks 
To overcome the error proportion problem in pipeline 
approaches for concept and relation extraction, we pro-
pose to explore joint inference models, which can make 
predictions for both tasks simultaneously.

•	 Representation Handling nested concepts (about 1% 
in this dataset), where span of one or more concepts 
overlaps with each other, with more advanced neural 
layered models for nested NER.

•	 Incorporating external knowledge in concept and relation 
extraction We plan to build embeddings from knowledge 
bases such as UMLS and use them in concept extraction 
and in the knowledge layer of relation extraction.

•	 N-ary relation extraction using graph LSTMs Explore 
a general framework for cross-sentence n-ary relation 
extraction based on graph LSTM networks.

•	 We plan to study the use of domain (EHR)-adapted 
dependency parsers to improve accuracy through better 
parsing of clinical text.

Table 7   Performance 
comparison of our system and 
the next top two systems

NA not available

Task Chapman et al. [37] Xu et al. [38] Joint + external sources 
(our best system)

Precision Recall F − 1 Precision Recall F − 1 Precision Recall F − 1

Concept extraction 0.838 0.781 0.809 0.842 0.827 0.816 0.846 0.822 0.834
Relation classification NA NA 0.868 NA NA 0.832 0.888 0.855 0.872
Relation extraction NA NA 0.592 NA NA 0.599 0.696 0.632 0.662
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