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Abstract
Process-property relations are central to ICME. Engineers are often interested in using these relations to make decisions
on process configurations to achieve desired properties. This is known as the inverse problem and is typically solved using
forward models (physics-based or data-based) in an optimization loop, which can sometimes be expensive and error prone,
especially when used on process chains with multiple unit steps. We propose a Bayesian networks-based approach for
modeling process-property relations that can be used for inverse inference directly. The solutions thus found can serve as
good starting points for a more detailed simulation-based search. We also discuss how unit process models can be composed
to do inverse inference on the process chain as a whole. We demonstrate this in a wire-drawing process where a wire is
drawn in multiple passes to achieve desired properties. We learn a Bayesian network for a unit pass and compose it multiple
times to infer process parameters of all passes together.

Keywords Bayesian networks · Inverse inference · Parallel tempering · Manufacturing process chain · Bayesian network
composition

Introduction

Modeling the process-structure-property correlations for
a material system is perhaps one of the most important
problems in ICME. Toward this end, physics-based simu-
lation models of manufacturing processes are often used
to perform “what-if” types of analyses. But, more often
the engineers are interested in inverse analysis—that is,
inferring process configurations required to achieve desired
properties. The relationships between processing parame-
ters and resulting properties are often highly nonlinear and
complex. Also, multiple process configurations may lead
to the same final properties. As a result, inverse infer-
ence is typically an ill-posed problem. Commonly known
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discriminative machine learning approaches (such as neural
networks) do not work well. The problem is further com-
plicated by the fact that a manufacturing process consists
of multiple unit steps and so the design space is huge. The
solution space needs to be searched in an integrated manner
so that the decisions made in one unit step are systemati-
cally propagated to the previous unit step and through the
entire process chain. Probabilistic models can handle ill-
posed inference and systematically quantify uncertainty in
predictions. By characterizing multi-modal posterior distri-
butions, multiple solutions to the inverse problem can be
extracted (see Section “Parallel Tempered MCMC”). We
propose to model the problem using a variant of conditional
linear Gaussian (CLG) Bayesian network, which can learn
the abovementioned nonlinearity through a suitable piece-
wise linear approximation. A major challenge in leveraging
probabilistic models is the computation of posterior distri-
bution. Approximate methods such as Markov chain Monte
Carlo (MCMC) sampling are generally used for this pur-
pose. However, as the inverse problem could have multiple
solutions, the posterior in our case is expected to be a
multi-modal distribution. MCMC techniques typically find
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it difficult to explore different modes of a multi-modal
distribution. We use a sampling method from statistical
mechanics, called parallel tempered MCMC, which uses
multiple samplers at different temperatures to make move-
ment between modes easier. A further challenge is to build
a complete manufacturing process chain model from the
individual unit step models. We perform Bayesian net-
work composition to achieve this. Inverse inference on
the composite model can then be performed using our
method based on parallel tempering. We demonstrate the
approach on the problem of multi-pass wire drawing. In
multi-pass wire drawing, a wire of smaller cross section is
drawn from a core with larger cross section. This is typi-
cally done in multiple passes. Determining optimal number
of passes and their configurations required to achieve the
desired reduction while optimizing properties such as ten-
sile strength, strain distribution, and energy consumption is
the design problem.We learn a Bayesian network model of a
unit pass and compose these unit pass models to get a multi-
pass model. We discuss the results of inverse inference on
the composite model using our method. The rest of the
paper is organized as follows: Related work is discussed in
Section “Related Work.” The proposed methodology for
inverse inference on a manufacturing process chain is
described in Section “Methodology.” Section “Evaluation”
discusses the experiments and results obtained on the wire-
drawing process model. Finally, Section “Conclusion” con-
cludes with a summary of the approach and achieved results.

RelatedWork

With the recent advances in machine learning and artificial
intelligence, there is a renewed interest among materials
scientists to leverage these advances for building better
models of process-structure-property correlations ([1, 2]
and [3]). A recent review of the impact of machine
learning in materials and process engineering appears in
[4]. The authors point to the need for increasing the
adoption of these techniques in materials engineering,
similar to what has been done in biology and chemistry
communities. Some of the recent work in this direction
includes application of machine learning to characterize
material microstructure and link it to properties using deep
neural networks (e.g., [5–7]). However, the inverse problem
has not received as much attention. Traditionally, the inverse
problem is solved by optimization around approximate
forward models. For example, genetic algorithms have been
used in [8] for inversion of elastic properties in a class
of materials. However, this method can be slow due to
the large number of forward model evaluations required
in optimization. Moreover, obtaining multiple solutions
using optimization is very difficult. A large number of

optimizations, starting at various points in the design
space (sampled carefully such that the space is filled)
are required to ensure convergence to different solutions
(see Section “Comparison with Optimization Approach” for
more discussion on this). A set of related works by Zabaras
et al. [9, 10] focus on developing variational inference
methods for inverse problem. Variational inference is being
proposed as a faster alternative to sampling techniques for
approximate Bayesian inference. However, this is still in
the exploratory state. To the best of our knowledge, there is
no reported work on a compositional approach for (forward
and) inverse inference in manufacturing process chains.

The specific problem of inverse inference in wire drawing
has been previously addressed in [11]. The authors present
an optimization method based on their forward finite ele-
ment analysis (FEA) simulation model of the wire-drawing
process. Pandita et al. [12] use Bayesian global optimization
to further accelerate the forward search by quantifying the
merits of evaluating the forward FEA model at a given point
in design space. In [13] and [14], the present authors have
formulated a Bayesian approach for inverse inference in a
unit manufacturing process step using MCMC sampling.
However, sampling using just MCMC from a multi-
modal posterior is difficult (see Section “Parallel Tempered
MCMC”). The method proposed in [14] relies upon
an exhaustive mode-sweeping approach, which leads to
multiple number of samplings and does not scale well to a
composite model.

Methodology

As discussed in Section “Introduction,” multiple process
parameter configurations can lead to the same properties,
that is, their relationship is typically M to 1 in nature.
Due to this, discriminative modeling approaches such as
artificial neural networks and support vector regression
end up learning averages when they are used directly for
inverse inference. A probabilistic generative model, on the
other hand, learns the joint probability distribution of all
variables, by utilizing independence assumptions from the
domain. The joint distribution can then be used to perform
either forward or inverse inference by obtaining conditional
distributions.

Conditional Linear Gaussian Bayesian Network

Bayesian networks provide a compact representation of the
joint distribution of variables in the problem by utilizing
conditional independence assumptions from the domain
[15]. A Bayesian network is a directed acyclic graph whose
nodes represent variables in the problem and edges rep-
resent direct influence relations. A conditional probability
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Fig. 1 Example CLG Bayesian network model of a manufacturing
process

distribution (CPD) given the parents, is associated with
every node of the graph. For continuous variables, a com-
mon choice of distributions is the Gaussian. With this
assumption, the conditional probability distribution at each
node is a Gaussian whose mean is a linear function of its
parents. This formulation can be thought of as equivalent to
linear regression with L2 regularization [16]. Consequently,
it is difficult to model complex nonlinear relationships accu-
rately using this model. Instead, we use a variant known as
conditional linear Gaussian (CLG) [17].

A conditional linear Gaussian (CLG) Bayesian network
can have both discrete and continuous nodes. The CPD
of a node having both continuous and discrete parents is
a mixture of linear Gaussians—one component for each
combination of discrete parents’ values weighted by the
probability of that combination. An example CLG Bayesian
network is shown in Fig. 1, where a circle represents a
continuous variable, and a rectangle, a discrete variable. It
can be thought of as modeling a unit manufacturing process
with process parameters p1...3 and properties r1...2. Consider
the property r1. It has continuous parents p1, p2, and p3,
and discrete parent K . So, for each possible value of K , the
distribution of r1 is a linear Gaussian in p1, p2, and p3. In
other words,

r1|p1, p2, p3 ∼
K∑

k=1

P(K = k).N(r1; wk,0 + wk,1p1

+wk,2p2 + wk,3p3, σ
2
k )

(1)

Note that K here, represented by a shaded rectangle, is a
latent node. The value of this node identifies the correct
linear piece applicable for the current configuration of
process parameters.1 This formulation can be thought of as
equivalent to piece-wise linear regression. Hence, we expect
it to approximate the target nonlinear relationships better.

1This suggests there should be an edge from pi ’s to K , which gives
the exact model we have used. This model is a variant on CLG because
in standard CLG, a discrete node can’t have continuous parents. This
variant is called mixture of experts [17].

Parameter Estimation and Structure Learning

The structure of the network usually comes from domain
knowledge of which process parameters influence which
properties. Structure-learning algorithms such as hill-
climbing [18] (based on optimizing information-theoretic
criteria such as Bayesian information criterion or Akaike
information criterion) can also be used to learn the edges.
We take a hybrid approach. We first use hill climbing to
learn a structure from data. The learned structure is then
validated with domain experts.

We use a single latent discrete node to model the mixture-
of-Gaussian representation for all properties. Parameters of
the network can be estimated by maximizing the likelihood
of observed (either experimental or simulation) data. Max-
imum likelihood estimation in presence of latent variables
can be done using expectation maximization. More details
about training the network appear in Section “Experimental
Setup,” where we discuss the experimental setup in the
context of the wire-drawing use case.

Inference

Once the structure and parameters of the network are
learned, we have a compact representation of the joint
distribution of all variables. To perform forward or inverse
inference, we need to compute conditionals using this
joint distribution. The conditional distribution required for
forward inference (conditional distribution of properties
given process parameters) is tractable, as can be seen
from Eq. 1 given in Section “Conditional Linear Gaussian
Bayesian Network.” There exist algorithms such as junction
tree for efficiently and exactly computing these distributions
(see [15] for details of various inference problems, their
tractability and algorithms). However, inverse inference is a
much harder problem because of some intractable quantities
involved. For example, consider the model shown in Fig. 1.
To predict p1, p2, and p3 for a given r1, we need to compute
P(p1, p2, p3|r1). Using Bayes’ theorem, this can be written
as:

P(p1, p2, p3|r1) = P(p1, p2, p3, r1)

P (r1)

= P(p1, p2, p3, r1)∫
p1

∫
p2

∫
p3

P(p1, p2, p3, r1)dp1dp2dp3

(2)

The denominator in this equation is particularly difficult to
compute because it involves multiple integration.

To cope with this difficulty, generally, approximate
methods of inference are used. MCMC sampling is perhaps
one of the most commonly used techniques for approximate
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inference. Please see (especially the first chapter of) [19]
for details of MCMC. However, in our case, we expect the
posterior to be multi-modal because of the M to 1 nature
of the relationship between parameters and properties.
It is well-known that MCMC algorithms (especially the
Metropolis-Hastings algorithm) find it very difficult to
sample from a multi-modal distribution exploring all its
modes, because it cannot easily cross the low-probability
regions between two modes [20]. Hence, we make use
of a method called parallel tempered MCMC [21] from
statistical mechanics, designed to handle multi-modal
distributions. This is described in the next section.

Parallel Tempered MCMC

The main idea behind parallel tempering [21] is to modify
the target probability distribution using a “temperature”
parameter such that it is easier to sample from. As the
temperature is raised, the distribution becomes flatter. For
example, consider the probability distribution defined by
density:

p(x) ∝ e− 1
T

(x2−1)2

Figure 2 shows the effect of raising the temperature T of
this distribution. In general, a tempered form of a given
distribution p(x) can be written as follows:

p(x, tk) = e
− 1

tk
logp(x)
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Fig. 2 Effect of raising temperature T in p(x) ∝ e− 1
T

(x2−1)2

Thus, using a set of increasing temperatures tk for k =
1 . . . n (also known as the temperature ladder), a set
of tempered replicas of the original target distribution
are obtained. Due to the effect of temperature, these
distributions become increasingly flat, as we move up the
temperature ladder. A basic MCMC sampler is then run
for each of the targets. As observed already, it is easier to
sample from the high-temperature targets due to their flatter
surfaces. But the original target distribution is the one at
temperature 1 (i.e., the non-tempered one). The purpose of
tempering is to enable movement between multiple modes
of the original target distribution by leveraging the free
movement in high-temperature targets. For this, adjacent
chains periodically propose a swap of their states. This swap
is proposed and accepted (or rejected) just like a normal
MCMC move. Due to the swap move, all the samplers (at
all temperatures) get coupled together to form a joint chain.
As the swap is a symmetric move, the detailed balance
condition in MCMC is satisfied.

The success of parallel tempering critically depends on
how well the information (and movement) from the hottest
chain propagates to the coolest chain. The temperature
ladder (number of temperatures and spacing between them)
has to be carefully chosen to ensure that the swaps between
any two chains occur with almost uniform probability. It
was shown in [22] that a uniform swap acceptance ratio (i.e.,
ratio of number of swaps accepted to total number of swaps
proposed) of 0.24 in general leads to good mixing. We make
use of this while tuning the temperature ladder. More on this
is discussed in Section “Single-Pass Inverse Inference.”

Bayesian Network Composition

A manufacturing process chain typically consists of
multiple unit steps. Many of these unit steps are common
among multiple manufacturing process chains, for example,
heating. A relevant question in this context is, can we reuse
models of unit steps to compose a model of the process
chain? If so, we can build a library of unit step models
and reuse them as required. It has been shown by Koller
et al. [23] that Bayesian networks are amenable to such
composition. A Bayesian network has the property that a
node is independent of all other nodes, given its parents.
Therefore, two unit step models can be composed if outputs
of one model match with the inputs of the other. We say
that an output outpi of process p “matches” with the input
inq

j of process q if (i) they refer to the same physical
quantity (e.g., a stress value) and (ii) the possible value
range of outpi is contained in the possible value range of
inq

j . For example, a gear design process might consist of
the unit processing steps such as carburization, diffusion,
quenching, and tempering. Figure 3 shows the composition
of the first two of these unit steps, namely carburization
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Fig. 3 Composition of Bayesian
network models of carburization
and diffusion processes

(Fig. 3a) and diffusion (Fig. 3b). Parameters of carburization
are carburization time (tc), temperature (Tc), and carbon
potential (Cp). Similarly, parameters of diffusion are, time
td , and case depth. Figure 3c shows the composition of
these two, where outputs of carburization flow as inputs to
diffusion. For the purpose of illustration, the figure shows
only case depth at pitch C

p
d and case depth at root Cr

d ,
though there are more outputs from carburization feeding
into diffusion. In the composite model, the conditional
distributions of case depth at pitch C

p
d and case depth at root

Cr
d are taken from the carburization process (note that they

do not have conditional distributions in diffusion because
they are at the root level).

This process can be repeated to obtain a composite
Bayesian network model for the whole manufacturing
process chain. Inverse inference on the chain can then be
performed using parallel tempered MCMC as explained in
Section “Parallel Tempered MCMC.”

Evaluation

We apply the methodology described in Section “Methodol-
ogy” to the problem of multi-pass wire drawing. In a multi-
pass wire drawing process, a wire of larger cross section
is reduced to a smaller cross section by pulling it through
a series of dies. This process is used to produce high-
strength wires of desired diameter by imparting large cold
deformation. Figure 4 shows the schematic of a pass. The
die angle α and reduction ratio Dout

Din
are the key parameters

which impact the properties of the wire. A pass schedule
mainly consists of these two parameters for each pass.
Designing a pass schedule required to achieve the desired
final reduction, while optimizing properties of wire is of
significant importance. This can also be seen as a special

case of inverse inference on a manufacturing process chain.
The unit steps in this chain are the passes and they are
all identical processes. We first learn a conditional linear
Gaussian Bayesian network model of a single pass (unit step
model) and show the results of inverse inference on it using
parallel tempered MCMC. We then create a composite 2-
pass model of wire drawing by composing two single-pass
models (two copies of the same model) and show results of
both forward and inverse inference on the composite model.

Experimental Setup

Dataset

To generate data, we used an FEA simulation model of
the wire drawing process [24]. The data is generated
for an 8-pass setting which is the most commonly used
configuration in industry. Reduction ratio and die angle (and
draw speed) for each of the 8 passes, and the initial diameter

Fig. 4 Schematic of a wire drawing pass
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Table 1 Input variable ranges for data generation

Input (Units) Minimum Maximum

Initial diameter(mm) 5 14

Reduction ratio (%) 5 20

Die angle (Degree) 3 18

Draw speed (m/s) 2 7

(input to the first pass) were generated randomly from pre-
specified ranges as shown in Table 1. These were given as
inputs to the simulator and resulting output properties of
interest at each pass were recorded. These included output
diameter, strain non-uniformity factor (SNUF), ultimate
tensile strength (UTS), energy consumed, hydraulic failure
factor (HFF), and various stresses (such as axial and radial).
Each simulation resulted in an 8-pass data point. We got
3750 such data points in all. To learn a model of a single
pass, we need input-output data of a single pass. In a multi-
pass setting, some of the inputs to a pass come from the
outputs of previous pass, while some are unique to a pass
(die angle and reduction ratio). So each 8-pass data point
can give us 7 single-pass data points—one for each pair of
passes. We got total 26250 single-pass data points in this
way. Out of these, 2000 data points were chosen randomly
and used for training and cross-validation. Another set of
200 randomly chosen points was kept aside for testing the
single-pass model. Yet another set of 200 2-pass data points
(combining data of pass 5 and 6) was kept aside for testing
the composite model.

Implementation Details

The structure of the Bayesian network was learned using
hill-climbing algorithm with the BIC objective. We used the
bnlearn [25] package from R for this purpose. Parameters
of the network were learned using the BN Toolkit (BNT) by
Kevin Murphy [26]. We implemented parallel tempering-
based inverse inference using the packages PyMC [27] and

Emcee [28]. While the actual sampling was done using
emcee, the log-likelihood computation at each step during
sampling was done using PyMC.

To demonstrate the composition method, we composed
two copies of the single-pass model to get a 2-pass model
as discussed in Section “Bayesian Network Composition.”
Inverse inference was then performed on the composite
model as discussed above.

Experiments

The structure of the Bayesian network for a single
pass learned using hill climbing (see Section “Parameter
Estimation and Structure Learning”) is shown in Fig. 5. The
discrete node and its edges are not shown in this figure,
because they are not learned by hill climbing. However, they
are added to the network before parameter estimation.

The pass specific inputs are reduction ratio (RR) and die
angle (DA). The other inputs that come from the previous
pass are wire diameter (DIA), strain non-uniformity (PSN),
axial stresses (center line-PCA and max-PMA), radial stresses
(center line-PCR and max-PMR), and max hoop stress. The
outputs of a pass include these variables (which become
inputs for next pass) and hydraulic failure factor, energy
consumed (per ton) and ultimate tensile strength (UTS).

Parameter estimation was done using expectation maxi-
mization. The number of values that the discrete node can
take is treated as a hyper-parameter which we optimize
using cross-validation of forward inference. We observed
that with 30 values (i.e., a 30-component mixture model for
each property), we get sufficiently good accuracy. We per-
formed following three types of inference using the learned
model.

1. Forward inference
We compute the conditional distribution of prop-

erties, given process parameters. We predict the wire
properties at the end of one (two in case of compos-
ite inference) pass using this distribution. The required
conditional distribution is computable, as discussed in

Fig. 5 Bayesian network
structure for a pass of
wire-drawing
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Table 2 Accumulation of error
from a single-pass to a
two-pass forward inference

Plastic strain SNUF Axial stress HFF Energy UTS

Single pass 0.0015 0.1053 0.1122 0.1251 0.1728 0.0028

Two pass 0.0023 0.1407 0.1108 0.1226 0.1712 0.0031

Section “Inference.” Hence, instead of sampling, we
used the junction tree algorithm from BNT, which is
more efficient.

2. Single-pass inverse inference
As the goal is to predict process parameters that can

lead to desired properties, and there can be multiple
such configurations, it is not appropriate to compare
the inferred parameters with actual values in test data.
Instead, we put the inferred process parameters through
forward simulation and compare the obtained outputs
with the desired ones.

3. Composite inverse inference
Given the properties at the end of two passes, we

infer the parameters of pass 1 and 2 required to achieve
those properties. For validation, we put the inferred
process parameters through forward simulation and
compare the obtained outputs of pass 2 with the desired
ones.

Results and Discussion

We now present results of the experiments listed in
Section “Experiments.”

Forward Inference

For forward inference, we compare the predicted properties
with the outputs of pass 2 from the test data. Table 2 shows
the root mean-squared errors for single-pass and two-pass
forward inference. As can be seen from the table, in most
cases, the accuracy does not drop significantly from single
pass to two pass. In one case (SNUF), the RMS error goes
from 0.1 to 0.14. The reason behind this deviation is not
clear. However, for this property, a root mean square (RMS)
error of 0.14 is considered acceptable by domain experts.

Single-Pass Inverse Inference

Inverse inference consists of computing the conditional dis-
tribution of process parameters—that is, a joint distribution
over reduction ratio and die angle—given the desired out-
puts. As explained already, this posterior distribution is
expected to be multi-modal. Using the parallel tempering
method described in Section “Parallel Tempered MCMC,”
we get samples from this multi-modal distribution. If the
sampler has explored multiple peaks of the posterior (which
we expect from a parallel tempering method), the set of

samples should have more samples around those peaks. This
depends upon how well the chain has mixed through the
target distribution. A number of empirical tests for conver-
gence and proper mixing of chains have been suggested
in literature (for example, [29]). For a tempering-based
method, the key factor for proper mixing is that the swaps
of states between adjacent chains proposed periodically are
accepted uniformly over the entire range of temperatures.
This makes sure that the information from the hottest chain
ripples down to the coolest chain. We manually tuned the
number of temperatures to 20 so as to achieve a uniform
probability of swap acceptance close to 0.24 (as suggested
in [22]) using the default geometric spacing of temperatures
suggested by Emcee. We ran an ensemble of 1000 walkers
for 20 steps, after discarding first 5 (burn-in) to allow the
sampler to mix well. Each sample is a three-dimensional
vector of 〈reduction ratio, die angle, discrete node〉 values.
We cluster these samples by value of the discrete node. Cen-
troids of the clusters represent modes of the multi-modal
posterior. We use them as solutions to the inverse prob-
lem.2 So for each possible value of the discrete node, we
can potentially get one solution. These solutions are ranked
by their log-likelihood which we compute using the learned
model. The solution that has highest log-likelihood is given
rank 1 (thus, the smaller the number, the higher the rank).
We perform forward simulation starting with these solutions
to get the outputs and compute root mean-squared error with
desired values. The root mean squared error is computed
in Z-score normalized space. Figure 6 shows for some of
the important properties, how the root mean-squared error
increases as we choose solutions ranked 1 to 30. This shows
that the solutions with high ranks are indeed better, thereby
experimentally validating the log-likelihood-based ranking.
The next question is, how many of these top-ranked solu-
tions should we pick as acceptable solutions for the inverse
inference problem. To determine this, we plot the log-
likelihood against solution rank. Figure 7 shows the average
log-likelihood of solutions at each rank, over the test data
set. It shows a clear trend. After the first few solutions (in
this case 5), the log-likelihood drops sharply, suggesting a
clear cut-off point.

The root mean squared errors using only the predictions
from top-ranked solutions are shown in Table 3. We also
show a scatter plot of desired vs. obtained property values

2The associated variance in the corresponding clusters can be used to
quantify uncertainty. This is not reported in the present work, however.
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Fig. 6 RMS error for multiple
solutions ranked by
log-likelihood
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using the top-ranked solution in Fig. 8. The predictions for
UTS and average plastic strain are much more accurate as
compared to others. This can be explained as follows. It
is known that UTS and average plastic strain are strong
functions of reduction ratio. Due to this, the training data
itself has very low noise. This is not the case for other
properties.

Composite Inverse Inference

The composite model obtained as explained in
Section “Bayesian Network Composition” was used to
perform inverse inference using parallel tempering method,
similar to how it was done for the single pass model as
discussed in Section “Single-Pass Inverse Inference”. The
difference here is that we now have four parameters to
predict - the die angle and reduction ratio for two passes.
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Fig. 7 Average log-likelihood of solutions at each rank

As the design space is larger, we need to tune the number
of temperatures and the temperature spacing once again.
We again manually tuned the number of temperatures to
achieve a uniform swap acceptance of 0.24 and it turned
out that we needed 30 temperatures. We ran an ensemble of
2000 walkers for 40 steps after discarding the first 10 (thus
increasing the required number of samples 6 times as com-
pared to single pass). We obtain four-dimensional solutions
〈die angle1, reduction ratio1, die angle2, reduction ratio2〉,
one for each combination of values of discrete nodes. As
both of them can take 30 different values, we can potentially
get 900 solutions for each test data point. We again rank
them by their log-likelihood. We compute the final obtained
properties by forward 2-pass simulation starting with these
solutions. The obtained properties are then compared with
the desired outputs of pass 2 in our test data. Figure 9 shows
how the root mean squared error (computed in Z-score nor-
malized space) grows as we choose lower ranked solutions.
Following the discussion in Section “Single-Pass Inverse
Inference,” we only consider solutions corresponding to top
five values of the mode variable K(2) (discrete node from
the second-pass model). We have averaged the RMS error
over blocks of 30 to smoothen the variations due to almost
similar probabilities of the combinations 〈K(2), K

(1)
i 〉 for

i = 1 . . . 30. So, we are considering the top five solutions
coming from 150 combinations of the 900 possible. We
also observed that we rarely get any samples corresponding
to more than 200 combinations out of the possible 900.

Table 3 Single-pass inverse inference root mean-squared errors

Output Plastic strain SNUF Axial stress HFF Energy UTS

RMSE 0.0489 0.2554 0.1507 0.1912 0.2355 0.0488
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Fig. 8 Scatter plot of desired vs.
obtained property values
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Figure 10 shows the scatter plot of desired vs. obtained
properties using top-ranked solutions and the corresponding
rms errors are shown in Table 4. As can be seen from the
figure, the scatter has increased compared to single-pass
inverse inference shown in Fig. 8. This indicates uncertainty
increasing as it gets propagated from one pass to the next.

This is expected. To see why this is so, we can think of the
probabilistic inference as a two step process. In the first
step, given the outputs of pass 2, it infers its inputs. In the
second step, it takes these inputs as outputs of pass 1 and
infers its inputs. However, these intermediate inputs are not
point estimates but distributions. These distributions have

Fig. 9 RMS error for multiple
solutions ranked by
log-likelihood
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Fig. 10 Scatter plot of desired
vs. obtained property values
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multiple modes each with its own standard deviation. For
example, for one of the test instances, we saw a standard
deviation of 0.1 to 0.3 for top-ranked modes. Thus, in effect,
the inference in the second step is over samples drawn from
these intermediate distributions, rather than from point
values, thus introducing more uncertainty. Even though
uncertainty increases with the number of passes, the shape
of the scatter plot shows that it still gives us a good starting
point to conduct a more detailed, simulation-based search.

Comparison with Optimization Approach

It was shown in Section “Single-Pass Inverse Inference”
that multiple solutions to the inverse problem can be
extracted from the Bayesian network model. In particular,
it was shown that up to 5 solutions could be extracted.
Obtaining multiple solutions using optimization-based
approach is very difficult and one needs to perform
multiple optimizations starting at a number of initial points
that cover the design space well. To illustrate this, we
tried to get multiple solutions for a given set of desired

wire properties, using optimization approach. We used
the sequential quadratic programming implementation from
Octave for this purpose. The same Bayesian network model
is used as a forward model to compute the objective function
of the optimizer. The search is guided by approximate
numerical gradient computed using the forward model. We
increased the number of starting points of the search until
we get multiple solutions. The starting points were chosen
using a Latin Hypercube sample of the design space. We
observed that in a single-pass inverse inference, to get at
least two different solutions, we needed 100 starting points.
The time required (in minutes) on an Intel Xeon processor
@ 2.4GHz with 2GB RAM for parallel tempering (first
row) and optimization (second row) is shown in Table 5. It
can be seen that the parallel tempering approach is faster
than optimization for finding multiple solutions. Note that
the Bayesian forward model used for computing objective
function in the optimization approach is not the bottleneck
because it uses junction tree algorithm and takes less than
3.5 s. Instead, most of the time is due to the iterations
required and in each iteration the number of objective

Table 4 Accumulation of error
from single pass to two-pass
inverse inference

Plastic strain SNUF Axial stress HFF Energy UTS

Single pass 0.04 0.2554 0.1507 0.1912 0.2355 0.0488

Two pass 0.1790 0.4000 0.2524 0.5597 0.4522 0.1791
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Table 5 Inverse inference time (in minutes) using parallel temper-
ing(PT) and optimization (OPT) for finding one solution and multiple
solutions

Method Single pass Two pass

One Multiple One Multiple

PT 2.78 2.78 (5 solutions) 30.0 30.0 (5 solutions)

OPT 5.41 454 (2 solutions) 23.51 ?

function evaluations required for calculating the gradient.
For two pass, we were not able to get multiple solutions
with up to 100 starting points. So, it was clear that it will
take more than 2300 minutes (100 times the time for one
optimization). We did not explore further as the computation
time was getting unacceptably large. In general, it seems
difficult to give a bound on the number of optimizations
required to get multiple solutions.

We also performed an optimization search starting at the
top five solutions given by parallel tempering. We were able
to get 3 different solutions in about 50 min (as compared
to 454 for 2 solutions in the case of pure optimization
search). This indicates that Bayesian inverse inference can
be used to provide good starting points around which to
conduct a detailed simulations-based search. However, a
point to note is that while it is significantly faster than
the optimization-based approach, there is a large increase
in running time of parallel tempering from single pass to
two pass. This is largely due to the increase in number of
temperatures and walkers (see Section “Composite Inverse
Inference”). Also, as the model contains double the
number of parameters, calculation of acceptance ratio in
each sampling step requires double the time. There is a
possibility of parallelizing the ensemble updates, which can
substantially speed this up [28]. But we have not been able
to try this out in our current experimentation as we could
not get the required configuration of Emcee working.

Conclusion

In this paper, we proposed a conditional linear Gaussian
Bayesian network-based approach for inverse inference
over process chains. We showed how unit process models
can be learned and we also discussed how they can be
composed to get a composite model for inverse inference
over a process chain. We conducted experiments on a wire-
drawing process chain to validate the approach. Results look
encouraging. While uncertainty increases with number of
unit processes in the process chain, we believe it still gives
us a good starting point around which to conduct a detailed
simulation-based search. The increase in running time with
increasing number of unit processes is largely attributable

to the increase in the size of the temperature ladder and the
number of walkers required. Exploring alternative methods
for sampling multi-modal distributions is an important
direction of future work. For example, the Repelling-
Attracting Metropolis (RAM) algorithm [30] is a modified
version of Metropolis-Hastings that makes a composite
move—downhill followed by uphill—to overcome the
difficulty of crossing low-probability regions.
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