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Abstract
In this contribution, we validate a physical model based on a transient temperature equation (including latent heat), w.r.t. the experi-
mental set AMB2018-02 provided within the additive manufacturing benchmark series, established at the National Institute
of Standards and Technology, USA. We aim at predicting the following quantities of interest, width, depth, and length of
the melt pool by numerical simulation, and report also on the obtainable numerical results of the cooling rate. We first
assume the laser to possess a double-ellipsoidal shape and demonstrate that a well-calibrated, purely thermal model based
on isotropic thermal conductivity is able to predict all the quantities of interest, up to a deviation of maximum 7.3% from
the experimentally measured values. However, it is interesting to observe that if we directly introduce, whenever available,
the measured laser profile in the model (instead of the double-ellipsoidal shape), the investigated model returns a deviation
of 19.3% from the experimental values. This motivates a model update by introducing anisotropic conductivity, which is
intended to be a simplistic model for heat material convection inside the melt pool. Such an anisotropic model enables the
prediction of all quantities of interest mentioned above with a maximum deviation from the experimental values of 6.5%. We
note that, although more predictive, the anisotropic model induces only a marginal increase in computational complexity.

Keywords Melt pool size · Validation · Model calibration · Laser powder bed fusion · Heat transfer analysis ·
SLM · Laser bed power fusion · Metal additive manufacturing

Introduction

The shape and thermal history of the melt pool are key
ingredients to determine the physical properties of an
artifact generated through a welding process. Therefore,
the prediction of weld pool dynamics has been a subject
of intensive research in the last decades in both the
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experimental and the numerical modeling communities of
welding (e.g., recent reviews of this subject are provided
in [8, 23]). Furthermore, it is fundamental to observe
that process-structure-property relationships are also tightly
interlinked and strongly determined by the characteristics
of the weld pool in laser powder bed fusion (LPBF)
additive manufacturing technologies [22]. Therefore, an
accurate thermal analysis is a key ingredient in the
numerical simulations and predictions of LPBF processes as
well.

To this end, many physical models have been proposed
to obtain accurate and reliable numerical approximations
ofmelt pools. Although different in scale, the basic phenomena
in LPBF are similar to those in arc welding processes (see
[11, 15, 24] for an overview). Recent summaries more spe-
cific to LPBF processes are published in [18, 21, 22].
While particle-based models [12] as well as lattice
Boltzmann-type approaches [14] exist, most common are
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continuum models based on the conservation of mass,
momentum, and energy [25]. Continuum approaches allow
for modeling the transient evolution of primal vari-
ables (temperatures, pressures, and velocities), taking into
account a large number of effects, such as the convection
inside the melt pool, also including the one caused by a gra-
dient in the surface tension (Marangoni effect as well as
capillary effects), vaporization, momentum losses in mushy
zones due to porous media effects, etc.

All these models may deliver very accurate results, but
the more effects they include, the more computational
power they require. Additionally, the abundance of mod-
els comes along with a wealth of parameters: these may be
material viscosity, density, thermal conductivity and capac-
ity, latent heat, etc., most of which show a non-negligible
temperature dependence, such that their accurate, exper-
imental determination may be both crucial and critical.
Further, modeling parameters, such as emissivity or absorp-
tivity or even the geometry of powder particles, may come
into play and they can be introduced in the model as
boundary or initial conditions. However, accurate mea-
surements of many of the listed parameters are not pub-
licly available. This is even true for the most basic
parameters, such as heat capacity or thermal conductiv-
ity, that are not published for the temperatures involved
in metal-based LPBF processes. All this drought of
information results in the fact that even the evaluation
of several parameters may itself often rely on mod-
els which, in turn, need to be calibrated against further
observations.

The dilemma of choosing a correct model for the case of
limited data is an important issue in statistics. As an exam-
ple, George Box [3] stated, somewhat drastically in his well-
known aphorism, that all models are wrong and that, there-
fore, the most complicated model is not necessarily the best.
Instead, it is recommended to follow the lines of William
of Occam, in which an economical description of the obser-
vations is sought which “is as simple as possible, but not
simpler.”

Following this line of thought, the purpose of the present
paper is to build and validate an economical model able to
replicate the results obtained by the benchmark measure-
ments of a single-line laser stroke on a bare metal plate of
IN625 published in [1]. As stated in the chapter CHAL-
AMB2018-02-MP of the previous reference, the quantities
of interest are the width, depth, and length of the melt pool.
Additionally, we also monitor the cooling rate as defined in
CHAL-AMB2018-02-CR, even if this quantity is not of pri-
mary concern here. To this end, we employ a heat transfer
model which considers the different phases of the material
as homogeneous media. This model is designed to work for
pure conduction, i.e., keyhole modes can neither be fore-
casted nor replicated. This approach is well established in

the literature and has proven to be effective also in the ther-
mal numerical analysis of large-scale LPBF processes [5,
7, 20]. Other successful attempts in this direction, however,
with a focus on the scale of the melt pool, include the very
recent publication of Zhang [26], which provides a sum-
mary of previous approaches but most importantly also
incorporates anisotropic conductivities, as discussed in the
paper at hand. The model proposed in [26] is more elaborate
than ours as it also incorporates a spatially variable laser ab-
sorptivity and, in this sense, it is not minimal w.r.t. the data-
set we face. Further, interesting efforts to construct a valid
yet minimal model are published in [17] where the linking
of thermal models to experiments is carried out via surrogate
modeling based on multivariate Gaussian processes.

We begin by introducing the widely used physical
model based on the transient heat equation including phase
changes in “Governing Equations”. We shortly remark on
the verification of this model in “Model Verification”,
before we move to model validation in “Model Validation”.
The section on model validation is the main section and
commences with reciting the main results of the bench mark
cases obtained on two machines, a commercial machine
(CBM) and the additive manufacturing metrology testbed
(AMMT), both located at the National Institute of Standards
and Technology, USA. In an effort to obtain a minimal
set of modeling parameters, we evaluate the sensitivities
of the quantities of interest to the modeling parameters
given by the physical model. We then select only the most
relevant modeling parameters and use them to calibrate
the physical model toward a similar benchmark already
published as case 7 in [9]. We then proceed with the
evaluation of our model against the benchmark results on
the CBM machine. We observe that the more accurate
measurements of the laser profile on the AMMT render
the model calibrated to the CBM machine using a double-
ellipsoidal heat source less accurate in the AMMT case in
which accurate measurements of the laser profile exist. This
observation necessitates an update of the model. The model
update is presented in “Anisotropic Conductivity Model” by
incorporating anisotropic conductivity, which is thought to
be a simple way to model the convection inside the melt
pool. Finally, in “Summary and Conclusions”, we conclude
that, given accurate measurements of the profile of the laser,
the anisotropic model provides an increase in accuracy over
the tested parameter range as compared to the simpler,
isotropic physical model.

Governing Equations

We use a non-linear heat transfer equation as a physical
model to describe the evolution of temperature T = T (t, x)
as a function of space and time.
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Given a spatial domain � and a time interval T =
[0, tend), the heat transfer equation can be written as
follows:

ρc
∂T

∂t
+ ρL

∂fpc

∂t
− ∇ · (k∇T ) = 0 in � × T . (1)

Therein, ρ and L describe the density and the latent heat
of the material, and c = c(T , x) and k = k(T , x)
are the temperature-dependent heat capacity and thermal
conductivity of the material, while fpc = fpc(T ) is the
phase-change function describing the solid-to-liquid phase
transition of the material. Therefore, besides the non-linear
contribution of the heat capacity and thermal conductivity,
the latent heat term of Eq. 1 introduces a further non-
linearity into the problem. Equation 1 is completed by the
initial condition at time t = 0:

T (x, 0) = T0 in �, (2)

as well as Neumann boundary conditions:

k∇T · n = qr + ql on �N × T . (3)

Herein, T0 is the initial temperature of the body, n is the
unit normal vector, ql is the heat flux input, and qr is the
radiation boundary condition defined as:

qr = σε
(
T 2 + T 2

e

) (
T 2

e − T 2
)
. (4)

In Eq. 4, σ is the Stefan-Boltzmann constant, ε is
the emissivity of the material, and Te is the ambient
temperature. In our model, convection boundary conditions
are neglected. Further details, specifically the adopted finite
element formulation, are provided in [4, 13].

Phase-ChangeModel

For isothermal phase changes, fpc exhibits a jump at the
melting temperature Tm, as the temperature changes the
material state from solid to liquid. Since the phase change
for metals is actually non-isothermal, we regularize this
sudden jump between two temperatures Ts and Tl , with
Ts < Tl . We can now define the phase change function fpc,
such as:

fpc(T ) = 1

2

[(
S

2

Tl − Ts

(
T − Ts + Tl

2

))
+ 1

]
. (5)

The parameter S in Eq. 5 is initially estimated such that
the bulk of the phase change occurs between Ts and Tl

(see Fig. 1). Nevertheless, since no measurement data is
available as to how exactly the phase change occurs, S also
requires calibration.

Fig. 1 Phase-change function for different values of the parameter S

Heat Flux Model

In the sequel, we consider two variants of the heat flux input
ql . The first variant is the double-elliptical model of Goldak
[10] described in Fig. 2. The front quadrant as is defined by:

ql = 2Qηff

πacf

exp
(
−2((z

′ − z
′
0)/c

2
f + (x − x0)/a

2)
)

, (6)

while in the rear quadrant it takes the form:

ql = 2Qηfr

πacr

exp
(
−2((z

′ − z
′
0)/c

2
r + (x − x0)/a

2)
)
. (7)

Herein, Q is the laser power and η is the absorptivity of
the material. The geometrical parameters z

′
0 and x0 define

the center of the laser beam on the upper surface at time t ,
while ff and fr are the fractions of heat deposited in the
front and the rear quadrants, respectively, which have the
side condition that fr +ff = 2 (see [10] for further details).

Fig. 2 Goldak model for the heat flux input. The model consists of a
double-ellipse on which a Gaussian profile is defined
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The second variant, the heat source ql , is not a model.
In fact, ql is directly provided to Eq. 3 as given by
corresponding measurements.

Model Verification

The computational model was verified against the series
of analytical or semi-analytical solutions defined in [13],
where a multi-level hp discretization was used. The
computational model utilized in the paper at hand is slightly
different, as it uses an IGA discretization wherein multi-
level Bézier extraction is applied to construct an efficient
discretization which is refined locally in the vicinity of the
laser beam. This implementation was verified in [6] in two
dimensions as well as in three dimensions using the same
series of problems which were also used for the verification
of the multi-level hp basis [13]. Since the focus of the
present contribution is the validation of the model, we will
not repeat these extensive verification studies. Instead, in
the next section of this paper, we will use the capabilities of
the proposed discretization to directly evaluate the validity
of the physical model given in “Governing Equations”.

Model Validation

As a preamble to this section, we want to highlight the
fact that there are situations (e.g., the presence of highly
complex phenomena, problem physics still unclear, model
uncertainties and difficulties to ascertain its effectiveness,
inability to measure all the model parameters) in which
model validation must consist of two steps. In the first
step (calibration step), the indeterminacy of the physical
model is investigated and calibrated against a first set of
experimental evidences; in the second step (validation step),
the numerical results are compared against a different set
of experimental evidences in order to define the range of
validity and the robustness of the numerical model. The
case under investigation is characterized by the inability to
measure all the model parameters; in particular, we have
limited information on the absorptivity, emissivity, thermal
conductivity, and heat capacity of the material at high
temperature, justifying the choice of the previously defined
two-step model validation process.

In “Benchmark Cases”, we will shortly describe and
report the experimental benchmarks published in [1].
Following the previously described steps of the validation
procedure, first, in “Isotropic Conductivity Model”, we
calibrate the isotropic model of “Governing Equations”
using the double-ellipsoidal heat source introduced by
Goldak [10] and then we validate the isotropic model
using the two heat fluxes described in “Heat Flux Model”.

Table 1 CBM machine: parameter values

Parameter values A B C

Laser power (W) 150 195 195

Laser speed (mm/s) 400 800 1200

Laser spot diameter D4σ(μm) 100 100 100

For the case in which an accurate measurement of the
laser power distribution is given, we observe that the
isotropic material assumption has a very limited range of
validity. These findings serve as a motivation to extend the
physical model by introducing anisotropic conductivities.
This extended model is then presented in “Anisotropic
Conductivity Model” where it will be demonstrated that it
predicts weld pool shapes with an improved accuracy.

Benchmark Cases

All benchmark cases are thoroughly defined in the
laser additive manufacturing benchmarks published in [1],
including a detailed report on the measurements. The
benchmarks are obtained through a traveling laser beam
on a bare metal plate of nickel-based alloy IN625. The
experimental quantities we will use to validate our model
are width, length, and depth of the melt pool as defined in
CHAL-AMB2018-02-MP of the above reference. We also
report on the cooling rates defined in CHAL-AMB2018-
02-CR, although they are not the primal focus in the paper
at hand. The benchmarks cited above and reported in [1]
were performed on two different machines: a commercial
machine (CBM) and the additive manufacturing metrology
testbed (AMMT), both located at the National Institute of
Standards and Technology, USA. On each machine a set of
ten measurements was carried out for three different cases
(labeled A, B, and C), i.e., for varying laser power and
speed. These cases are specified in Table 1 for the CBM
machine and Table 2 for the AMMT machine. The averages
of the experimental measurements for the CBM machine
are reported in Table 3, while average measurements for the
AMMT machine are reported in Table 4. In the first case,
the cooling rate is defined as:

CR = 1290 [◦C] − 1000 [◦C]

d[mm] × v

[mm

sec

]
,

Table 2 AMMT machine: parameter values

Parameter values A B C

Laser power (W) 137.9 179.2 179.2

Laser speed (mm/s) 400 800 1200

Laser spot diameter D4σ(μm) 170 170 170
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Table 3 CBM machine: experimental measurements according to [1],
CHAL-AMB2018-02-MP

Case Length Cooling rate

(μm) (
◦C
sec

)

A 659 ± 21 6.20 × 105 ± 7.99 × 104

B 782 ± 21 9.35 × 105 ± 1.43 × 105

C 754 ± 46 1.28 × 106 ± 3.94 × 105

with v laser speed and 
d distance in the direction of the
laser path, while in the second case as:

CR = 1290 [◦C] − 1190 [◦C]

d[mm] × v

[mm

sec

]
.

For the exact definition of v and
d , as well as for further
details on the experimental benchmarks, we refer to the
original website which continues to be updated as further
measurements become available [1].

Isotropic Conductivity Model

The calibration step of the isotropic model is carried out
for case B on the CBM machine, as given in Table 1,
which is exactly the same configuration as case 7 in [9].
The validation step is obtained by comparing the calibrated
model to the cases A, B, and C of Table 3 and Table 4.
For all the numerical simulations, the IN625 material
parameters are taken from literature [2, 19] and are reported
in Table 5, and Figs. 3 and 4. It is noteworthy that material
and process parameters necessary to run the numerical
simulation are not experimentally available for the effective
temperatures occurring in LPBF processes. For example,
the measurement of the thermal conductivity k in Fig. 3
is only available up to 871 ◦C, but the melting range for
IN625 is 1290–1350 ◦C. Likewise, the melting temperature
interval—the value of k—can only be extrapolated. It is
important to note that this extrapolation itself represents a
physical model which, in turn, needs to be calibrated. This
circumstance is used in “Anisotropic Conductivity Model”
to better describe the conductivity of the material and,
consequently, improve the accuracy of the predicted melt
pool geometry. Further coefficients, whose measurements
are only available up to a certain temperature, are the

Table 4 AMMT machine: experimental measurements according to
[1], CHAL-AMB2018-02-MP

Case Length Width Depth Cooling rate

(μm) (μm) (μm) (
◦C
sec

)

A 300 147.9 42.5 1.16 × 106

B 359 123.5 36 1.08 × 106

C 370 106 29.5 1.90 × 106

Table 5 Material and process constant parameters

Density 8.44e−6 (kg/mm3)

Latent heat 2.8e5 (J/kg)

Melting temperature interval 1290–1350 (◦C)

absorptivity η and the emissivity ε. The latter is necessary
to define the radiation boundary condition given in Eq. 3.

In the case of the CBM machine, the benchmark defines
the laser spot radius as equal to 50μm. We utilize this
value for both parameters cf and a of the double-elliptical
model (see Fig. 2). However, our model also contains the
radius ratio cr/cf as a model parameter as well as the
power fraction ff /fr . Both these parameters are additional,
potential candidates to calibrate the physical model.

Model Calibration Model calibration first requires identify-
ing the sensitivities of the quantities of interest, i.e., length,
width, depth, and cooling rate at the wake of the melt pool
w.r.t. the modeling parameters η, ε, ff /fr and cr/cf given
by the physical model presented in “Governing Equations”.
To this end, four studies were carried out, and for each study,
a single parameter is varied while the others stay fixed. In
the following, we only present the sensitivity studies w.r.t.
the absorptivity η and the emissivity ε of the material, while
the other results are provided in the additional material of
the present article. Figure 5 presents the variation of the
length, width, depth, and cooling rate w.r.t. the emissivity
values. The study clearly suggests that there is practically no
influence of the emissivity on the quantities of interest. At
first sight, this result comes as a surprise because the model
of the boundary conditions suggests an influence of fourth
order in the temperature, something that for sure can not be

Fig. 3 Conductivity vs. temperature
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Fig. 4 Heat capacity vs. temperature

neglected. Indeed, numerous authors explicitly include this
boundary condition to obtain good results, see for example

[16] and the references cited therein. However, the investi-
gation at hand considers the temperature directly under or
in close vicinity to the laser and, therefore, the contribution
of the radiation boundary condition is marginal. To illus-
trate this effect, we consider the flux caused by radiation at
the melting temperature Tm = 1290 ◦C= 1563.15K, with
an ambient temperature of Te = 20 ◦C= 293.15K. The
corresponding power loss is

5.67 × 10−8 × 0.47
(
T 2

m + T 2
e

) (
T 2

e − T 2
m

)

= 1.59 × 105
[
W

m2

]
= 0.16

[
W

mm2

]
, (8)

which represents a negligible quantity compared to the peak
power density of ql = 2.33 × 104

[
W/mm2

]
in the center

of the laser beam. Clearly, under these conditions, radiation
itself may be neglected for studies of temperature fields in
close proximity to the laser source. On the contrary, the
absorptivity has a large influence (see Fig. 6), as do the

Fig. 5 CBM machine. Sensitivity studies w.r.t. the emissivity of the material ε
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Fig. 6 CBM machine. Sensitivity studies w.r.t. the absorptivity of the material η

power fraction and the radius ratio 1. An iterative calibration
delivers the final choice of the parameters: ε = 0.47, η =
0.38, ff /fr = 0.053, and cr/cf = 0.167.

Numerical results for calibration Numerically computed
temperature curves along the laser path are depicted in
Fig. 7. The figure reports also the experimentally measured
temperature, carried out using in situ thermography, as
described in [9]. The different curves labeled 2 mm, 6 mm,
and 12 mm indicate at which position the zero of the
abscissa of the plot coincides with the laser path. A steady
state is reached already after only 2 mm. We specifically
note that the calibration was carried out to best capture
the temperature range around the melting temperature.
Larger even unphysical deviations are tolerated outside this

1The latter two are not depicted due to limitations of space in this
article Fig. 7 Computation of the temperature profile calibrated to case 7 in [9]
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Fig. 8 Computation of cross section (red line) calibrated to case 7 in [9]

region. This kind of calibration toward a process window
is justifiable not only due to the fact that merely the region
of interest needs to be captured with accuracy by the
computations, but also because the camera itself delivers
its most accurate measurements in that range. The plot also
directly shows where the numerical model is not valid,
namely directly inside the melt pool. Here, the temperature
drastically overshoots to unrealistically high values. The
very good agreement of the computation in the range of
the melting zone is further confirmed in Fig. 8. This figure
overlays the image of the cross section of the track taken
by an ex situ measurement of a confocal laser scanning
microscope (CLSM) with the calibrated computation. Both
Figs. 7 and 8 demonstrate that it is possible to obtain an
excellent agreement with the experiment using the simple
physical model presented in “Governing Equations”, if η,
ff /fr , and cr/cf serve as model calibration parameters.

Model validation for the CBM machine The calibrated
model delivers the results depicted in Table 6.

It can readily be concluded that the model is able to
predict the length of the weld pool by up to at least 7.3%
accuracy in the parameter range covered by cases A to
C. The prediction of cooling rates is approximately less
accurate by one order. In fact, the cooling rate is a derived
variable (we directly compute only the temperature) and
thus less accuracy is naturally expected; moreover, since

Table 6 CBM machine: obtained weld pool length l and cooling rates
(CR)

Case Meas. Num. 
 Meas. Num. 


l(μm) l(μm) (%) CR (
◦C
sec

) CR (
◦C
sec

) (%)

A 659 707 7.3 6.20×105 8.79×105 41.8

B 782 812 3.8 9.35×105 1.35×106 44.3

C 754 772 2.4 1.28×106 2.09×106 63.3

Table 7 AMMT machine: computed values

Case Length Width Depth Cooling rate

(μm) (μm) (μm) (
◦C
sec

)

A 301 119 52 0.91×106

B 360 103 42 1.33×106

C 348 91 32 2.18×106

our model does neither include convection nor evaporation,
the temperature predicted within the melt pool is likely
inaccurate and this surely affects also the cooling rate results
in the transfer region from solid to liquid.

It is interesting to note that the measured length in [9],
i.e., the length toward which the model was calibrated was
813[μm], provided with a tolerance of ±79[μm]. However,
measurements performed in [1] for exactly the same case
(case B) were more accurate and are given as 782±21[μm]
(see also Table 6). Thus, a recalibration of the model to
case B will likely deliver more accurate predictions for
the cases A and C. However, this was not carried out
because even more accurate measurements are available
for the AMMT machine which lead to the development
of the extended physical model presented in “Anisotropic
Conductivity Model”.

Model validation for the AMMT machine Surprisingly, very
different experimental results were obtained with the same
scan parameters at the AMMT machine as compared to
the CBM machine. Due to this reason, more thorough
studies were carried out on the AMMT machine. These
include measurements of the actual laser profile itself.
These measurements, now published in [1], enable their
direct application as the Neumann boundary condition
ql in Eq. 3. Thus, the physical model presented in
“Governing Equations” is more tightly defined. This
generates an interesting situation from the perspective
of model validation because two (influential) calibration
parameters, the power fraction ff /fr and the radius ratio
cr/cf , are now fixed and, therefore, can not be used for
calibration. Given that the emissivity ε has practically no
influence, the absorptivity η is the only parameter left for

Table 8 AMMT machine: deviations from experimental values

Case Length Width Depth Cooling rate


(%) 
(%) 
(%) 
(%)

A 0.47 19.3 18.6 21.6

B 0.11 16.4 15.8 23.1

C 5.9 14.2 10.1 14.7
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Fig. 9 Scaling of the conductivity in direction i = x, y, z

a recalibration. For η = 0.086, we obtain the numerical
results provided in Table 7. The corresponding deviations
are provided in Table 8. While the deviations in the length
are still at a maximum of approx. 6%, width and depth are
only predicted to an accuracy of 20%. No further calibration
is possible as there is only one parameter to calibrate
but three values of interest to fit (excluding the cooling
rate). This clearly shows the boundaries of validity of the
model presented in “Governing Equations” and motivates
the development of the model discussed in the next section.

Anisotropic Conductivity Model

Two possible modifications are readily imaginable: (a) a
definition of an absorptivity field instead of a scalar value
η and (b) the definition of an anisotropic conductivity.
The former could be motivated by the fact that the
melt pool surface will surely cause the absorption of the
laser energy to be non-constant. However, to the authors’
opinion, a good model should be as simple as possible,
yet replicate the observed effects as accurately as possible.
With this objective in mind, the definition of an anisotropic

Table 9 Anisotropic conductivity model: computed values

Case Length Width Depth Cooling rate

(μm) (μm) (μm) (
◦C
sec

)

A 304 146.4 44.6 0.82×106

B 362 123.7 36.1 1.23×106

C 346 105.1 27.3 1.88×106

conductivity is a more attractive choice. The only change
necessary is that the scalar value k in Eq. 1 changes to k, a
diagonal matrix with the entries diag(kx , ky , kz). Further,
we set ε = 0. The physical motivation for this model is that
the (transient) diffusion equation given by Eq. 1 does by no
means include the effects caused by convective heat transfer
inside the weld pool. This flaw has already inspired other
authors, e.g., [16], to use a strongly increased conductivity
k inside the melt pool to model convective effects. We
now extend this idea by choosing anisotropic values. For
simplicity, we introduce the scaling factor ϑi where i =
{x, y, z} such that k = diag(kϑx, kϑy, kϑz). The values for
ϑi deviate from 1 only after the last obtainable measurement
(at T = 871◦C) of the conductivity as depicted in Fig. 9.
After calibration to the AMMT machine B, we obtain the
set ϑx = 1.0, ϑy = 1.4, ϑz = 0.9. This delivers very
well-matching weld pool geometries. While the effect of
the scaling of k is marginal in a temperature plot along
the length (because here ϑx = 1.0), its effect in the cross
section is quite pronounced (see Fig. 10 for a direct overlay
of the melt pool geometry over the cross section). In the
validation step, we keep the calibration parameters fixed,
i.e., ϑx = 1.0, ϑy = 1.4, and ϑz = 0.9, and we compute
cases A and C of the AMMTmachine. The computed values
are provided in Table 9 and the corresponding deviations are
provided in Table 10. We observe that for the anisotropic
model the maximum deviation of length, width, and depth is
6.49% at worst, while, for the isotropic conductivity model,
it was merely 19.3%. Even the forecast of the cooling rates
has improved sightly.

Fig. 10 Melt pool cross-section
micrograph image 50×DF (from
https://phasedata.nist.gov/rest/
blob?
id=5b102edd4407e700870ff13e)
over computed cross sections
using isotropic (dashed red line)
and anisotropic conductivity
(dashed green line)

https://phasedata.nist.gov/rest/blob?id=5b102edd4407e700870ff13e
https://phasedata.nist.gov/rest/blob?id=5b102edd4407e700870ff13e
https://phasedata.nist.gov/rest/blob?id=5b102edd4407e700870ff13e
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Table 10 Anisotropic conductivity model: deviations of computed
values from experimental values

Case Length Width Depth Cooling rate


(%) 
(%) 
(%) 
(%)

A 1.33 1.0 2.5 29.3

B 0.84 0.02 0.2 13.9

C 6.49 0.8 5.1 1.3

Summary and Conclusions

In this contribution, we used the standard heat diffusion
model to predict the length, width, and depth of the
melt pool in the laser additive manufacturing benchmarks
CHAL-AMB2018-02-MP published in [1]. The physical
model included a latent heat term as published, e.g., in
[4], along with a radiation boundary condition. Within this
model, we found the radiation boundary condition to have
little to no influence upon the quantities of interest. This
is due to the fact that in close proximity of the laser beam
impact region, the power lost by radiation is much lower
than the applied laser energy itself.

As a first approach, we assumed the laser source to
possess the well-known double-elliptical shape as proposed
for welding by Goldak [10]. We demonstrated that this
model is well suited to predict the shape of the weld pool as
it delivered a maximum deviation from the measurements
of 7.3%. However, in case the shape of the laser source
is given by a measurement, the standard, transient heat
diffusion model only provides accuracies of 19.1% for the
investigated benchmark cases. This renders it practically
invalid.

We then extended the isotropic thermal model by intro-
ducing anisotropic conductivities. Their physical interpre-
tation is to model anisotropic convection inside the melt
pool. This slight extension enabled the model to deliver
at worst 6.49% deviations in length, width, and depth of
the melt pool. Therefore, we conclude that the introduc-
tion of an anisotropic conductivity is a simple yet effective
way of improving the physical model based on the transient
heat equation including phase changes, and remark that the
added computational effort for this extension is marginal.

In the future, we aim at validating a numericalmodel includ-
ing powder. Nevertheless, this task is not straightforward
since measurements of melt pool shapes in the presence of
a powder bed are extremely challenging. We want to finally
stress the fact that the presented model is meant to provide,
once thoroughly calibrated, a reliable model for multi-track
and eventually multi-layer thermal simulations. However,
it is not valid to predict the temperature distribution within
the melt pool.
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