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Abstract
This paper presents a method to partially automate the repair process of metallic parts, such as aluminum castings, by using a
machine vision system and an additive manufacturing process such as LMD (laser metal deposition). This method is based on a
modified RANSAC (RANdom SAmple Consensus) algorithm and an intersection operation that enables the automated segmen-
tation of repair volumes of canonical shape within a range dataset. To illustrate the working principle of the present method, an
experiment is described where a 2D laser triangulation device scans a cavity machined in an aluminum workpiece. Despite the
inevitable errors and noise in the range data, the repair volume and its edge features are robustly and accurately extracted. Scan
paths can then be generated and turned into machine code for refilling the repair volume by an LMD additive manufacturing
process.
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1 Introduction

For the last decades, the Maintenance, Repair and Overhaul
(MRO) industry has traditionally been using welding process-
es such as Gas Tungsten Arc (GTA) welding to perform re-
pairs of metallic parts. However, such welding processes are
usually operated manually, which give inconsistent results
since they are highly dependent upon the welder’s skills.
Moreover, GTA welding repairs usually induce high residual
stresses and important deformations due to a relatively large
heat-affected zone, and the bonding between the weld and
substrate can potentially be quite weak [1–4]. The range of

materials and the types of defect that can be consistently
repaired by GTAwelding are therefore limited.

To circumvent those issues and extend the range of appli-
cability of the repair process, the welding process may be
replaced by an additive manufacturing process such as Laser
Metal Deposition (LMD). This process is very well suited for
surface repair applications since it allows for a limited heat
input and a precise control of the deposition zone while being
relatively cost-effective and easily automatable compared to
other common welding and coating processes (GTA/EB/PTA
welding, Plasma/HVOF thermal spraying) [2].

While there has been a significant amount of work done on
repairs with an LMD process, most studies focus on the ma-
terial and process aspects. For example, Pinkerton [2] focuses
on repairing slots with H13 steel and statistically analyzing the
material and mechanical performance of the deposit.
Pinkerton [5] reviews the theory and applications of LMD,
including case studies of industrial repairs. Graf [6] studied
the refill of grooves by LMD with stainless steel and a titani-
um alloy, and Petrat [7] researched process parameters and
rebuild strategies for repairing a gas turbine burner with
Inconel 718.

There are comparatively fewer studies focusing on autom-
atizing the repair process, using either an additive manufactur-
ing process such as LMD [3, 4, 8, 9] or other manufacturing
processes such as welding and/or CNC machining [10, 11].

This article is part of the collectionWelding, AdditiveManufacturing and
Associated NDT

* Stéphane Touzé
stephane.touze@ec-nantes.fr

Jean-Yves Hascoët
jean-yves.hascoet@ec-nantes.fr

Matthieu Rauch
matthieu.rauch@ec-nantes.fr

1 Institut de Recherche en Génie Civil et Mécanique (GeM), UMR
CNRS 6183, Ecole Centrale de Nantes, 1 rue de la Noë,
44321 Nantes, France

Welding in the World (2018) 62:229–241
https://doi.org/10.1007/s40194-017-0523-0

http://crossmark.crossref.org/dialog/?doi=10.1007/s40194-017-0523-0&domain=pdf
http://orcid.org/0000-0001-7084-3319
mailto:stephane.touze@ecantes.fr


Improving the automation of the repair process may involve
scanning the part for building its 3D digital model to automat-
ically localize the defect region, extract the repair volume, and
generate suitable toolpath trajectories.

Most publications on repair automation may be divided
into two categories, depending on whether or not the nominal
Computer-Aided Design (CAD) model of the part to be
repaired is available and used in the repair methodology. For
example, Bremer [10], Jones [12], and Zhang [13] recover the
repair volume of a defective part by comparing the nominal
CAD model to range data.

However, relying on nominal CAD models for performing
surface repairs has a few drawbacks. Indeed, the CAD model
is not always available due to confidentiality issues, and when
the CAD model is in fact available, it usually does not corre-
spond exactly to the real part, notably for aluminum alloy
castings [8, 9, 11]. Also, requiring the knowledge of the full
geometry of a part to perform a localized surface repair may
seem like overkill.

Thus, several studies have been dealing with non-CAD-
based automated repair, and they mostly focus on the repair
of a specific type of part such as turbine blades. For instance,
to generate a defect-free model of a defective blade, Gao [14]
uses polygonal modeling and Gao [8] combines polygonal
modeling and surface fitting. Chen [15] combines piecewise
Hermite interpolation and linear compensation. Gao [9] recon-
structs a nominal CAD model based on a surface extension
approach and cross-section curves (CSC). Yilmaz [11] per-
forms a sweep between CSCs located before and after a de-
fect. Piya [4] andWilson [3] use a digitized mesh model and a
prominent cross-section approach to extract the repair volume
by CSC lofting and a Boolean operation. Tao [16] adapts the
CSC lofting approach in order to handle defective blade tips.

Such non-CAD-based methods, reviewed by Wu [17], ap-
ply to a specific type of part such as turbine blades, for which
the general shape and function are known a priori. However,
those methods cannot be directly applied to parts of arbitrary
geometry with unknown shape or function a priori. Moreover,
a significant amount of user intervention is usually necessary
to digitally construct the repair volume, often relying on the
use of third-party commercial CAD/CAM software [3, 4, 8, 9,
11, 14] at some stage of the repair process. Also, those
methods typically require a full 3D scan of the part, which
can be a rather challenging task for large and intricate geom-
etries. They also necessitate a very clean range dataset, which
generally involves a pre-processing step that is tedious to per-
form manually and is hard to automate fully. Indeed, many
scanning errors such as spurious peaks and missing data typ-
ically occur for concave geometries made of reflective mate-
rials like metals, those errors being notably caused by second-
ary reflections, dead angle, and occlusion effects [18, 19].

The main contribution of this paper lies on a new method-
ology for performing local surface repairs by LMD on parts of

arbitrary shapes without relying on a nominal CADmodel and
with minimal user intervention during the process. This meth-
odology, dubbed InterSAC (Intersection SAmple Consensus),
involves a modified RANSAC (RANdom SAmple
Consensus) algorithm run on local range measurement data,
followed by an intersection operation carried out either ana-
lytically or numerically. This allows to extract the repair vol-
ume and find its edges accurately and robustly without any
prior knowledge of the part, provided the defect has been
machined into a surface cavity of canonical shape. The
InterSAC algorithm combines several modifications that tailor
the RANSAC approach to a repair application by improving
on its accuracy, repeatability, and theoretical runtime. Such an
approach is robust enough to remove the need for major pre-
processing of the range data by the user, or the need for
performing multiple scans and fusing the range data to filter
out scanning errors, as in [20]. Once the repair volume has
been extracted, scan paths can be generated for the refill of the
cavity by an additive manufacturing (AM) process such as
LMD [21, 22].

The present paper shall focus on the identification and in-
tersection steps of the method.

This paper is structured as follows. In Section 2, the
InterSAC methodology is explained in details and the modi-
fied RANSAC algorithm is specified. To illustrate the method,
an experimental procedure is described in Section 3 and its
results are given in Section 4. Section 5 discusses the findings,
and a conclusion and perspectives are given in Section 6.

2 Repair methodology

2.1 Method outline

The present method partially automates the repair of a defect
by an AM process such as LMD. It is applied to external or
internal defects that have been machined into a surface cavity.
This cavity is to be refilled in such a way as to recover the
local geometry of the part.

The objectives of the present method are thus to automat-
ically detect and refill the machined cavity without the need to
rely on a nominal CAD model and with minimal user inter-
vention during the repair process. This implies scanning the
repair area, locating and segmenting the cavity, extracting its
edges, calculating its volume, and generating suitable scan
paths. These paths, represented as analytical or numerical
3D curves, can then be turned into machine code and fed into
the LMD process controller to perform the refill of the cavity.
A general approach for repairing metallic parts by an AM
process is summarized in Fig. 1.

The defective metallic part is first scanned by some imag-
ing techniques, such as radiography or CT scans. The scan
data is then inspected for defect identification, either manually
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by an operator or automatically by machine vision algorithms
as in the work of Mery [23]. Toolpaths are then generated,
manually or automatically, for machining the defect area into
a cavity [24–26]. In those cases where the machining
toolpaths can be easily recycled into scan paths for refilling
the cavity, the repair operation can readily be performed once
the AM process parameters have been optimally set [27, 28].
However, path strategies for refilling the cavity by an AM
process such as LMD are rather specific [21, 22] and usually
differ greatly from the machining strategy. Indeed, the process
constraints are not the same, and the difference in effector size
is substantial. Hence, in most repair applications, a specific
scan path strategy has to be used for the AM refill process. To
this end, this paper presents a method called “InterSAC”
(Intersection SAmple Consensus) for robustly extracting the
repair volume based on 3D range data. Once the 3D volume to
be refilled is known, scan paths can be generated for
performing the repair operation.

For the InterSAC method to be applicable, there are
two major assumptions. First, it is assumed that the gen-
eral shape of the cavity to be refilled is amenable to an
analytic representation. In practice, this can be achieved
by machining the defect accordingly. Second, it is as-
sumed that the original local geometry of the part in the
cavity area corresponds to the shape of the external sur-
face of the part in the neighborhood of the cavity (other-
wise called “neighboring surface”). The neighborhood of
the cavity is therefore assumed to be sufficiently smooth
and regular to be represented as an analytic surface.
Particular surface features that were originally present in
or near the cavity area but have been machined out may

be rebuilt separately in a subsequent step, on top of the
refill as performed in the present method.

The InterSAC method starts by scanning the cavity area
with a non-contact range measurement sensor, such as a 2D
laser triangulation sensor, to obtain a 3D digital representation
of the cavity and its neighboring surface. It is not necessary to
scan the part in its entirety as only local range data information
is required for the present method. For good performance, the
range data should include the whole cavity as well as a good
portion of the “neighboring surface.” However, the present
method is robust enough to be also applied to partial range
data where the cavity area and/or the neighboring surface are
partially truncated.

The user also selects a canonical, i.e., primitive, surface that
best represents the geometry of the machined cavity (sphere,
cylinder, cone, paraboloid, ellipsoid, hyperboloid…), as well
as a surface that best represents the neighboring surface
(sphere, cone, cylinder, paraboloid, ellipsoid, hyperboloid, to-
rus, quadric, superquadric, conic, bivariate polynomial…). If
the type of neighboring surface is unknown, the user may
choose a type of surface of sufficiently high degree, so that
it may correctly approximate the actual neighboring surface.

Regarding the nature or type of surfaces and shapes used to
represent the cavity and its neighboring surface, the InterSAC
method can in principle handle almost any analytic surface
that is amenable to an implicit representation (i.e., of the form
F(x, y, z) = 0). Explicit representations of the form z = F(x, y)
can also be used since they can trivially be converted into
implicit representations. However, the use of parametric sur-
faces is more challenging for a RANSAC-based identification
due to independent parameters and is left to future work.

Fig. 1 General repair method
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Once the user has initially set the geometrical models for
the cavity and its neighboring surface, the RANSAC-based
algorithm then proceeds to estimate the model parameters
based on the range data.

Because there are two different geometric models to be
identified within the range data, two identification steps are
performed in a sequential manner. In the second identification
step, the InterSAC algorithm only samples data points corre-
sponding to the outliers of the firstly identified model. The
inliers of the first model are therefore discarded from the sam-
ple dataset for the second identification step. This serves to
reduce the number of data points available for randomized
sampling, thereby reducing the theoretical number of random
samples to be drawn.

The preferable order for the two shape identification steps
depends on several factors outlined in Section 2.2. As a rule of
thumb, assuming a dataset composed of 50% of inliers for the
first model and 50% of inliers for the second model, it is
theoretically best to start with the simpler model (i.e., with
less parameters to be identified).

Once the parameters of the two geometrical models
are estimated, the 3D repair volume is then obtained by
performing an intersection operation between the two
geometrical models, which yields their 3D intersection
curve and surface. The 3D intersection curve defines the
surface edge between the cavity and its neighboring
surface. Below the surface edge, the bottom of the 3D
repair volume is defined by the geometrical model of
the cavity bounded by the 3D intersection curve. Above
the surface edge, the top of the repair volume is defined
by the intersection surface, which corresponds to the
neighboring surface bounded by the 3D intersection
curve. Hence, with the knowledge of the parameters of
the two geometrical models and their 3D intersection
curve, a 3D repair volume can be formed in such a
way as to recover the local geometry of the metallic
part in the repair area. As noted earlier, it is assumed
that the original surface geometry of the part in the
cavity area corresponds to the shape of the neighboring
surface. If a particular surface feature was in fact orig-
inally present in or near the repair area but was inte-
grally or partially machined out to form the cavity, it
could be rebuilt by LMD in a subsequent step on top of
the 3D repair volume as obtained in the present method.

The repair volume extraction by an intersection oper-
ation is illustrated in Fig. 2 for the particular case of a
spherical cavity machined on a flat workpiece, respec-
tively represented by a sphere and a plane. Their inter-
section curve is a circle, their intersection surface is a
disk (i.e., flat geometrical objects oriented in 3D space),
and the repair volume is a spherical dome.

With geometrical models of high degree, the intersection
curve and surface may not be flat (e.g., spherical cavity on a

toroidal surface). Also, an analytic solution is not always
known, so that a numerical procedure may be required (see
discussion in Section 5).

The algorithm finally generates the scan paths and the ma-
chine code for the refilling process. If the refilling by LMD is
carried out successfully, the local shape of the metallic part is
fully recovered.

2.2 InterSAC algorithm

In this section, the identification steps of the method are spec-
ified. This approach is based on a modified RANSAC algo-
rithm that combines several previously known modifications
(including MSAC, NAPSAC, and LO-RANSAC) that tailor
the RANSAC approach to the repair application by improving
on its accuracy, repeatability, and theoretical runtime. Given
the probabilistic nature of the algorithm, the theoretical
runtime here refers to the number of iterations theoretically
required for the algorithm to succeed with a given confidence
level.

The original RANSAC algorithm [29] aims at robustly
estimating model parameters within a dataset containing both
model inliers and outliers. It is based on an iterative procedure
that randomly samples a subset of the data in each iteration
and estimates the corresponding model parameters. The size
of the subset is chosen to be as small as possible (e.g., 2 points
for a line, 3 points for a plane, 4 for a sphere…). The data
points that fall within a certain distance, i.e., tolerance, of the
geometrical model are called inliers, and together they form
the consensus set. From one iteration to the next, the algorithm
retains the model parameters with the largest consensus set or
lowest cost. Several stopping criteria exist, but it is usually set
to stop after a certain number of iterations or after a sufficient-
ly good model has been found (i.e., with more inliers than a
threshold). Because the model parameters of the best consen-
sus set have been estimated with only a sample of the inliers, a
final least-square fitting step on all the inliers is usually added,

Fig. 2 Repair volume extraction by intersection of a spherical cavity and
its neighboring plane—intersection circle in red
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as per the so-called gold standard form of the RANSAC algo-
rithm, so that the entire consensus set participates in the esti-
mation of the final model parameters.

While fairly simple in its principle and quite robust in prac-
tice, RANSAC suffers from a few drawbacks. Indeed, the
results are not repeatable from one run to the next due to the
random sampling process, which is an undesirable effect in
the context of an industrial repair process. Also, the original
RANSAC method does not necessarily find the optimal set of
inliers. And when it does find a near-optimal set of inliers, the
algorithm may still continue running as the stopping criterion
is usually based on a statistical hypothesis. Moreover,
RANSAC assumes that all inliers yield good model parame-
ters. However, inliers are usually affected by noise, so that all
subsets of inliers do not give the exact same model parame-
ters. In other words, some subsets of inliers are better than
others at estimating the model parameters.

For an industrial repair process, it is essential that the re-
sults of the InterSACmethod be both accurate and repeatable.
To this end, the RANSAC algorithm is modified to yield a
RANSAC-like algorithm that is tailored to this application.

In [30], the cost function of RANSAC is modified with no
extra computational burden by using an M-estimator.

This MSAC method (M-estimator SAmple Consensus)
keeps a constant error value for outliers, as in RANSAC, but
it also considers a non-zero error value for the inliers based on
how well they fit the estimated model. This MSAC cost func-
tion better handles the presence of noise and helps selecting
the best model parameters.

Furthermore, to remedy the lack of repeatability of the orig-
inal RANSAC algorithm, a local optimization step can be used
to help find the optimal consensus set and the corresponding
optimal model parameters, i.e., the consensus set yielding the
lowest cost over the entire dataset. Finding the optimal model
parameters and consensus set, which are usually unique, serves
to make the algorithm more repeatable and accurate.

Depending on the authors [31–33], the local optimization
step may involve resampling, rescoring, and pruning the con-
sensus set, either during or at the end of the iteration process.

In the present paper, the local optimization step according
to [34] is implemented, where the best consensus set is opti-
mized in a final step, at the end of the main iterative process.
Other local optimization methods have since been published
[32, 33], but the current local optimization step already gives
satisfactory results (see Section 4), and implementing the
aforementioned improvements could drastically increase the
runtime and complexity of the algorithm for marginally better
repeatability and accuracy.

Also, since the RANSAC-based algorithm of the present
method is aimed at a purely geometrical problem based on
gridded data points, the random sampling process may be
slightly improved upon by using an approach similar to that
of NAPSAC (N-Adjacent Points SAmple Consensus) [35].

This approach assumes that if a data point is an inlier, then
chances are that its close neighbors are inliers as well. Thus,
each sample set is formed by randomly picking a first data
point and completing the sample set by drawing data points in
the neighborhood of that first data point. The choice of the
distance between the first data point and a neighboring point is
based on a random variable that follows a discrete Gaussian
distribution, or any other suitable discrete probability distribu-
tion. This semi-random sampling procedure increases the
chances of forming a sample set with inlier data points only.
Hence, compared to original RANSAC, a lesser number of
draws is needed to ensure with a given probability that we will
draw a sample set that is solely made of model inliers. The
theoretical runtime of the RANSAC-based algorithm, i.e., the
number of iterations theoretically required for a given confi-
dence level, is therefore diminished by using a NAPSAC-like
sampling instead of a purely random sampling.

The use of a NAPSAC-like sampling is all the more advan-
tageous for the purposes of the present method since no prelim-
inary ordering step is necessary to compute the distance between
the first data point and its neighbors. Indeed, the range data is
already ordered on a grid and not in a point cloud as in the
original NAPSAC. Hence, using a NAPSAC-like sampling pro-
cess in the InterSACmethodwhen using gridded data represents
no significant increase in complexity or computational cost, yet
it decreases the theoretical runtime or number of iterations.

Overall, by adding an M-estimator, a local optimization
step and a NAPSAC-based sampling, the RANSAC has been
tailored to the specific problem at hand by improving on its
repeatability and accuracy.

Furthermore, since there are two different geometric
models to be identified, i.e., the cavity and its neighboring
surface, the identification step is performed twice in a subse-
quent manner. A choice must therefore be made as to which
model shall be identified first. While the particular order has
no impact on the accuracy or repeatability of the InterSAC
method, its theoretical runtime can be significantly reduced
by choosing this order judiciously.

For example, whenever the range data contains more points
from the neighboring surface than the cavity, and the size of
the sample set of the neighboring surface (3 non-collinear
points for a plane) is less than that of the cavity (4 non-
coplanar points for a sphere), a random (as in the original
RANSAC) or quasi-random (as in NAPSAC) sampling pro-
cess is more likely to draw a sample set of inliers belonging
solely to the neighboring surface than to the cavity. Hence, in
that case, the first identification step can theoretically be ter-
minated earlier, i.e., less samples need to be drawn, if we
choose to first identify the planar neighboring surface rather
than the spherical cavity. The second identification step being
based on the entire dataset minus the inliers of the firstly
identifiedmodel, a lot of outliers of the secondmodel are ruled
out. Hence, in that second step, the probability of drawing a
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sample set of all inliers is now much higher than if it had been
performed in the first identification step. It therefore makes
sense to keep the most challenging identification step for last.
More generally, in the event of a range dataset consisting of
50% of inliers for a first model and 50% for a secondmodel, it
is more advantageous to first identify the model of lesser de-
gree or complexity, i.e., with fewer parameters and therefore a
smaller associated sample size.

3 Experiments

In order to validate the methodology and algorithm described
in Section 2.2, cavities are machined in a workpiece that is
subsequently scanned by a 2D high-speed laser profilometer.
The resulting range data is then used to test the InterSAC
method.

The workpiece is mounted on the table of a vertical ma-
chining center, either in a flat or in an inclined position at
about 27.3° ± 0.5° with respect to the horizontal plane. Both
inclinations are tested in order to assess the robustness of the
repair method when range data is perturbed by occlusions,
secondary reflections, and geometric deformations during
the laser triangulation measurement process [19].

The 2D high-speed laser profilometer is mounted along the
Z-axis of a machining center. The laser profilometer performs
the scan in continuous mode along the Y-axis at a constant
speed of 200 mm/min. 2D range profiles are captured every
20 to 40 ms, i.e., every 0.067 to 0.133 mm, along the Y-axis.
On the X-axis, along which the 2D laser profile extends, data
points are spaced out by 0.100 mm. The range dataset is then
pre-processed and fed into the RANSAC-based algorithm,

developed in a MATLAB environment, in order to extract
the repair volume and generate suitable refill trajectories.

4 Results

This section presents the range dataset of the laser trian-
gulation measurement process, the repair volume, and
edge feature extracted from the range data and the gener-
ation of scan path trajectories. The results presented here-
after will be focusing on the specific case of a spherical
cavity machined on a flat workpiece inclined at
27.3° ± 0.5° with a 10 ± 0.005 mm radius and a depth
of 6 ± 0.010 mm. Similar results can however obtained
with spherical cavities of various radii, depth, and incli-
nations. Tolerances for radius and depth have been de-
duced from machine and cutting tool tolerance specifica-
tions whereas the inclination tolerance comes from an
estimate of the measurement tolerance for the angle.

4.1 Laser scanning

Because of the reflectivity of the workpiece and the concave
shape of the cavity, spurious peaks or gaps appear near the
surface edge of the cavity, as illustrated in Fig. 3. Such adver-
sarial effects in laser range scanning are for example described
in [15, 19].

To suppress those erroneous peaks from the range data, a
median filter could for example be used as it presents good
edge preserving and noise removal properties [36]. However,
those spurious peaks are not localized enough to be filtered

Fig. 3 Laser scanning of
spherical cavity radius = 10 mm
and depth = 6 mm without
inclination (a) and with 27.3°
inclination (b)
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out completely without significantly modifying the geometri-
cal information contained within the range data.

Other techniques for removing errors such as spuri-
ous peaks rely on the fusion of range data obtained
from multiple scans along various directions and orien-
tations. The position of the spurious peaks and other
errors being dependent upon the position of the CCD
sensor of the range scanner, various checks can be per-
formed on the range datasets to identify and remove
incoherent measurements [20].

4.2 Cavity segmentation

According to the InterSAC method, the spherical cavity and
its neighboring planar surface are identified by feeding the
range data into a RANSAC-based algorithm described previ-
ously in Section 2.2. Considering the average grid spacing of
the range data is around 0.1 mm, a tolerance of 0.05 mm is
chosen for selecting model inliers in the InterSAC method.

4.2.1 Neighboring surface identification

In this experiment, the surface around the cavity is approxi-
mately planar. Hence, the goal is to identify the optimal nor-
malized parameters [a b c d] that define the best fitting plane
according to the implicit plane equation:

axþ byþ czþ d ¼ 0 ð1Þ

Because a unique plane passes through any 3 distinct non-
collinear points, the sample size for the RANSAC-like

procedure on a plane is set to 3. After 50 iterations, this par-
ticular run of the algorithm has identified 95,748 plane inliers
out of 118,818 range data points, as illustrated in Fig. 4 where
the best plane estimate is presented on the right, and an exam-
ple of a plane estimate during the iteration process is
reproduced on the left. The inclination angle is estimated at
27.38°, representing an error of about 0.3%with respect to the
experimental inclination angle (27.3°) and is within the esti-
mated tolerance of ± 0.5°.

Overall, it is observed that most of the plane inliers have
been identified, and that the normalized plane parameters
[a b c d] = [−0.46 − 0.01 0.89 11.29] yield a plane that correct-
ly fits the neighboring surface of the cavity, despite the pres-
ence of spurious peaks in the range data.

4.2.2 Cavity identification

The center (xS, yS, zS) and radius R of a sphere are uniquely
defined by the following implicit equation:

x−xSð Þ2 þ y−ySð Þ2 þ z−zSð Þ2 ¼ R2 ð2Þ

Hence, the goal is to find the center (xS, yS, zS) and radius R
of the sphere that best fits the spherical cavity. Because a
sphere is uniquely defined by 4 non-coplanar points that are
not 3-by-3 collinear, the sample size for the RANSAC-like
procedure on a sphere is set to 4. After 100 iterations, this
particular run of the algorithm has identified 18,862 sphere
inliers out of 118,818 range data points, as illustrated in Fig.
5 where the best sphere estimate is presented on the right, and

Fig. 4 Identification of planar
surface (plane inliers in red)
radius = 10mm and depth = 6mm
with 27.3° inclination iteration
plane (a) and final plane (b)
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an example of a sphere estimate during the iteration process is
reproduced on the left.

Once again, it is observed that most of the sphere inliers have
been identified, and that the sphere parameters (xS, yS,
zS) = (43.46, 122.11, 15.60)0 andR = 10.006mmyield a sphere
that correctly fits the bottom of the cavity, despite the presence of
spurious peaks in the vicinity of the surface edge of the cavity.

4.2.3 Cavity segmentation and edge extraction

Cavity segmentation Now that the parameters of the sphere
and the plane have been estimated, their intersection can be
computed analytically to yield the depth, volume, and edges
of the cavity to be refilled.

The non-null and non-singular intersection of a plane and a
sphere is a circle lying in 3D space, and the corresponding
intersection surface is the associated disk. Since the implicit
form of the equation of a circle in 3D space is not unique, it is
more conveniently expressed in its parametric form.

Once the intersection circle is known (Fig. 6), the geometry
of the spherical dome constituting the spherical cavity is entirely
defined, and its depth and volume can be computed analytically.

To test out the accuracy and repeatability of the algorithm,
it is run five times using the range data of the spherical cavity
of radius 10 mm and depth 6 mm inclined at 27.3°. The same
sampling process is used each time, with for instance the same
number of samples drawn for the plane (50 iterations) and the
sphere (100 iterations).

It is observed in Table 1 that each of the five runs gives a
sphere radius within at most 0.066mm of the theoretical radius
(10 ± 0.005 mm), a depth within 0.089 mm of the theoretical
depth (6 ± 0.010 mm), and a volume within 24.68 mm3 of the
theoretical volume (904.78 mm3). Relative errors are at most
0.66% for the radius, 1.48% for the depth, and 3.30% for the

volume. Hence, the method systematically yields a rather ac-
curate estimate of the radius, depth, and volume of the cavity.

To further assess the repeatability of this method, ten test
runs are performed to compute the average and standard de-
viation of the results (Table 2). It is found that the method is
quite accurate as, for example, it yields an average estimated
radius with a 0.182% relative error on the theoretical radius.
Also, the method is quite precise as the spread of the results is
rather tight (e.g., 95% of the time, the estimated radius is
within 0.05 mm of the average estimate).

Edge extraction The edge feature extraction is critical to the
proper calculation of the refill trajectory. In the present meth-
od, the intersection circle represents the theoretical surface
edge of the cavity.

If the edge of the cavity were detected through more con-
ventional means, for example by convolving an edge filter
kernel as done in intensity image processing, the resulting edge
would likely require user intervention on a case to case basis.
Indeed, spurious peaks occur near edges in the range data,
which can lead to deformed edge features. Moreover, edge
extraction through a filtering process (Scharr, Sobel-Feldman,
Canny, Prewitt…) requires the setting of various thresholds as
well as performing other related tasks such as edge thinning
(non-maxima suppression) and edge closing operations to ob-
tain a clean continuous edge. Thus, extracting edge features
with such operators is far from trivial to automate, especially in
the presence of spurious peaks in the range data. Hence, in
those cases where the cavity and its neighboring surface can
both be represented as analytic surfaces, it is preferable to
obtain the edge feature by an intersection operation, especially
when the intersection curve has a known analytical solution.

Moreover, because the range scanning process can yield
rather inaccurate measurements near edges [37, 38], it is more

Fig. 5 Spherical cavity
identification (sphere inliers in
red) radius = 10 mm and
depth = 6 mm with 27.3°
inclination iteration sphere (a)
and final sphere (b)
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advantageous to calculate the edge feature by leveraging the
information contained in the bulk of the shapes (cavity and
neighboring surface) rather than relying solely on range data
points near edges. Indeed, as illustrated in Fig. 7, the error on
the edge location obtained with a 3 × 3 2D Scharr operator is
an order of magnitude higher than with an intersection process
as presented in this paper. Experimentally, the error on edge
location is typically comprised between 0.1 and 0.5 mm
throughout the closed edge contour, depending on the inclina-
tion and size of the spherical cavity. Indeed, as shown in Fig.
8, the edges are usually smoothened and deformed by the
range scanning process, especially at higher inclination an-
gles, so that the range data does not accurately represent the
local geometry near sharp edges. For instance, in Fig. 8c, the
edge area is quite distorted and is not as rounded as expected
from the geometry of the actual cavity. The InterSAC method
therefore allows to deduce the actual edge location and

geometry more accurately by exploiting the overall geometry
of the cavity, and not just the range data points near the edges.

To further demonstrate the validity of the method as well as
its improved edge accuracy compared to edge detection
methods, final results for two other cases are presented in
Fig. 9 (radius 5 mm, depth 3 mm) and Fig. 10 (radius
10 mm, depth 3 mm). Although the error on edge accuracy
presented in Fig. 10 is less pronounced, the overall increase in
edge feature accuracy allows in turn an increase in accuracy of
the trajectories for the LMD repair process and thus ultimately,
a better refill performance.

5 Discussion

The InterSAC method of the present study has so far been
applied to a spherical cavity machined on the surface of a flat
workpiece. The corresponding sphere and plane were success-
fully identified by the RANSAC-based algorithm. Their inter-
section curve, i.e., a 3D circle, was solved in its parametric
form. The sphere that fits the cavity and the 3D circle together

Table 1 Results of spherical cavity segmentation for five different runs
of the algorithm (theoretical values: radius = 10 mm, depth = 6 mm,
volume = 904.78 mm3)

Radius [mm]
(% error)

Depth [mm]
(% error)

Volume [mm3]
(% error)

Run 1 10.006 (0.06) 6.088 (1.46) 928.72 (2.65)

Run 2 10.056 (0.56) 6.079 (1.31) 932.09 (3.02)

Run 3 9.994 (0.06) 6.084 (1.40) 926.32 (2.38)

Run 4 10.066 (0.66) 6.084 (1.39) 934.62 (3.30)

Run 5 10.015 (0.15) 6.089 (1.48) 930.03 (2.79)

Table 2 Averaged results of spherical cavity segmentation for ten
different runs of the algorithm (theoretical values: radius = 10 mm,
depth = 6 mm, volume = 904.78 mm3)

Radius [mm]
(standard
deviation)

Depth [mm]
(standard
deviation)

Volume [mm3]
(standard
deviation)

Average run 10.018 (0.026) 6.085 (0.004) 929.46 (2.45)

Fig. 6 Intersection circle (in yellow) for a spherical cavity radius = 10 mm and depth = 6 mmwith 27.3° inclination. Perspective view (a) and top view (b)
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define the repair volume in a unique manner. It is a spherical
dome of a particular 3D orientation, the volume of which
being known analytically.

The approach taken in the present method will be extended
to other geometric models of higher degree, provided they can
be expressed analytically in an implicit or explicit form.
Hence, the method can in principle handle most algebraic
surfaces, natural primitives (planes, spheres, cones, cylinders,
tori…), quadrics, superquadrics, cubics, bivariate polyno-
mials, and so on. Regarding parametric surfaces (ruled sur-
faces, Bézier, B-spline, NURBS…), their identification
through the use of a RANSAC-based algorithm is not straight-
forward due to the presence of independent parameters and
will require further study.

To apply the method to such implicit or explicit surfaces,
the size of the sample set in the RANSAC-based algorithm
must be adjusted accordingly. Also, the calculation of model
parameters based on the sample set cannot always be done
analytically, as in the case of a plane or a sphere. The use of
a non-linear minimization algorithm such as the algorithm of
Levenberg-Marquardt may thus be necessary to obtain the
model parameters, as done in [37].

Regarding the intersection operation, the analytic expres-
sion of the 3D intersection curve is not always known, wheth-
er it be in implicit, explicit, or parametric form. Thus, an
intersection algorithm may be required to numerically obtain
the intersection curve. Many intersection techniques have
been developed over the years for computing the intersection
curve of many types of surfaces including implicit surfaces
such as quadrics [39–41]. Such techniques may adopt
marching methods, decomposition methods, lattice methods,

algebraic methods, geometric methods, or else. They may
yield an approximate, or sometimes even exact [38], parame-
trization of the intersection curve, or a discrete set of points
that extends along the theoretical intersection curve. Under
this purely numerical form, an approximate continuous inter-
section curve can be obtained by interpolation. If previous
approaches fail, the InterSAC method as presented could be
slightly modified to perform the second identification step on
the entire dataset rather than on the outliers of the firstly iden-
tified model. The data points that belong to both models may
be considered as “intersection inliers.” If the model tolerance
is well chosen, those “intersection inliers” should approxi-
mately form a discretized 3D intersection curve, which may
then be rendered continuous by interpolation. Once the inter-
section curve is computed numerically, either in parametric or
interpolated form, the repair volume can be constructed as
before by combining the intersecting surfaces and their inter-
section curve.

As the degree of the surfaces increases, calculating the
intersection volume, i.e., the repair volume, analytically may
no longer be possible, and numerical integration may be re-
quired. This may however be a cumbersome process, espe-
cially when the integration boundaries, i.e., the intersecting
surfaces and intersection curve, are given in implicit form.
One approach would be to sample points on the surface
boundary of the repair volume and use a 3D convex hull
algorithm such as Quickhull [39] to compute its approximate
volume. To obtain the boundary points directly, the
intersecting implicit surfaces could be converted to an explicit
or parametric form. If such a conversion cannot be done, the
intersecting implicit surfaces of the repair volume can be

Fig. 8 Edge deformation effect
with laser range scanning for
spherical cavity of radius 10 mm
and depth 6 mm. Photograph of
cavity (a). Range data in flat
position (b). Range data at 27.3°
orientation (c)

a bFig. 7 Comparison of edge
obtained with intersection circle
(in white) and Scharr operator
(contour plot) for a spherical
cavity without inclination and no
mat paint (radius = 10 mm). Top
view (a) and close-up view of red
square area (b)
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polygonized [40–42] within a domain defined by the intersec-
tion curve. The accuracy of the volume estimate can be ad-
justed by changing the number of boundary points used in the
convex hull algorithm.

Whenever the geometric model of the cavity and/or of its
neighboring surface are not known by the user or are hard to
identify visually, the user may choose a type of geometric
surface that is general and flexible enough to approximate
the shape of the cavity and/or of its neighboring surface. For
instance, the user may select a bivariate polynomial as a rea-
sonable approximation to the neighboring surface in the im-
mediate vicinity of a spherical cavity. If the model parameters
computed by the RANSAC-based algorithm lead to a locally
good approximate surface, then a reasonable approximation of
the repair volume and surface edge may be obtained. A post-
repair machining step may be used to recover the exact geom-
etry of the original part.

Within the range scan data, multiple areas may correspond
to the type of cavity or neighboring surface initially selected
by the user. Alternately, several cavities may be present in the
range data. While the original RANSAC algorithm does not
natively handle the detection of multiple instances of a given
model, the InterSAC method can be extended to handle such
cases. Indeed, by removing identified inliers from the sample
pool of the subsequent identification step, multiple instances
of a model can be identified in sequence. More identification

steps are added in series until enough models have been found
or an insufficient amount of sample points is left. The right
surfaces to consider are selected at the end of the identification
steps, either directly by the user or with the aid of supplemen-
tary heuristics (e.g., approximate orientation of the normal
vector for planar surfaces).

Once the repair volume has been constructed and the refill
volume calculated, scan paths have to be automatically gen-
erated for performing the refill of the cavity with an additive
manufacturing process such LMD.

6 Conclusion and perspectives

The method presented in this paper robustly locates and seg-
ments a cavity of canonical, i.e., primitive, shape based solely
on a local laser scan of the cavity area. Thus, it does not
require any a priori information regarding the geometry of
the part, such as its CAD model.

Despite noise, occlusions, secondary reflections, and edge
deformation in the range data due to the reflectivity of the
workpiece and the concavity of the repair area, no filtering
or other major pre-processing tasks are required. Indeed,
thanks to the robustness of the RANSAC-based algorithm,
the repair volume can be directly segmented using the raw
range data. Moreover, the intersection operation allows to

Fig. 9 Segmentation result for
spherical cavity of radius 5 mm
and depth 3 mm. General view
(a). Focus on edge discrepancy
due to range scan deformation (b,
c)

Fig. 10 Segmentation result for
spherical cavity of radius 10 mm
and depth 3 mm. General view
(a). Focus on edge discrepancy
due to range scan deformation (b,
c)

Weld World (2018) 62:229–241 239



extract the edge feature more accurately by avoiding the reli-
ance on range data near the edges, which are known to usually
be deformed or inaccurate with most non-contact range sen-
sors. In addition, this method is also robust to range sensor
orientation as the method can handle partially occluded range
data. Only one laser scan sweep is therefore needed in
practice.

Also, in the present method, user intervention is only re-
quired at the beginning of the repair method for heuristically
selecting the surfaces to be identified. Beyond that, the repair
becomes a hands-off process. Hence, the present method sig-
nificantly contributes to the improvement of the automatiza-
tion of the repair process.

Future work will include the extension of the InterSAC
approach to surfaces of higher complexity, as well as the de-
velopment of an automated scan path generation algorithm.
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