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Abstract
Introduction This work describes the Medication and Adverse Drug Events from Electronic Health Records (MADE 1.0) 
corpus and provides an overview of the MADE 1.0 2018 challenge for extracting medication, indication, and adverse drug 
events (ADEs) from electronic health record (EHR) notes.
Objective The goal of MADE is to provide a set of common evaluation tasks to assess the state of the art for natural language 
processing (NLP) systems applied to EHRs supporting drug safety surveillance and pharmacovigilance. We also provide 
benchmarks on the MADE dataset using the system submissions received in the MADE 2018 challenge.
Methods The MADE 1.0 challenge has released an expert-annotated cohort of medication and ADE information compris-
ing 1089 fully de-identified longitudinal EHR notes from 21 randomly selected patients with cancer at the University of 
Massachusetts Memorial Hospital. Using this cohort as a benchmark, the MADE 1.0 challenge designed three shared NLP 
tasks. The named entity recognition (NER) task identifies medications and their attributes (dosage, route, duration, and fre-
quency), indications, ADEs, and severity. The relation identification (RI) task identifies relations between the named entities: 
medication-indication, medication-ADE, and attribute relations. The third shared task (NER-RI) evaluates NLP models that 
perform the NER and RI tasks jointly. In total, 11 teams from four countries participated in at least one of the three shared 
tasks, and 41 system submissions were received in total.
Results The best systems F1 scores for NER, RI, and NER-RI were 0.82, 0.86, and 0.61, respectively. Ensemble classifiers 
using the team submissions improved the performance further, with an F1 score of 0.85, 0.87, and 0.66 for the three tasks, 
respectively.
Conclusion MADE results show that recent progress in NLP has led to remarkable improvements in NER and RI tasks for 
the clinical domain. However, some room for improvement remains, particularly in the NER-RI task.

Part of a theme issue on “NLP Challenge for Detecting Medication 
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Key Points 

The MADE (Medication and Adverse Drug Events from 
Electronic Health Records) 1.0 corpus comprises 1089 
electronic health records with detailed named entity and 
relation annotations.

We provide benchmark results from and analysis of 
the MADE 1.0 corpus using system submissions in the 
MADE 1.0 challenge.

MADE 1.0 results suggest that machine learning systems 
can be useful for automated extraction of adverse drug 
events and related entities from unstructured texts but 
that room for improvement remains.

1 Introduction

An adverse drug event (ADE) is “an injury resulting from 
a medical intervention related to a drug” [1]. ADEs are the 
single largest contributor to hospital-related complications 
in inpatient settings [2] and account for approximately 
one-third of all hospital adverse effects (AE). They affect 
more than 2 million hospital stays annually [3] and pro-
long hospital length of stay by 1.7–4.6 days [4, 5]. These 
events also account for approximately two-thirds of all 
post-discharge complications, more than one-quarter of 
which are estimated to be preventable [6]. National esti-
mates suggest that ADEs contribute at least an additional 
$US30 billion to US healthcare costs [7].

Likely ADEs should ideally be detected in randomized 
controlled trials (RCTs) before the relevant drug ever 
enters the market. However, the limited number of par-
ticipants and inclusion/exclusion criteria reflecting specific 
subject characteristics (demographic, medical condition 
and diagnosis, age) [8] means that pre-marketing RCTs 
frequently miss ADEs. This assertion is supported by the 
fact that the rate at which the US FDA withdraws previ-
ously approved drugs in the first 16 years ranges from 21 
to 27% [9]. Drug safety surveillance and post-marketing 
pharmacovigilance, “the science and activities relating to 
the detection, assessment, understanding, and prevention 
of adverse effects or any other drug-related problem” [10], 
are therefore vitally important tools for monitoring FDA-
approved drug safety.

One of the earliest systems for post-marketing pharma-
covigilance aimed at improving drug safety is spontaneous 
reporting systems (SRSs) such as the FDA Adverse Event 
Reporting System (FAERS), a voluntary SRS. Although 
SRSs have been highly successful for pharmacovigilance, 
they have limitations such as under-reporting [11, 12] 

and missing important patterns of drug exposure [13]. To 
counter these shortcomings, other resources have been 
proposed for pharmacovigilance, including biomedical 
literature [14] and social media [15]. However, biomedi-
cal literature has been shown to identify only a limited set 
of ADEs, mainly rare ADEs [16]. Social media also has 
challenges, such as incomplete and erroneous drug expo-
sure patterns and duplication [17].

It is well-known that electronic health records (EHRs) 
contain rich ADE information and have been widely used 
for drug safety surveillance and pharmacovigilance [2, 6]. 
Unlike other resources, which are passive in nature, EHRs 
can be a rich resource for real-time or active pharmacovig-
ilance and patient–drug surveillance. In addition, they can 
lead to better and more cost-effective patient management 
[18]. In 2009, the FDA initiated the mini-sentinel program 
to facilitate the use of routinely collected EHR data for 
active surveillance of marketed medical product safety 
[19]. For example, Yih et al. [20] showed an increased 
risk of intussusception after rotavirus vaccination in US 
infants.

However, most of the EHR-based pharmacovigilance and 
patient safety surveillance systems are based on the analyses 
of the structured data such as International Statistical Clas-
sification of Diseases and Related Health Problems (ICD) 
codes [21, 22]. It is well-known that ADEs are often bur-
ied in the clinical narrative [23–25] and are not separately 
recorded in diagnosis codes or other structured data fields. 
Even information that is expected to be reported in the struc-
tured fields, such as bodyweight, frequently appears only in 
EHR text [26]. In addition, necessary information that can 
be used to assess the causality of a medication and ADE, 
including temporal and causal relations, only exists in the 
narrative. However, extraction of ADE information from 
EHR narratives remains a challenge because manual data 
extraction is very costly. It is, therefore, a significant impedi-
ment to large-scale pharmacovigilance studies.

Natural language processing (NLP) may be a solution to 
provide fast, accurate, and automated ADE detection that 
can yield significant cost and logistical advantages over the 
aforementioned practices of manual chart review or volun-
tary reporting [27]. However, despite the advances in NLP, 
few methods are specifically developed for detecting ADE 
information from EHR notes. Several NLP systems use 
resources such as the Unified Medical Language System 
(UMLS) [28] to extract disease and drug mentions to gen-
erate ADE predictions using co-occurrence metrics. Such 
approaches may miss other important drug information (e.g., 
indication and dose) and would fail to capture temporal and/
or causal associations between a drug and an ADE that may 
be explicitly expressed in EHR narratives. Moreover, dif-
ferent NLP systems have been evaluated on different gold 
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standards, making it challenging to identify state-of-the-art 
NLP technologies.

Therefore, we created the MADE (Medication and 
Adverse Drug Events from Electronic Health Records) 1.0 
corpus, a publicly available, expert-curated benchmark of 
EHR notes that have been annotated with clinical named 
entities (i.e., drug name, dosage, route, duration, frequency, 
indication, ADE, and other signs and symptoms) and 
relations (ADE–drugname, indication–drugname, drug-
name–attributes, etc.). The MADE corpus is the first dataset 
that provides detailed annotations for medication, indication, 
ADEs, their attributes and relations relevant to drug safety 
surveillance and pharmacovigilance studies.

Using this high-quality corpus as a benchmark, we 
designed three shared tasks (named entity recognition 
(NER), relation identification (RI), and NER-RI) to assess 
the state-of-the-art NLP technologies that have the potential 
to improve downstream pharmacovigilance-related tasks. 
These shared tasks were organized in the First Natural Lan-
guage Processing Challenge for Detecting MADE hosted 
by the University of Massachusetts (Amherst, Lowell, and 
Worcester, USA) from August 2017 to March 2018. In this 
paper, we first describe the MADE corpus, then document 
the shared tasks and provide a comprehensive report of sys-
tem submissions in the MADE challenge. The main contri-
butions of this paper are as follows.

• Present the first richly annotated and publicly avail-
able EHR data for ADE detection and drug surveillance 
research.

• Describe the carefully designed schema and release the 
detailed annotation guidelines, which would be a valu-
able resource to not only drug safety but also any other 
data-driven clinical informatics research.

• Introduce three shared tasks in the MADE challenge and 
report the system submissions and results.

• Perform an ensemble-based system aggregation that 
shows that the top systems are complementary and can 
be further integrated to push the boundaries of extracting 
medication, indication, and ADEs from EHRs.

2  Related Work

Natural language processing techniques have been widely 
applied to biomedicine [28–33]. Much of NLP research in 
the biomedical domain has centered on NER and normaliza-
tion tasks. Examples of shared tasks in this domain include 
BioNLP [34], BioCreAtivE [35], i2b2 shared NLP tasks 
[36], and ShARe/CLEF evaluation tasks [37].

Existing NLP approaches for EHR ADE detection can be 
grouped into rule-based, lexicon-based, supervised machine 
learning, and hybrid approaches. For example, Li et al. [38] 

built an NLP system with the knowledge of a domain expert. 
Melton and Hripcsak [39] applied the NLP system MedLEE, 
a rule-based semantic parser, to detect concepts. Similarly, 
Humphreys et al. [40] applied MedLEE to map free text 
to the UMLS concepts and semantic types. UMLS [41] is 
a resource that combines multiple biomedical and clini-
cal resources into a unified ontology. Rochefort et al. [42] 
developed supervised machine learning classifiers to classify 
whether a clinical note contains deep venous thromboembo-
lisms (DVT) and pulmonary embolism (PE) using bag-of-
words from EHR narratives. Haerian et al. [43] applied dis-
tance supervision to identify terms (e.g., including suicidal, 
self-harm, and diphenhydramine overdose) associated with 
an assigned suicide ICD-9 code and then used those terms 
to recover suicide events. Wang et al. [44] used MetaMap to 
identify drugs mentioned in the text threads of online health 
forums. Nikfarjam et al. [45] annotated ADE information 
on user posts from Daily-Strength and Twitter. They then 
used word-embedding models and conditional random fields 
(CRF) for prediction. Li et al. [46] developed NLP methods 
to extract medication information (e.g., drug name, indica-
tion, contraindication) and adverse events from FDA drug 
labels. Duke and Friedlin [47] applied MetaMap to identify 
ADEs from structured product labels.

Related works on corpora for clinical NLP research 
include the GENIA corpus [48] and the TREC Genom-
ics [49]. Shared tasks such as BioNLP [34] and BioCreA-
tivE [35] have been widely used to train NLP applications. 
Other annotated corpora include the disease corpus [50], the 
BioScope corpus [51], and the MEDLINE abstract corpus 
from Gurulingappa et al. [52]. The corpus closest to ours is 
the i2b2 2009 corpus by Uzuner et al. [53], which provides 
annotations for medication and related named entities. How-
ever, our work extends the annotation schema used in the 
i2b2 corpus and provides a common dataset for medication 
and ADEs. Another similar work is that by Henriksson et al. 
[54], in which they annotated a dataset focused towards ADE 
extraction. In contrast to their work, the MADE corpus also 

Table 1  The overall statistics for the MADE corpus

MADE Medication and Adverse Drug Events from Electronic Health 
Records, SD standard deviation

Description Mean ± SD (max, min)

Words/note 948.2 ± 484.9 (3804, 76)
Named entity annotations/note 72.6 ± 52.6 (363, 0)
Relation annotations/note 25.0 ± 24.1 (181, 0)
Notes/patient 51.8 ± 40.3 (166, 1)
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provides annotation for medication details such as dosage 
frequency, etc., which are extremely relevant for pharma-
covigilance studies.

3  The MADE Corpus

The MADE corpus comprises 1089 fully de-identified longi-
tudinal EHR notes from 21 randomly selected patients with 
cancer at the University of Massachusetts Memorial Medi-
cal Center. Therefore, the notes include diverse note types 
such as discharge summaries, consultation reports, and other 
clinic notes (Table 1).

We used an iterative process throughout the annotation, 
going back and forth between document annotations and 
establishing annotation guidelines. In this process, we cre-
ated a comprehensive annotation guideline1, which addresses 
various aspects on how to handle language variations and 
ambiguities in clinical narratives related to this annotation 
task. The guideline adapted and substantially extended the 
2009 i2b2 shared task of the Medication Challenge anno-
tation guideline [53]. The MADE annotation guideline is 
designed with a focus on extracting ADEs and other relevant 
clinical information. It defines nine named entity types and 
seven relation types. The relation types define relationships 
between pairs of annotated named entities. A succinct over-
view of the annotation categories is provided in the follow-
ing subsections. The entities and relation types are described 
in detail in the text of the annotation guideline.

3.1  Named Entity Types

The named entity types can be broadly defined as either 
events or attributes. Events are annotations that denote a 
change in a patient’s medical status. This includes the pre-
scription of a medication and identification of a symptom 
or diagnosis. Events have attributes, including severity and 
information related to medications (e.g., dosage). The occur-
rence of each named entity type is provided in Table 2. As 
evident from the table, there is a large label imbalance in the 
data, which means developing an NLP system to detect those 
entity types is challenging.

Based on their context, the named entity annotations can 
be clustered into those related to sign, symptom, or disease 
(SSD) mentions and those related to medication (drugname) 
mentions. The two categories are described in the following 
subsections.

3.1.1  Sign, Symptom, or Disease (SSD)

Annotations in the SSD group define events and properties 
relevant to SSD mentions. The relevant named entity types 
are ADEs, indication, other SSD, and severity. ADEs, indi-
cation, and other SSDs are event annotations.

ADE ADEs are a type of SSD. They are adverse events 
caused by a drugname. An ADE annotation requires a direct 
linguistic cue that links the adverse effect to a drugname, 
e.g., “Patient had anaphylaxis after getting penicillin.”

Indication An indication is annotated if it is explicitly 
linked to a medication, e.g., “The patient was troubled 
with mouth sores and is being treated with Actiq.”

Other SSD Any SSD event that is not annotated as an 
indication or ADE is categorized as “other SSD”. In our 
EHRs, other SSDs frequently occur in the history section 
of notes, e.g., “headache in the back of the head.”

Table 2  Annotation counts, and word counts for each named entity 
type

ADE adverse drug event, SSD sign, symptom, or disease

Named entity type Number of annotations Total anno-
tated words

ADE 1940 3255
Indication 3804 8240
Other SSD 39,384 82,956
Severity 3908 5069
Drugname 15,902 19,075
Dosage 5694 11,820
Duration 898 1768
Frequency 4806 11,400
Route 2667 2805

Table 3  Annotation counts and relation length for each relation cat-
egory

A relation is defined as a relation between two named entities. The 
relation length format is “mean ± SD (max, min)”
ADE adverse drug event, SSD sign, symptom, or disease

Relation type Occurrences Relation length

ADE–drugname 2612 82 ± 187 (3662, 1)
SSD–severity 4035 4.7 ± 34.41 (1861, 0)
Drugname–route 3006 18 ± 25 (224, 1)
Drugname–dosage 6043 11 ± 22 (230, 0)
Drugname–duration 1053 20 ± 27 (273, 1)
Drugname–frequency 5149 25 ± 30 (295, 1)
Indication–drugname 5430 96 ± 164 (2742, 1)

1 The complete annotation guideline and dataset is available at 
bio-nlp.org/dataset/made1.
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Severity These annotations are attributes of SSDs that 
indicate the severity, e.g., acute, mild, and severe, of a 
particular SSD.

3.1.2  Medication (Drugname)

Medication includes drugname and its attributes.
Drugname The drugname annotation includes descrip-

tions that denote any medication, procedure, or therapy 
prescription, e.g., warfarin, propofol, chemotherapy, etc.

Duration Duration is the time range for the administra-
tion of the drugname, as explicitly described in the notes, 
e.g., 2 weeks, 15 h.

Dosage Dosage is the amount of drug in a unit dose. It 
is a numerical value and is an attribute of drugname entity, 
e.g., two tablets, 4 ml/h.

Frequency Frequency is the rate of administration of 
the drug and is an attribute of drugname, e.g., every hour, 
three times daily (t.i.d.), four times daily (q.i.d).

Route Route is the path through which a drug is taken 
into the body. It is an attribute of drugname entity, e.g., 
orally, central line.

3.2  Relation Types

Table 3 shows the seven relation types and their frequencies 
in the MADE corpus. A relation type is defined as a relation 
between two different named entity types. A brief descrip-
tion of each relation, along with the relevant named entities, 
is provided in the following.

Drugname Attribute Relations
The MADE corpus contains four different relation types 

that describe a relation between the drugname entity and its 
various attributes:

• Drugname–dosage
• Drugname–route
• Drugname–frequency
• Drugname–duration.

The attributes (dosage, route, frequency, duration) are 
properties of the drugname entity.

SSD–severity Severity is an attribute to an SSD (ADE, 
indication, other SSD). It is typically a modifier (e.g., mild) 
for an annotated entity (e.g., fever).

ADE–drugname ADE is an adverse effect of the pre-
scription of the drugname entity.

Indication–drugname The drugname entity has been 
prescribed as a direct treatment for the indication entity.

In the MADE corpus, the relations between the named enti-
ties can occur within a sentence or across multiple sentences 
in a note. Table 3 provides the relation length in characters. 

The ADE–drugname and indication–drugname relations have 
heavy long tails, indicating that, in several instances, they con-
nect named entities that are several sentences apart. We dis-
cuss the implications of this trend in Sect. 4.3.

3.3  Annotators

The annotation process involved multiple annotators, includ-
ing physicians, biologists, linguists, and biomedical database 
curators. Annotators were used both in document annotation 
and in the development of annotation guidelines. The follow-
ing process was used to annotate each file. The first annota-
tor individually labeled the span and type of named entities 
and relations. A second annotator then reviewed the annota-
tions and modified them to produce the final version. This 
annotation process was used to reduce the annotation cost 
of each document while ensuring high annotation quality.

Since the annotations provided by the two annotators in 
this process were not independent, they could not be used to 
obtain estimates of inter-annotator agreements (IAAs). To get 
a fair IAA estimate, we performed a smaller study wherein five 
annotators independently annotated three documents from our 
corpus. We used the Fleiss’ kappa (κ) [55] measure of IAA. 
The κ for the named entity annotation and relation annotation 
agreement were 0.628 and 0.424, respectively. The relation κ 
measures the agreement in both named entity and relation pre-
diction. The added complexity of combined named entity and 
relation annotation may explain its comparatively lower annota-
tion agreement value. However, both values fall in the fair-to-
significant agreement range [56], suggesting that our annotations 
are reliable for evaluating information extraction systems.

3.4  De‑identification

The EHR data were de-identified using the Safe Harbor 
methods defined in 45 CFR 164.514b(2) by the US Depart-
ment of Health and Human Services. First, the EHR data 
were processed by a publicly available de-identifier [57] so 
that the 18 types of Safe Harbor identifiers would be auto-
matically annotated. Second, each clinical note was manu-
ally reviewed to ensure all identifiers were marked fully and 
correctly during the annotation process. All the marked iden-
tifiers were finally removed before releasing the data to the 
teams participating in the MADE challenge.

3.5  Evaluation Script

To standardize the evaluation of NER and RI, we devel-
oped an evaluation script2. Our evaluation script uses bioc3 

2 The evaluation script is included with the MADE data release.
3 http://bioc.sourc eforg e.net; https ://githu b.com/yfpen g/bioc.

http://bioc.sourceforge.net
https://github.com/yfpeng/bioc
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format, a simple format developed by the research commu-
nity to share text data and annotations.

We used exact phrase-based evaluation, i.e., a named 
entity is correct only when the predicted span and entity type 
exactly matches the reference annotation. This is important 
as partial matching (e.g., infarction) may be semantically 
different from the exact matching (e.g., myocardial infarc-
tion). For relations, a predicted relation between two entity 
types is regarded as correct only if both the relation type is 
correct and the prediction of all relevant named entities is 
correct. We used F1 score for our system evaluation because 
it combines precision and recall, both of which are important 
metrics in the evaluation of information extraction systems. 
A micro-averaged F1 score was used to get an aggregate F1 
score over all classes. We strictly followed the micro-average 
implementation used by scikit-learn4. We also report both 
micro-averaged precision and recall scores for the systems 
in the interests of interpretability.

Our evaluation script also provides an approximate met-
ric that uses word-based evaluation, i.e., a named entity is 
correct if one or more words match. However, approximate 
match was not used for evaluation in the MADE challenge. 
During the course of the challenge, we found instances of 
inconsistent inclusion or exclusion of the period for a named 
entity. Therefore, our evaluation script ignores span errors of 
one trailing character length to account for such inconsisten-
cies. Details regarding the annotation inconsistencies can be 
found in Sect. 5.

3.6  Test and Train Data

In total, 213 notes from our MADE corpus were selected 
for the testing split, and the remaining 876 notes formed 
the training split of the MADE challenge. To minimize the 
potential of over-fitting and maximize the evaluation qual-
ity, we used two approaches to select the test set. We first 
selected three patients (of 21) from the MADE cohort and 
included all their EHR notes (a total of 153) in the test set. 
We then selected 0–4 notes from the remaining 18 patients 
to add an additional 60 notes for the test set.

4  The MADE Challenge

The MADE challenge invited participants to submit sys-
tems for three shared tasks. The MADE corpus training 
data were released in November 2017, 4 months before the 
final test run. Submissions were evaluated using the crite-
rion described in Sect. 3.5. We designed two different runs: 
standard and extended. Submissions in the standard runs 

were limited in the type of external tools they could use; 
as such, it provided a fair evaluation of the NLP models. 
For this run, teams had no restriction in using open-NLP 
systems. They could use outputs of open NLP tools such as 
Stanford NLP, Natural Language Toolkit (NLTK), and the 
UMLS tools for feature engineering. However, they were 
not allowed to use custom clinical NLP software, other EHR 
datasets, or NLP tools trained on other EHR datasets. They 
were also not allowed to use proprietary or in-house NLP 
software. Systems not adhering to these constraints were 
categorized as extended runs. We allowed two submissions 
for each run from each participating team. However, we only 
considered standard runs in the final evaluation. Please refer 
to the relevant articles for an evaluation and analysis of their 
extended runs.

The three shared tasks were designed to evaluate submis-
sions with an overall goal of identifying ADEs and other 
relevant entities and relations from EHR notes.

Task 1: Named Entity Recognition (NER)
This task required extraction of both EHR named enti-

ties spans and their types from EHR notes. The named 
entity types are described in Sect. 3.1. Input was an unla-
beled raw EHR note. Output was a bioC file containing the 
entity span and type. The evaluation for this task used F1 

Table 4  Performance metrics for the best runs by teams for the 
named entity recognition task (shared task 1)

Ranking Team names Recall Precision F1 score

1 WPI-Wunnava [58] 0.8247 0.8333 0.8290
2 IBMResearch-dandala [59] 0.8243 0.8327 0.8285
3 UFL-gators [60] 0.8148 0.8318 0.8232
4 UArizonaIschool-Xu [61] 0.8042 0.8272 0.8156
5 UofUtah-Patterson [62] 0.7667 0.8280 0.7962
6 AEHRC-HoaNGO [63] 0.7463 0.8349 0.7881
7 ASU-BMI [64] 0.7074 0.8358 0.7663
8 MITRE-Tresner-Kirsch 0.7581 0.7443 0.7511
9 SUNY-Tao 0.6658 0.8054 0.7290

10 UCA-I3S-SPARK [65] 0.7198 0.6814 0.7001

Table 5  Performance metrics for the best runs by teams for the rela-
tion identification task (shared task 2)

Ranking Team names Recall Precision F1 score

1 UofUtah-Patterson [62] 0.8806 0.8565 0.8684
2 IBMResearch-dandala [59] 0.8736 0.8093 0.8402
3 UArizonaIschool-Xu [61] 0.8846 0.7849 0.8318
4 ASU-BMI [64] 0.7693 0.8680 0.8157
5 KazanFederalUniversity-

Alimova
0.6225 0.3343 0.4350

4 http://sciki t-learn .org/stabl e/modul es/gener ated/sklea rn.metri cs.f1_
score .html.

http://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
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score evaluation metrics based on exact phrase matches, 
described in Sect. 3.5.

Task 2: Relation Identification (RI)
This task required classification of relation and its type 

between two provided named entities. Since the named 
entities were provided as input, this task did not require 
detection of named entity spans or types. The relation 
types are described in Sect. 3.2. The input was the unla-
beled EHR notes and a bioC file containing the list of pre-
sent named entities. The output was a bioC file containing 

the relationships between the provided list of named enti-
ties, if any. The evaluation for this task used F1 score 
evaluation metrics, described in Sect. 3.5.

Task 3: Joint Relation Extraction (NER-RI)
This task required prediction of both the named enti-

ties and their relations. Therefore, the systems submit-
ted to this task had to jointly conduct both NER and RI. 
Input was an unlabeled EHR document. Submissions were 
expected to correctly extract the named entities, predict 
the entity type, and predict their relations. Output was a 
bioC file containing the named entity and relations. The 
evaluation for this task used F1 score evaluation metrics 
based on exact phrase matches, as described in Sect. 3.5.

4.1  Submissions

The workshop submissions included 41 runs from 11 teams. 
The largest participation was in the first (NER) task and the 
smallest in the third (NER-RI). We show the exact F1 score, 
precision and recall for all teams in Table 4 (NER task), 

Table 6  Performance metrics for the best runs by teams for the joint 
relation identification task (shared task 3)

Ranking Team names Recall Precision F1 score

1 IBMResearch-dandala [59] 0.6317 0.6029 0.6170
2 UArizonaIschool-Xu [61] 0.6005 0.5965 0.5985
3 UofUtah-Patterson [62] 0.5176 0.6918 0.5921
4 ASU-BMI [64] 0.4350 0.6431 0.5189

Table 7  Architecture details shared by teams within the workshop proceedings

CE character embeddings, CRF conditional random field, CT clinical terms, LSTM long short-term memory, POS part-of-speech, PWE pre-
trained word embeddings, SVM support vector machine
a Documents additional features used by the submission for their named entity recognition system
b Classification methodology used by the submission for relation classification

Team names LSTM CRF PWE CE Featuresa Relation  classifierb

UCA-I3S-SPARK [65] + − + + POS −
UFL-gators [60] + − + − − −
UofUtah-Patterson [62] − + + − POS, surface Random Forest
ASU-BMI [64] + + + + Surface Random Forest
IBMResearch-dandala [59] + + + + POS Attention Bi-LSTM
WPI-Wunnava [58] + + + + − −
UArizonaIschool-Xu [61] + + + + Prefix, SUffiX EMBEDDING SVM
AEHRC-HoaNGO [63] − + + − Snomed-CT, POS, Dependency −

Table 8  Label-wise recall, 
precision, and F1 score values 
for the top submission and 
ensemble in task 1

The ensemble takes the majority vote from the top three systems
ADE adverse drug event, NE named entity, SSD sign, symptom, or disease

NE type Best submission Top 3 ensemble

Recall Precision F1 score Recall Precision F1 score

ADE 0.5266 0.7229 0.6093 0.5058 0.7956 0.6184
Indication 0.5959 0.6467 0.6202 0.5833 0.7860 0.6696
Other SSD 0.8490 0.8294 0.8391 0.8547 0.8483 0.8515
Drugname 0.8743 0.9057 0.8897 0.8922 0.9319 0.9116
Duration 0.7443 0.6428 0.6898 0.6766 0.9000 0.7725
Frequency 0.7541 0.7611 0.7576 0.8376 0.9123 0.8734
Dosage 0.8888 0.8757 0.8822 0.8926 0.8915 0.8920
Severity 0.8014 0.8492 0.8246 0.8014 0.8577 0.8286
Route 0.9383 0.9125 0.9252 0.9203 0.9396 0.9298
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Table 5 (RI task), and Table 6 (NRE-RI task). Table 7 pro-
vides a tabular view of the features and methods used. The 
NER task (task 1) had a best F1 score of 0.829. RI and NER-
RI tasks had best F1 scores of 0.8684 and 0.6170, respectively. 
We also evaluated the extended runs, although they were not 
used for MADE task rankings. No extended run performed 
better than the top system in any of the three tasks. The label-
wise recall, precision, and F1 scores of the best submission 
system in all three tasks are provided in Tables 8, 9, and 10. 
These tables also provide the score for an ensemble predic-
tion system composed of the top three runs in each task. More 
details about the ensemble system are provided in Sect. 4.3.

A brief overview of the methods used is provided in the 
following section. Please refer to the relevant team papers 
for further details about their methodologies.

4.2  Methods

As shown in Table 7, although the teams developed a variety 
of different sequence labeling and machine learning models, 
long short-term memory (LSTM) and CRF were the most 
widely used models for NER. The RI task showed a variety 
of models, such as support vector machines (SVMs), random 
forest, etc. A brief overview of the methods used in NER and 
relation classification are provided in the following.

NER
The task of NER can be posed as a sequence labeling 

problem, where a sentence can be treated as a sequence of 
tokens. The task is then reduced to the problem of labeling 
each token with the named entity tag or an “outside” (no 
named entity) tag. Commonly used algorithms for sequence 
labeling are Markov models (hidden Markov models, CRF), 
neural network models [convolutional neural network, recur-
rent neural network (RNN)], or a combination of both.

Linear-chain CRF [66] and related models (maximum 
entropy Markov model [MEMM] [67], hidden Markov 
model [HMM] [68]) belong to a class of methods in machine 
learning based on Markov models. CRF, which is a widely 
used method in sequence labeling, maximizes the joint 
probability of the label sequence conditioned on the input 
sentence.

RNN such as LSTM [69] or gated recurrent units (GRU) 
[70] are neural networks with recurrent connections that 
are designed to process sequential data. They have been 
shown to be useful in several NLP tasks such as NER [71], 
language modeling [72], and part of speech [73]. CRFs 
and RNNs were the two main methods used in the MADE 
challenge for the NER task. These methods take bag-of-
word and other relevant features as inputs and produce the 
labels as outputs. Several teams experimented with char-
acter embeddings and other sub-word representations such 

Table 9  Label-wise recall, 
precision, and F1 score values 
for the top submission and 
ensemble in task 2

The ensemble takes the majority vote from the top three systems
ADE adverse drug event, SSD sign, symptom, or disease

Relation type Best submission Top 3 ensemble

Recall Precision F1 score Recall Precision F1 score

ADE–drugname 0.7377 0.7032 0.7200 0.7207 0.7047 0.7126
SSD–severity 0.9677 0.9359 0.9516 0.9534 0.9334 0.9433
Drugname–route 0.9120 0.9346 0.9232 0.9274 0.9483 0.9377
Drugname–dosage 0.9676 0.9544 0.9610 0.9665 0.9479 0.9571
Drugname–duration 0.9047 0.7732 0.8338 0.9523 0.6278 0.7567
Drugname–route 0.9260 0.9428 0.9343 0.9369 0.9647 0.9506
Indication–drugname 0.7671 0.7187 0.7421 0.8242 0.7680 0.7951

Table 10  Label-wise recall, 
precision, and F1 score values 
for the top submission and 
ensemble in task 3

The ensemble takes the majority vote from the top three systems

Relation type Best submission Top 3 ensemble

Recall Precision F1 score Recall Precision F1 score

ADE–drugname 0.4264 0.4280 0.4272 0.3264 0.6784 0.4407
SSD–severity 0.5080 0.4694 0.4879 0.4740 0.5875 0.5247
Drugname–route 0.7956 0.7801 0.7878 0.7868 0.8689 0.8258
Drugname–dosage 0.7840 0.7324 0.7573 0.7655 0.8371 0.7997
Drugname–duration 0.4557 0.4685 0.4620 0.4965 0.5572 0.5251
Drugname–route 0.7424 0.7970 0.7687 0.7260 0.9059 0.8060
Indication–drugname 0.5365 0.4630 0.4970 0.4223 0.6525 0.5128
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as suffix and prefix embeddings. Features such as part of 
speech and surface features (case-based features) were also 
used with both RNN and CRF-based models. All teams use 
pre-trained word embedding to either pre-initialize their neu-
ral models or as features for CRF training.

Relation Classification
RI and NER-RI tasks require classification of the named 

entity pairs into several relation classes. The absence of a 
relation between the named entity pairs can be treated as 
another class in a multi-class classification scheme. Some 
submissions divide the classification into two separate 
sequential classification steps. The first classification task 
is to predict whether a relationship exists between the two 
named entity pairs. The second classification task predicts 
the type of that relation.

The classification methods range from neural network-
based methods such as a bidirectional LSTM with attention 
layer [59] to random forests [64, 65] and SVMs [61]. Neural 
network-based methods use a final soft-max layer and cross 
entropy loss for training the relation classifier. SVM [74] 
is a statistical machine learning technique that uses maxi-
mum margin loss to train the classifier. Random forests [75] 
are a class of ensemble methods. They use the combined 
score from a collection of decision trees to produce the class 
prediction.

4.3  Analysis

The micro-average F1 score for task 3 was significantly 
lower than that for tasks 1 and 2. This was expected, since 
prediction in task 3 compounded the errors in both the NER 
and the RI steps. For the real-world application of extract-
ing drugname and related ADEs, the F1 score needs to be 
further improved from its current best of 0.4272 in the NER-
RI task (Table 10). A major factor behind the low score of 
the ADE-drugname relation type is the low NER F1 score 
of ADE. However, the prediction of this relation itself is 
also a challenging prediction problem as evidenced by the 
F1 score of 0.72 in task 2. This may be because the text 
span between two entities in this relation could be large 
(Table 3). Similar arguments can also be made about the 

relation indication-drugname, which is another important 
relation type for downstream applications such as drug-
efficacy studies.

We ran paired sample t tests to evaluate the statistical 
significance of the differences between the top three mod-
els in each task. The paired t test evaluates the difference 
between two related variables. The differences were consid-
ered significant if the p value was < 0.05. The samples used 
in our test were obtained by using file-level micro-average F1 
scores. For the first task, we found no statistically significant 
difference between the first [58] and second [59] systems. 
However, the third system [60] was statistically significantly 
different from that in both Wunnava et al. [58] and Dandala 
et al. [59]. For task 2, all differences between the top three 
teams were statistically significant. For task 3, the third sys-
tem [62] was statistically significantly different from the first 
[59]. All other differences among the top three teams in this 
task were statistically insignificant.

We built an ensemble system using the submitted runs. 
The ensemble output for each task is generated using a 
simple majority vote scheme. A prediction (named entity 
or a relation instance) is used by the ensemble if a major-
ity of submissions agree on it. For shared task 1, the entire 
named entity phrase along with its type is taken as one 
prediction instance. For tasks 2 and 3, the complete relation 
prediction (relation type along with its constituent named 
entity predictions) constitutes one instance. The ensemble 
F1 score is shown in Table 11. Each ensemble was cre-
ated by choosing one best standard run from each team. 
We also used an ensemble composed of one standard run 
each from the top three teams for each task. The ensembles 
show significant performance gains in task 2 and 3 when 
compared with the best individual system in each shared 
task category. Even in task 1, the performance increase in 
F1 score is around 0.02. This indicates that the top systems 
in the MADE challenge do not all learn the same pattern 
from the dataset. Instead, there is variability in the infor-
mation they learn.

The NER and NER-RI tasks are interesting, not only from 
a research perspective but also because they have applica-
tions as steps in practical information extraction pipelines. 

Table 11  Performance metrics 
calculated for ensemble of 
submissions as described in 
Sect. 4.3

The “top three teams” shows the ensemble generated from submissions of top three teams. The “all teams” 
ensemble uses submissions from all teams. For each team in both ensembles, only the best run is used. So, 
all ensembles in “top three teams” are ensembles of three different systems
NER named entity recognition, RI relation identification

Shared task Top three teams All teams

Recall Precision F1 score Recall Precision F1 score

Task 1: NER 0.8334 0.87297 0.8527 0.7847 0.9094 0.8425
Task 2: RI 0.8935 0.8625 0.8777 0.8782 0.7845 0.8287
Task 3: NER-RI 0.5841 0.7616 0.6612 0.4633 0.8580 0.6017
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It is non-trivial to accurately estimate an F1 score threshold 
for a good real-world performance. Therefore, we cannot 
calibrate an F1 score of 0.8 in the context of its real-world 
performance. However, in our experience, a precision score 
of 0.83 suggests that the system can extract reasonably accu-
rate and useful data from unstructured text. Therefore, we 
believe that these models should be good enough for large-
scale statistical studies where count-based thresholds can 
be used to reduce the noise in the extracted data. However, 
applications that require patient-specific information may 
need NER systems with higher recall and precision. For 
instance, systems that use statistical methods to predict the 
outcome on a patient level may be very sensitive to the noise 
introduced by MADE NER systems.

As mentioned previously, the NER-RI performance was 
markedly lower than the NER performance of the submit-
ted systems. The precision of NER-RI systems was sig-
nificantly improved by building an ensemble, as shown in 
Table 11. However, a relatively low F1 score of around 0.6 
suggests that the current NER-RI systems need to be fur-
ther improved to be useful in real-world applications. Future 
steps in improving these models can focus on (1) improving 
the machine learning models, (2) annotation efforts to build 
larger labeled corpora, or (3) designing machine learning 
techniques that use external knowledge and unlabeled text.

5  Corpus Errors

The annotations in the corpus contain a few inconsisten-
cies and errors. Some of these errors were observed while 
testing the evaluation script on the data, and several were 
reported by the participating teams. The errors fall into two 
categories: inconsistency in annotations and overlapping 
annotations.

The inconsistency in annotations is due to inconsistent 
annotations of the period character in named entity anno-
tations. As an example, for the phrase “q.i.d”, annotations 
may sometimes miss the last period character, “q.i.d”. This 
inconsistency is only exhibited with the period character 
and only when it is a trailing period. To account for this 
inconsistency, the evaluation script ignores trailing mistakes 
of one-character length for all tasks.

Errors due to overlapping annotations occur when spans of 
two named entities overlap. The two overlapping entities can 
be of the same or different types. A common error in this cate-
gory is overlapping annotations in the same type. For example, 
both the phrase “vitamin D” and the overlapping sub-phrase 
“vitamin” are annotated as separate drugname annotations. 
Another common error in this category is double annotation 
on the same named entity. For example, the same phrase span 
“nausea” is annotated twice, as an ADE and as other SSD. 
Since it is not trivial to disambiguate the correct annotation 

for these errors, the evaluation script addresses this issue by 
treating all reference annotations as correct. This essentially 
means that the evaluation script slightly underestimates the 
true scores. However, since these errors are exhibited in only 
around 130 named entity annotations (from over 70,000 NE 
annotations in MADE), the evaluation script score still accu-
rately accesses the performance of submitted systems.

6  Conclusion

We created an expert-curated corpus comprising longitudi-
nal EHR notes from patients with cancer. The MADE cohort 
was annotated with medication- and ADE-related informa-
tion. We released this cohort to the research community 
and used it as the benchmark to evaluate state-of-the-art 
NLP models. MADE results show that recent progress in 
NLP has led to remarkable improvements in NER and RI 
tasks for the clinical domain. However, as demonstrated by 
the joint NER-RI task, room for improvement remains. We 
invite future research efforts to improve the state of the art 
on these benchmarks.
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